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Abstract: The increasing CO2 emission rate is deteriorating the atmospheric environment, leading to
global warming and climate change. The potential of the SiC3 nanosheet as a functioning material
for the separation of CO2 from the mixture of CO2, H2, N2 and CH4 by injecting negative charges
is studied by DFT calculations in this paper. The results show that in the absence of injecting
negative charges, CO2 interacts weakly with the SiC3 nanosheet. While the interaction between CO2

and the SiC3 nanosheet can be strengthened by the injection of negative charges, the absorption
mechanism of CO2 changes from physisorption to chemisorption when the injection of negative
charges is switched on. H2/N2/CH4 are all physiosorbed on the SiC3 nanosheet with/without the
injection of negative charges. The mechanism of CO2 adsorption/desorption on the SiC3 nanosheet
could be tuned by switching on/off the injection of negative charges. Our results indicate that the
SiC3 nanosheet can be regarded as a charge-regulated material for the separation of CO2 from the
CO2/H2/N2/CH4 mixture.

Keywords: SiC3 nanosheet; CO2; adsorption; negative charges

1. Introduction

As the byproduct of human modernization activities, CO2 is regarded as one of
the significant causes of global warming and climate change. One of the main sources of
carbon emissions comes from the use of coal as fuel or coke to reduce ores during extraction
metallurgy. Taking iron and steel making for example, about 1.3~1.7 tons of CO2 were
exhausted per ton of steel produced in 2020, equating to about 8.0 percent of global carbon
dioxide emissions. In the ferrous industry, most of the exhaust gases are reducing the
atmosphere and contain the bulk of CO2 that is emitted at temperatures higher than the
ambient temperature. The typical blast furnace gas composition is N2, CO, CO2 and H2
with the temperature of about 473~530 K, and the coke oven gas composition is N2, CH4,
CO, CO2 and H2 with the temperature of about 1000 to 1300 K. CO2 in the hot exhaust
gas is expected to be collected and then reduced to CO that can facilitate the reduction
reaction of CO2 into synthetic fuels for a sustainable environment [1–4]. In the process of
oxygen-converter steelmaking, CO2 is a weaker oxidizing agent compared with O2, and
CO2 can be reduced to CO by the C in the liquid hot metal [5,6]. Therefore, it is expected
to develop an adsorbent material with the highly selective, controllable, and reversible of
CO2 capture that is high-temperature-resistant in the adsorption/desorption processes to
fulfill the requirement of being in the metallurgy area.

Many 2D materials, due to their high surface area for CO2 capture, have been synthe-
sized or theoretically predicted [7], such as BN2 [8], CN [9], C2N [10], C3N [11,12], PCn [13],
and Me–N–C (Me = Fe, Cu, Co, etc.) nanosheets [14,15], borophene nanosheet [16,17],
covalent triazine frameworks [18], nanoporous grapheme [19], and penta-graphene [20].
Adding/removing the electrons to/from the adsorbent materials allows alteration of the
affinity between the adsorbent materials and gases that is in favor of the CO2 capture from
the gas mixture [21]. Qin et al. [10] showed that the interaction between CO2 and the C2N
nanosheet is enhanced by the negative charges or external electric field, and CO2 molecules
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are released from the C2N nanosheet once the charge state/electric field is switched off. Li
et al. [11] found that CO2 molecules can be adsorbed and desorbed from the C3N nanosheet
by adjustment of the applying charge density. Tao et al. [22] found that the charged calcite
is highly selective for separating CO2 from the mixture of N2, H2 and CH4, and the optimal
charge density range for CO2 capture and separation is 8.04~18.56 × 1013 e−/cm2. Other
previous studies [8,10,11,13–15,17,18,21–25] also showed that the negative charges could be
used as a switch in CO2 capture and separation techniques by changing the affinity between
CO2 and the substrates, such as penta-BN2, g-C3N4, nitrogen-doped porous carbons, etc.

