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Abstract: A molecular dynamics (MD) simulation study was performed to investigate the effects
of helium (He) on the mechanical properties of nanocrystalline body-centered cubic iron (BCC Fe).
Simulated X-ray diffraction (XRD) was used to explore the relationship between the generation of
cracks and the change of the crystal structure in nanocrystalline BCC Fe during tensile deformation.
It is observed that the peak stress and the elastic modulus decrease with increasing concentration
of He atoms, which are introduced into the grain boundary (GB) region of nanocrystalline Fe. The
generation and connection of intergranular cracks are enhanced by He atoms. Significant peak
separation, which is associated with the generation of cracks, is found in the simulated XRD patterns
of nanocrystalline Fe during the tensile process. The lower diffraction angle of the {211}′ peak
suggests a more serious lattice distortion during loading. For all nanocrystalline Fe deformed to 6%
strain, the degree and fraction of the lattice distortion increases with the increasing loading stress.

Keywords: simulated XRD; crack generation; helium effects; nanocrystalline BCC Fe

1. Introduction

The mechanical properties of nuclear materials in service will gradually degrade due
to the harmful effects induced by the displacement damage and foreign elements, such as
helium (He) and hydrogen, during radiation [1–4]. He atoms are introduced into nuclear
structure materials mainly because α particles, which are generated by the (n, α) nuclear
reaction, remain in the structure materials in the fission reactor. Molecular dynamics (MD)
simulation studies reported that the density of irradiation-induced defects can be reduced
by the rich grain boundaries (GBs) in nanocrystalline materials [5,6]. Experimental studies
have shown that smaller grains lead to a lower density of He bubbles in nanocrystalline
body-centered cubic iron (BCC Fe) under He ion irradiation [7,8]. Therefore, many stud-
ies were carried out in order to explore the He effects on the mechanical properties of
nanocrystalline BCC Fe, due to the reduced activation ferritic/martensitic (RAF/M) steel
as a candidate structural material for future fusion.

However, He generally aggregates at grain boundaries in nuclear materials, form-
ing clusters and bubbles [9,10], which causes the reduction in GB strength [9,11] and
intergranular failure [3,12–14]. The degradation of mechanical properties induced by
energetic particles has a close relationship with the microstructure evolution in the ra-
diation environments, because the mechanical properties are essentially determined by
the composition and microstructure of the materials. Therefore, the He effects on the
microstructure of nuclear structural material are seriously concerned by researchers. The
microstructure changes of pure tungsten caused by He ion implantation was studied using
synchrotron grazing incidence X-ray diffraction (S-GIXRD) [15], and the results suggest
that the S-GIXRD technique is a powerful tool for investigating the radiation effects on
the subsurface microstructure. GIXRD was also used to detect the microstructure of He-
irradiated nanochannel W films [16], and it was observed that the lattice swelling is lower
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in nanochannel W films than that in bulk W due to the He atoms that are released in the for-
mer. He effects on the microstructure of nanocrystalline BCC Fe was studied by simulated
X-ray diffraction (XRD) [17], showing that the crack generation has a close relationship
with the change in the lattice constant during loading. These studies show that the XRD
method is reliable to study He effect on the microstructure of nuclear structural material.

In our previous research [17], the relationship between the crack generation and struc-
tural distortion was described in the framework of the average lattice constant. However,
the change in the average lattice constant is not sensitive enough to the generation of cracks.
In the present study, the MD simulation studies were performed to investigate the He
effects on the mechanical properties of nanocrystalline BCC Fe under uniaxial loading.
Specifically, the peak splitting and change in the corresponding interplanar spacing, ex-
tracted from simulated XRD patterns, are analyzed in detail to present a more significant
interpretation of the relationship between the degradation of mechanical properties and
the microstructural evolution of nanocrystalline BCC Fe with He. The He effects on the
generation of intergranular cracks were discussed.