Recently, works by Li and Shi et al. [26,27] showed that the silicon carbon monolayer
possesses high thermal stabilities such that the Si2C3 and SiC3 sheets can retain their
planar geometries below 3500 K and manifest excellent properties of semiconductivity
and elasticity for applications in electronics and optoelectronics. Chabi et al. [28] found
that 2D silicon carbide (SixCy) is a universal material, and exhibits the same properties as
graphene, silicon or silicon carbide, depending on the composition (i.e., Si2C3, SiC3 and
SiC4). For extensive exploration of novel nanostructures as potential materials for CO2
capture, a question raised in this study is whether SiC3 nanosheets are also a promising
material for CO2 capture, and whether its capture/separation could be efficiently tuned by
the charge/electric field.

Therefore, the adsorption behaviors of CO2, H2, N2 and CH4 on the SiC3 nanosheets
with and without applying the injecting negative charges were studied by Density Func-
tional Theory (DFT) calculations. Firstly, the stability of SiC3 nanosheet with different gas
molecule (i.e., CO2, H2, N2 and CH4) adsorption was explored. Secondly, the effects of
the injecting negative charges on the electronic structure, bonding features of adsorption
systems and the mechanism of the CO2 adsorption/desorption on the SiC3 nanosheet
were studied. Finally, the possibility of CO2 separation from the gas mixture with the
assistance of negative charge, and the SiC3 nanosheet as a promising CO2 capture material
were confirmed.

2. Calculation Method and Details

The calculations about the adsorption behavior of gas (i.e., CO2, H2, N2 and CH4) on
the SiC3 nanosheets were performed by using Density Functional Theory (DFT) methods,
the implemented Dmol3 module [29] with Generalized Gradient Approximation (GGA) and
the Perdew–Burke–Ernzerhof (PBE) functional exchange correction functional. The details
about the PBE functional have been well documented in the previous paper [30]. The effects
of the core electrons were treated as a single effective potential by using the DFT semi-core
pseudopotentials (USPP). Double numerical plus polarization (DNP) with a cutoff radius
of 4.7 Å, and the DFT + D method with the weak van der Waals (vdW) correction were
adopted in our calculations. Additionally, 4 × 4 × 1 k-points sampling of the SiC3 nanosheet
with 18 Si and 54 C atoms was adopted, and a 20 Å vacuum was set along the normal
direction of the nanosheet for the elimination of the interactions between surface atoms. In
geometric optimizations, the convergence tolerance was 1.0 × 10−5 Ha for the total energy,
0.002 Ha/Å for the maximum force, and 0.005 Å for the maximal displacement.

The adsorption energy (Eads) of gas i on the SiC3 nanosheet is described by the follow-
ing equation [31,32]:

Eads = ESiC3,i − ESiC3 − Ei (1)

where ESiC3,i is the energy of the gas molecule i adsorbed on the SiC3 nanosheet, ESiC3
is the energy of the pure SiC3 nanosheet, Ei is the energy of the isolated gas molecule
i, and i indicates the gas molecule (i.e., CO2, H2, N2 and CH4). A lower value of Eads
corresponds to the stronger interaction between the SiC3 nanosheet and gas molecule i,
and thus, represents a more stable molecules adsorption structure.

The influence of the injecting negative charges on the stability of the SiC3 nanosheet
was studied, where the negative charges of numbers 0 to 5 e− were injected into the SiC3
nanosheet, equivalent to the negative charge densities of 0~2.06 × 1014 e−/cm2, which were
applied on the SiC3 nanosheet. For characterizing the adsorption of the gas molecule (i.e.,
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CO2, H2, N2 and CH4) on the different, negatively charged SiC3 nanosheet, the negative-
charge density of the SiC3 nanosheet (ρ) was investigated, and the negative charge density
was defined as follows [10,17].

ρ =
Q
S

(2)

where Q is the total negative charges injected into (4 × 4 × 1) the supercell of the SiC3
nanosheet, and S is the corresponding surface area (2.43 × 10−14 cm2).

To study the structural stability of a SiC3 nanosheet under different negative-charge
conditions, the phonon dispersion spectra and the cohesive energy are calculated. Generally,
a larger cohesive energy corresponds to a more stable molecule-adsorption structure; also,
no imaginary frequency in the phonon dispersion spectra indicates the stability of a material.
The cohesive energy is defined as follows:

Ecoh =
ncEc + nSiESi − ESiC3

nc + nSi
(3)

where Ec, ESi and ESiC3 are the energies of a single C atom, a single Si atom and the total
energy of SiC3 nanosheet, respectively. nc and nSi are the number of Si and C atoms in
the SiC3 nanosheet. Next, the effect of the injection of negative charges on the adsorption
behavior of gas (i.e., CO2, H2, N2 and CH4) on the SiC3 nanosheets was studied.

3. Results and Discussion
3.1. Electronic Properties and Stability of SiC3 Nanosheet

The SiC3 nanosheet is a graphene-like structure conformation with a P6/mmm space
group. The calculated lattice constants of the primitive SiC3 nanosheet are a = b = 5.584 Å.
Figure 1a shows the deformation electron density of the 4 × 4 × 1 fully relaxed supercell
structure of the SiC3 nanosheet. One can see that electrons are accumulated around the
six-membered ring of carbon due to the larger, stronger electronegativity of carbon than
that of silicon. The SiC3 nanosheet has two different bonds, which are Si–C and C–C. The
bonds lengths of Si–C and C–C are 1.796 and 1.428 Å, respectively, and the angle of C–C–C,
C–C–Si and C–Si–C are all 120◦. Those calculated results are in good agreement with the
reported value [33]. For a pure SiC3 nanosheet, the obtained Local Density of States (LDOS)
of C and Si atoms are shown in Figure 1b. LDOS results show that the SiC3 nanosheet
exhibits a metallic characteristic due to several bands across the Fermi level that might be
primarily contributed by the Si-p orbital [26]. The finding matches with the obtained results
by Chabi et al. [28] that show that the SiC3 nanosheet is a potential material for use as a
semiconductor. Figure 1c shows the cohesive energy of the SiC3 nanosheet under different
charged conditions. The cohesive energy of a neutral SiC3 nanosheet is 9.86 eV/atom,
which is slightly larger than the reported value of neutral SiC3 (7.84 eV/atom) [26]. The
cohesive energy of the SiC3 nanosheet is 9.86 eV/atom without the applied negative charge,
and it decreases with increasing the applied negative charge, finally achieving a stable value
(8.37 eV/atom) when the applied negative charge exceeds 3 e−1. It is indicated that the SiC3
nanosheet is a strongly bonded network and is a stable structure under the negative charge
conditions. There is no imaginary frequency in the phonon dispersion spectra (Figure 1d).
Therefore, all these results reflect the dynamic stability of the SiC3 nanosheet under the
condition of injecting negative charges. The SiC3 nanosheet can withstand a rather high
temperature under atmospheric pressure [26]. Therefore, the SiC3 nanosheet is a stable
material for CO2 separation application after the injection of negative charges.
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Figure 1. (a) Deformation electron density of SiC3 nanosheet structure (4 × 4), (b) LDOS of the
Si and C atoms of SiC3 nanosheet with Fermi level set to 0 eV, (c) the cohesive energy of the SiC3

nanosheet under different negative charge density conditions, and (d) the phonon dispersion spectra
of SiC3 nanosheet.