2. Simulation Methods

The present study was performed based on the molecular dynamic simulation. The
nanocrystalline BCC Fe model was built through the Voronoi tessellation method [18]. The
volume of the model with periodic boundary conditions is (60 × a)3 Å3, where a = 2.8553 Å
is the lattice constant of BCC Fe. There are 16 grains with random Euler angles in the model.
The grain size of the model was 8.44 nm. The crystal structure of nanocrystalline Fe in the
model was analyzed by the adaptive common neighbor analysis (ACNA) algorithm. The
present model consists of the grain region with a BCC structure and GB region where the
atoms have relaxed away from ideal lattice sites. For clarity, the “BCC region” represents
the inner-grain region hereinafter. MD simulation was performed using the LAMMPS [19],
and the interatomic interactions were described using the EAM (embedded atoms model)
potential, which was developed by Mendelev and his co-workers for BCC Fe [20]. This
EAM potential is the best choice for large-scale simulations [21], and is widely used in
many studies on the mechanical property of BCC Fe [22–24].

The initial model was relaxed using conjugate gradient minimization at 0 K. Then
the intergranular distribution of He was introduced into the models, since the He atom
at GB was a key factor affecting the mechanical properties of nanocrystalline Fe [17]. For
simplicity, the “GB He” represents He atoms located at the GB region of nanocrystalline Fe
hereinafter. Different He concentrations, including 0%, 0.5%, 1% and 2%, were considered
in our study. The potential of He–He and Fe–He in references [25,26] were employed in the
simulation work.

After the minimization, all models were relaxed annealing at 300 K for 10 ps by a
Nose/Hoover isobaric–isothermal (NPT) ensemble. The time step was 0.001 ps. The
models were then subjected to the uniaxial loading along the x-axis with a strain rate of
5 × 10−8 /s at 300 K. According to the experimental condition of the uniaxial tensile test,
the simulation models were deformed in x direction, while pressures in y and z directions
were set to 0. OVITO software [27] was used for the visualization of tensile deformation
processes and analysis of the crystal structure. Simulated XRD patterns obtained by the
DIFFRACTION module of LAMMPS [28] was used to investigate the microstructural
change in nanocrystalline BCC Fe during tensile deformation.

3. Results and Discussion
3.1. He Effects on the Mechanical Properties

Figure 1 presents the stress–strain curves of the nanocrystalline Fe with different He
concentrations. It is observed that both the peak stress and the elastic modulus decrease
with the increasing concentration of GB He, indicating that mechanical properties of the
nanocrystalline Fe are weakened by GB He. This result is in good consistence with the
previous study on nanocrystalline W [29].
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Figure 1. The stress–strain curves of nanocrystalline Fe with different He concentrations. 
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Figure 2. The number of Fe atoms near the biggest crack as a function of strain. No cracks are 

found during 0–4% straining. 
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Figure 1. The stress–strain curves of nanocrystalline Fe with different He concentrations.

The generation of cracks is one of the important factors leading to the degradation
of mechanical properties. In the present study, the intergranular cracks are observed
during deformation, which agrees with previous studies very well [12,22,30]. In order to
understand the He effects on the mechanical properties of nanocrystalline Fe, the evolution
of the cracks in nanocrystalline Fe as a function of He concentration are investigated.
Generally, the generation of cracks initially begins with the decrease in the atomic number
density in a certain volume of nanocrystalline Fe, so the atomic volume of the Fe atom was
calculated by OVITO. Due to the cracks that are surrounded by Fe with an atomic volume
not less than about 16 Å3 (this is the biggest atomic volume in nanocrystalline Fe before
loading), the Fe with a larger atomic volume (>16 Å3) was counted to study the generation
and growth of cracks.

The number of Fe atoms near the biggest crack in nanocrystalline Fe is shown in
Figure 2. It is observed that, at a given He concentration, the number of Fe atoms increases
with the increasing strain, and the critical strain for crack formation is about 5–6%. What is
more, a higher He concentration leads to bigger cracks in nanocrystalline Fe deformed to a
certain strain, implying that crack formation is promoted by GB He.
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Figure 2. The number of Fe atoms near the biggest crack as a function of strain. No cracks are found
during 0–4% straining.