3.2. CO2/H2/N2/CH4 Adsorption on Uncharged SiC3 Nanosheet

The gas adsorption behaviors of a neutral SiC3 nanosheet is firstly investigated by
analyzing the most stable relaxation configurations of the SiC3 nanosheet with gas ad-
sorption. Various initial adsorption sites are considered, including the top sites of C and
Si atoms and bridge sites of C–C and C–Si bonds, as well as the center of hexagon holes.
Stable relaxation configurations of the SiC3 nanosheet with different gas molecule (i.e.,
CO2, H2, N2 and CH4) adsorptions are obtained and shown in Figure 2. For the most
stable relaxation configurations, the CO2, H2, N2 and CH4 molecule distances from the
SiC3 nanosheet are 3.005, 2.6850, 3.235 and 3. 145 Å, respectively.
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Figure 2. Top and side views of the stable adsorption configurations of different gas molecules
adsorbed on the SiC3 nanosheet without the injecting negative charges. (a) CO2, (b) H2, (c) N2, and
(d) CH4 adsorbed on the SiC3.
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For the CO2 adsorbed on the SiC3 nanosheet, the O–C–O angle and the C–O bond
length exhibit a minor change in comparison to the isolated carbon dioxide molecule,
indicating that the absorption of CO2 is classical physisorption. Similar results are observed
for the H2, N2 and CH4 molecule adsorbed on the SiC3 nanosheet. Thus, it could be
concluded that the gas molecules (i.e., CO2, H2, N2 and CH4) adsorbed on the SiC3
nanosheet surface are caused by physisorption.

The adsorption energies (Eads) of CO2, H2, N2 and CH4 adsorbed on the SiC3 nanosheet
are −0.324, −0.227, −0.299 and −0.281 eV, respectively. Among those four gases, the most
stable relaxation configurations of gas molecules adsorbed on SiC3 nanosheet are CO2,
followed by N2, CH4 and H2, which indicates that the SiC3 material is a potential material
for use as a CO2 adsorbent.

3.3. Adsorption of CO2/H2/N2/CH4 by Charged SiC3 Nanosheet

With the injection of the negative charges with density of 1.23 × 1014 e−/cm2, the
stable relaxation configurations of the SiC3 nanosheet with different gas molecule (i.e., CO2,
H2, N2 and CH4) adsorption are obtained and shown in Figure 3.
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Figure 3. Top and side views of the stable adsorption configurations of different gas molecules adsorbed on SiC3 nanosheet
after the injection of the negative charges with density of 1.23 × 1014 e−/cm2. (a) CO2, (b) H2, (c) N2, and (d) CH4 adsorbed
on the SiC3.

After the injection of negative charges into the SiC3 nanosheet with CO2 absorption,
the CO2 molecule strongly interacts with the SiC3 nanosheet with the adsorption energy
Eads of −1.628 eV; the adsorption energy is significantly smaller than that of the uncharged
SiC3 nanosheet (−0.324 eV). Furthermore, the O–C–O angle changes from 180◦ to 131◦, the
C–O bond length increases from 1.117 Å to 1.259 Å, and the distance between CO2 and the
SiC3 nanosheet decreases from 3.005 Å to 2.002 Å. Obvious electron density distribution
overlap is observed between CO2 and the SiC3 nanosheet (Figure 4e), indicating that the
strong interaction between CO2 and the SiC3 nanosheet, and the absorption of the CO2
molecule on the SiC3 nanosheet is due to chemisorption.
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Figure 4. The electron density distribution of the most stable adsorption configurations of gas molecule (i.e., CO2, H2, N2

and CH4) adsorbed on the SiC3 nanosheet. (a–d) Without the injecting negative charges, and (e–h) after the injection of
negative charges with density of 1.23 × 1014 e−/cm2.

The optimized adsorption configurations of H2, N2 and CH4 after the injection of
negative charges are shown in Figure 3b–d. After the injection of negative charges into the
SiC3 nanosheet with H2 absorption, for the H2 molecule, the H–H bond length increases
slightly from 0.751 to 0.769 Å, the distance between H2 and the SiC3 nanosheet increases
slightly from 2.685 to 2.964 Å, and the adsorption energy Eads decreases from −0.227 to
−0.499 eV. For the N2 molecule, the N–N bond length increases slightly from 1.111 to
1.123 Å, the distance between N2 and the SiC3 nanosheet decreases slightly from 3.235 to
3.151 Å, and the adsorption energy Eads decreases from −0.299 to −0.578 eV. For the CH4
molecule, the C–H bond length increases slightly from 1.100 to 1.102 Å, and the distance
between CH4 and the SiC3 nanosheet decreases from 3.514 to 2.700 Å, and the adsorption
energy Eads decreases from −0.281 to −0.525 eV. Furthermore, no evident electron density
distribution overlaps are observed between gas molecules (H2, N2 and CH4) and the
SiC3 nanosheet after the injection of negative charges (Figure 4e). Thus, it is suggested
that the adsorptions of H2, N2 and CH4 on the SiC3 nanosheet are due to physisorption
with/without the injecting negative charges, which differs from the chemisorption of CO2
on the SiC3 nanosheet with the injection of negative charges.

Figure 4 shows no obvious electron density distribution overlaps observed between
CO2/H2/N2/CH4 molecules and the SiC3 nanosheet without the injecting negative charges.
It indicates that CO2/H2/N2/CH4 interact weakly with the SiC3 nanosheet without the
injecting negative charges. However, after the injection of the negative charge with density
of 1.23 × 1014 e−/cm2, obvious electron density distribution overlap between CO2 and the
SiC3 nanosheet is observed. In other words, after the injection of the negative charges, the
adsorptions of H2, N2 and CH4 on the SiC3 nanosheet are also due to physisorption with
weak interactions between these molecules; when the adsorption mechanism of CO2 on the
SiC3 nanosheet changes from physisorption to chemisorption, the interaction between CO2
and the SiC3 nanosheet gets stronger. These results suggest that CO2 could be separated
from the mixture of CO2, H2, N2 and CH4 that might be tuned by switching on/off the
injection of negative charges.

3.4. Mechanism of CO2 Adsorption/Desorption

The mechanism of CO2 adsorption/desorption on the SiC3 nanosheet are investigated
by switching on/off the injection of negative charges. Figure 5 shows that the adsorption
of CO2 on the SiC3 nanosheet is due to physisorption without the injection of negative
charges. With the injection of negative charges with a density of 1.23 × 1014 e−/cm2, for
the CO2 molecule, the O–C–O angle changes from 180◦ to 131◦, the C–O bond length
increases from 1.117 Å to 1.259 Å, and the distance between CO2 and the SiC3 nanosheet
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decreases from 3.005 Å to 2.002 Å. This result implies that the adsorption mechanism
changes from physisorption to chemisorption; the analysis is consistent with the obtained
results from Figure 4, and the process is exothermic with a reaction energy of −1.172 eV.
After switching off the injection of negative charges, the adsorption mechanism of CO2
changes from chemisorption to physisorption. The adsorbed CO2 molecule is rebound to
its physisorption state, and the distance between CO2 and the SiC3 nanosheet increases
from 2.002 to 3.005 Å. This transition is also exothermic, 0.776 eV, without any energy
barrier. In conclusion, the processes of CO2 adsorption/desorption on the SiC3 nanosheet
is reversible, and CO2 adsorption and separation would be tuned by switching on/off the
injection of negative charges.
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Figure 5. The process of (a) CO2 adsorption on the SiC3 nanosheet after injecting negative charges
with density of 1.23 × 1014 e−/cm2 for the SiC3 nanosheet with CO2 adsorption, and (b) CO2

desorption from the SiC3 nanosheet after switching off the injection of negative charges.

3.5. Separation of CO2 from H2, N2 and CH4 on Negatively Charged SiC3

The effect of the injection of negative charges on the interactions between gases and
the SiC3 nanosheet is shown in Figure 6. With the increase in negative charge density,
the adsorption energy of CO2 is smaller than those values of N2, CH4 and H2. When
the negative charge intensity exceeds 3.75 × 1013 e−/cm2, the adsorption energy of CO2
adsorption decreases with the negative charge intensity observably, while the decrement of
the adsorption energies for H2, N2 and CH4 are relatively small. It is suggested that the
CO2–SiC3 adsorption structure is more stable than the adsorption structures of N2–SiC3,
CH4–SiC3, and H2–SiC3 under different charged conditions.
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Figure 6. Effect of the injection of negative charges on the adsorption energy of the most stable
configurations of SiC3 nanosheet with CO2, H2, N2 and CH4 adsorption.
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To further explore the CO2 separation ability of the SiC3 nanosheet by switching
on/off the injection of negative charges, the co-adsorption behaviors of CO2, H2, N2 and
CH4 on the SiC3 nanosheet are investigated. As Figure 7 shows, after the injecting of the
negative charges with a density of 1.23 × 1014 e−/cm2 into the SiC3 nanosheet with gases
co-absorption, the co-adsorption energy decreases from −0.255 to −0.976 eV. It implies
that with the injection of negative charges, the SiC3 nanosheet with gases (i.e., CO2, H2, N2
and CH4) co-absorption gets more stable in comparison with the one without the injection
of negative charges.
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Figure 7. Top and side views of the optimized configurations of the SiC3 nanosheet with gases
molecules (i.e., CO2, H2, N2 and CH4) co-adsorption (a) without the injection of negative charges,
and (b) with the injection of negative charges (1.23 × 1014 e−/cm2).