Figure 3 shows the cracks in nanocrystalline Fe with different He concentrations and
strains. In order to illustrate the cracks clearly, only the iron atoms near the cracks and the
He atoms distributed in the GB region are shown. According to the statistical results in
Figure 2, the generation and growth of the cracks is found to be in a strain interval of about
6–8%, so the evolution of cracks in this strain range is focused. It is observed in Figure 3 that
the generation of intergranular crack sources increases with increasing strain in the range of
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6–8%. Both the crack size and density increase with the increasing concentration of GB He
in the nanocrystalline Fe, meaning that the generation of cracks is significantly promoted
by GB He (see cracks labeled with blue arrow). In addition, a more obvious connection of
small cracks (see cracks labeled by blue circle) is found in the nanocrystalline Fe with a
higher He concentration. Essentially, this is due to the GB strength being weakened by GB
He [11]. The deformations of the grains are coordinated with each other during loading;
hence, the generation of cracks corresponds to the saturation of grain deformation. That is
to say, the deformation of some grains is no longer smooth as the concentration of GB He
increases, due to the generation of cracks promoted by GB He.
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3.2. He Effects on the Crystal Structure and GB Structure

For the nanocrystalline Fe with a certain concentration of GB He, the statistical results
in Figure 4 show that the percentage of Fe in the BCC region deceases with the increase in
strain before the peak stress is loaded on. It is also found that the percentage of Fe in the
BCC region is reduced with the increasing concentration of GB He in the strain range of
0–6%. In other words, part of the BCC region is changed to a non-BCC structure during
the process of deformation. The perfect crystal structure is observed in the inner-grain
region in the strain range of 0–6%, so the Fe atoms that have relaxed away from the ideal
lattice sites are located at the region between the BCC region and the GB region during
loading. It is indicated that the GB region and BCC region are deformed cooperatively
with the increase in the strain. Due to the percentage of Fe atoms in the BCC region being
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changed by GB He, the deformation behavior of nanocrystalline Fe is affected by GB He
during loading.
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According to the calculation results in the strain range of 0–6%, as shown in Figure 4,
the variations in the percentage of Fe atoms in the BCC region are 2.28%, 2.28%, 2.16% and
1.77%, for the nanocrystalline Fe with a He concentration of 0%, 0.5%, 1% and 2%, respec-
tively. Therefore, the variation in the percentage of Fe in the BCC region decreases with
the increasing He concentration. Combining the simulation results in Figures 1 and 4, it is
demonstrated that a larger variation in the percentage of Fe in the BCC region shows better
mechanical properties. Therefore, the GB He reduces the saturation point of deformation
during loading.

In order to investigate the He effects on the structure of GB, the Fe atoms and He
atoms in the GB region of nanocrystalline Fe are shown in Figure 5. As a contrast, the GB
structure of nanocrystalline Fe without loading is shown in Figure 5a. The GB structures of
nanocrystalline Fe with different He concentrations deformed to 8% are shown in Figure 5b,
and the corresponding three-dimensional version is exhibited in Figure 5c. It is observed
that the GBs labeled by the black arrow are gradually thickened as the strain increases up
to 8%, and these GBs nearly perpendicular to the loading direction are thicker than those
parallel to the loading direction. In addition, the GBs nearly perpendicular to the direction
of the tensile loading are more vulnerable, as compared with other grain boundaries. For
example, as shown in Figure 3, the intergranular fracture in the GB region grows up along
the direction nearly perpendicular to the loading direction. Therefore, it is deduced that
the direction of the GBs plays a key role in the generation of cracks. A similar result has
been reported in a previous study [24], that the tensile strength depends on the orientation
of GBs in nano-twinned BCC Fe.

Figure 5b shows that the size of the intergranular cracks increases with the increasing
concentration of GB He, and the existence of He clusters inside the cracks is observed. It is
also seen from Figure 5a that the He clusters are gradually obvious with the increase in the
He concentration in nanocrystalline Fe. That is to say, the GB structures are changed by
He, which contributes to the degradation of the mechanical properties. For all simulation
models, the GBs and their triple junction migration are observed during loading [12].