Switching on the injection of negative charges, the modules of H2, N2 and CH4
move away from the SiC3 nanosheet. The distance between the molecule and the SiC3
nanosheet increases from 2.817 to 3.506 Å for H2–SiC3, from 3.243 to 3.170 Å for N2–SiC3,
and from 3.491 to 3.506 Å for CH4–SiC3. No obvious electron density distribution overlaps
are observed between H2/N2/CH4 molecules and the SiC3 nanosheet with/without the
injection of negative charges (Figure 8). It indicates that the effect of the injection of
negative charges on the adsorptions of H2/N2/CH4 is not obvious, and H2/N2/CH4 are
all physiosorbed on the SiC3 nanosheet with/without the injection of negative charges.
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With the injection of negative charges into the SiC3 nanosheet with gases co-absorption,
the distance between the CO2 molecule and the SiC3 nanosheet gets shorter, decreasing
from 3.271 to 1.995 Å, and the O–C–O angle of CO2 changes from 178.9◦ to 119.4◦. No obvi-
ous electron density distribution overlap is observed between the CO2 molecule and the
SiC3 nanosheet without the injection of negative charges, while an obvious electron density
distribution overlap is observed with the injection of negative charges (Figure 8), implying
that the absorption mechanism of CO2 changes from physisorption to chemisorption after
the injection of negative charges, which is also consistent with the obtained results from
Figure 5.

In summary, H2/N2/CH4 all interact weakly with the SiC3 nanosheet with/without
the injection of negative charges. While the interaction between CO2 and the SiC3 nanosheet
can be strengthened by the injection of negative charges, the absorption mechanism of
CO2 changes from physisorption to chemisorption after the injection of negative charges.
Therefore, it could be concluded that the separation CO2 from the mixture of CO2, H2, N2
and CH4 can be achieved by switching on/off the injection of negative charges. All of the
above results demonstrate that the SiC3 nanosheet is a promising material for the separation
CO2 from the CO2/H2/N2/CH4 mixture by using the injection of negative charges.

4. Conclusions

The potential of SiC3 nanosheets as functional materials for the separation of CO2 from
the mixture of CO2, H2, N2 and CH4 by injecting negative charges is studied in this paper.
The results show that the SiC3 nanosheets are a promising material for the separation of
CO2 from the CO2/H2/N2/CH4 mixture. The main results are summarized as follows.

(1) In the absence of injecting negative charges, CO2 interacts weakly with the SiC3
nanosheet. While the interaction between CO2 and the SiC3 nanosheet can be
strengthened by the injection of negative charges, the absorption mechanism of
CO2 changes from physisorption to chemisorption when the injection of negative
charges is switched on.

(2) The effect of injecting negative charges on the SiC3 nanosheet with H2/N2/CH4 ad-
sorption is not obvious, and H2/N2/CH4 are all physiosorbed on the SiC3 nanosheet
with/without the injection of negative charges.

(3) The mechanism of CO2 adsorption/desorption on the SiC3 nanosheet could be tuned
by switching on/off the injection of negative charges. The separation of CO2 from the
mixture of CO2, H2, N2 and CH4 can be achieved by switching on/off the injection of
negative charges.
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