3.3. He Effects on the Crystal Structure of BCC Region

The simulation results in the above sections show that the structure of the BCC
region and GB region is modified with the generation of cracks in nanocrystalline Fe. In
this section, the simulated XRD method is used to explore the relationship between the
generation of cracks and the change in the crystal structure during loading.
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Figure 6a shows the simulated XRD patterns of nanocrystalline Fe without GB He.
The simulated XRD patterns of nanocrystalline Fe before loading is in accord with the
previous experimental results reported by Yu et al. [7]. The peak splitting of the XRD
patterns is obviously observed in the strain interval of 3–10%, implying that the structure of
the BCC region is distorted during loading. The simulated XRD patterns of nanocrystalline
Fe with different He concentrations show a similar peak splitting. In addition, the degree
of lattice distortion revealed by the peak splitting of the XRD patterns is non-homogeneous.
Considering the diffraction peak with a high angle is changed more dramatically than
those with low angles, the separation of the {211} peak is analyzed in detail to describe
the microstructure change affected by GB He in the deformation process. It is observed in
Figure 6a that the {211} peak gradually splits into two peaks with the increasing strain. For
simplicity, the left sub-peak of {211} is labeled by {211}′, and the right peak is labeled by
{211}”. Moreover, there is a left shift of the {211}′ peak and a right shift of the {211}” peak in
the strain interval of 3–6%. Under further strain of 6–10%, recovery of the {211}′ peak is
observed, which is ascribed to the recovery of lattice distortion caused by the generation
of cracks.

In order to further analyze the change in the peak position, the diffraction peaks of
{211} are fitted with two peaks ({211}′ and {211}”) using the Voigt function, as shown in
Figure 6b. Based on the fitting results, the peak position and area of {211}′ ′ and {211}” as a
function of the strain are calculated and shown in Figure 6c,d, respectively.
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Figure 6. (a) The simulated XRD patterns of the nanocrystalline Fe in a strain interval of 0–10%; (b) the {211} peak and the
fitting result by two peaks for the nanocrystalline pure Fe deformed to 6%;(c) the peak position of {211}′ and {211}” as a
function of strain; and (d) the peak area of {211}′ and {211}” as a function of strain.

It can be seen from Figure 6c that, with the strain increasing up to 6%, the {211}′ peak
shifts to a lower 2θ, while {211}” shifts to a higher 2θ. In the strain range of 6–8%, there is a
small fluctuation in the positions of the {211}′ and {211}” peaks. The shift to a higher 2θ of
the {211}” peak means the corresponding interplanar spacing is reduced, and the shift to a
lower 2θ of {211}′ means the reverse happens in nanocrystalline Fe. Thus, the structural
distortion increases with the increasing strain. What is more, the difference in the peak
position between {211}′ and {211}” decreases with the increasing concentration of GB He.
Therefore, it means that the GB strength is too small to support the further change in the
interplanar spacing after the introduction of GB He.

It is shown in Figure 6d that the peak area of {211}′ increases with the increasing strain
if the He concentration remains unchanged, while decreases roughly with the increasing
He concentration at a given strain. In other words, the fraction of the lattice distortion is
increased with the deformation of nanocrystalline Fe and is reduced with the increasing
He concentration.

From Figure 6c,d, it is found that the He effects on the peak position and area have a
regular trend in the strain range of 5–6% (close to the peak stress). For the nanocrystalline
Fe deformed to a 6% strain, as shown in Figure 7a, the crystal spacing d{211}′ , the peak area
and the loading stress decrease linearly with the increase in the He concentration. The
crystal spacing represents the degree of lattice distortion, and the peak area represents the
fraction of lattice distortion. The generation of cracks increases with the increasing He
concentration, and both the degree and fraction of the lattice distortion are reduced. As
shown in Figure 7b, the degree and fraction of lattice distortion increase linearly with the
increasing loading stress of nanocrystalline Fe with GB He.
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4. Conclusions

The MD simulation was carried out to study the He effects on the mechanical proper-
ties of nanocrystalline BCC iron. The peak stress and the elastic modulus decrease with
the increasing concentration of GB He. The higher He concentration leads to a greater
crack density and size in nanocrystalline Fe. The GBs nearly perpendicular to the direction
of the tensile loading are more vulnerable compared with other grain boundaries. The
degradation of the mechanical properties of nanocrystalline Fe with GB He is related to the
separation of the peaks in the simulated XRD patterns. The lower peak position of {211}′

suggests a more serious lattice distortion during loading. The generation of cracks leads
to the reduction in peak stress and the degree and fraction of the lattice distortion. For all
nanocrystalline Fe deformed to a 6% strain, the degree and fraction of the lattice distortion
increases with the increasing loading stress.
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