
crystals

Article

A Study of Interfacial Electronic Structure at the
CuPc/CsPbI2Br Interface

Zengguang Tang 1,2,3 , Liujiang Zhang 1,2,3, Zhenhuang Su 1,2,3, Zhen Wang 1,2,3, Li Chen 1,2, Chenyue Wang 1,2,
Guoping Xiao 1 and Xingyu Gao 1,2,*

����������
�������

Citation: Tang, Z.; Zhang, L.; Su, Z.;

Wang, Z.; Chen, L.; Wang, C.; Xiao, G.;

Gao, X. A Study of Interfacial

Electronic Structure at the

CuPc/CsPbI2Br Interface. Crystals

2021, 11, 547. https://doi.org/

10.3390/cryst11050547

Academic Editor: Saripally

Sudhaker Reddy

Received: 14 April 2021

Accepted: 10 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
tzg.tzg@foxmail.com (Z.T.); zhangliujiang@sinap.ac.cn (L.Z.); suzhenhuang@sinap.ac.cn (Z.S.);
wangzhen0920@sinap.ac.cn (Z.W.); 18761806950@163.com (L.C.); 3120181155@bit.edu.cn (C.W.);
xiaoguoping@sinap.ac.cn (G.X.)

2 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: gaoxingyu@sinap.ac.cn

Abstract: In this article, CsPbI2Br perovskite thin films were spin-coated on FTO, on which CuPc
was deposited by thermal evaporation. The electronic structure at the CsPbI2Br/CuPc interface
was examined during the CuPc deposition by in situ X-ray photoelectron spectroscopy (XPS) and
ultraviolet photoelectron spectroscopy (UPS) measurements. No downward band bending was
resolved at the CsPbI2Br side, whereas there is ~0.23 eV upward band bending as well as a dipole
of ~0.08 eV identified at the molecular side. Although the hole injection barrier as indicated by
the energy gap from CsPbI2Br valance band maximum (VBM) to CuPc highest occupied molecular
orbital (HOMO) was estimated to be ~0.26 eV, favoring hole extraction from CsPbI2Br to CuPc, the
electron blocking barrier of ~0.04 eV as indicated by the offset between CsPbI2Br conduction band
minimum (CBM) and CuPc lowest unoccupied molecular orbital (LUMO) is too small to efficiently
block electron transfer. Therefore, the present experimental study implies that CuPc may not be a
promising hole transport material for high-performance solar cells using CsPbI2Br as active layer.

Keywords: all-inorganic perovskite solar cell; energy level alignment; interfacial electronic structure

1. Introduction

Organic–inorganic hybrid perovskite solar cells (PSCs) have been developed rapidly
in the past ten years. To be specific, their power conversion efficiency (PCE) already
jumped from initial 3.8% to the certified 25.2% up to now [1,2]. The success of PSCs takes
advantages of many merits of perovskites, such as broad and strong light absorption, low
exciton binding energy, impressive high charge carrier mobility, long free carrier diffusion
length along with their low-cost and flexible fabricating processes [3], hence attracting
widespread interest among the photovoltaic community.

Thus far, all high-performance PSCs with PCEs of over 20% were based on organic–
inorganic hybrid perovskites [4]. However, there are several drawbacks that hinder the
commercialization of these PSCs, including their toxicity, poor long-term and thermal
stability. Organic–inorganic hybrid perovskites consist of organic cations, including methy-
lammonium (MA) or formamidinium (FA), in a lead halide framework [5]. To avoid the
toxicity brought by the presence of Pb2+ in PSCs, there have been many research works
dedicated to Pb-free perovskites [6–9]. Their thermal instability is usually associated with
the decomposition of the perovskite films caused by the volatilization of the organic cations
under high temperatures (exceeding 200 ◦C) [10,11]. It is known that thin films blended of
organic formamidinium and inorganic cesium (Cs) cations made the perovskite structure
stable at temperatures over 100 ◦C [12]. Furthermore, the organic cations were replaced

Crystals 2021, 11, 547. https://doi.org/10.3390/cryst11050547 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-3973-3602
https://www.mdpi.com/article/10.3390/cryst11050547?type=check_update&version=1
https://doi.org/10.3390/cryst11050547
https://doi.org/10.3390/cryst11050547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11050547
https://www.mdpi.com/journal/crystals


Crystals 2021, 11, 547 2 of 10

totally by inorganic cations maintaining the crystal structure; for example, APbX3 (A = Rb,
Cs; X = I, Br and Cl) exhibits superior thermal compositional stability with the initial PCE
of resultant PSCs even at temperatures up to 400 ◦C [13,14]. Therefore, the black phase of
CsPbI3 has an ideal band gap (Eg = 1.73 eV), which is a suitable choice for photovoltaic
devices with the potential for achieving the highest PCE among cesium lead halide per-
ovskites (CsPbI(3−X)Brx). Unfortunately, CsPbI3 is metastable, which turns into yellow
orthorhombic phase (non-perovskite structure) at room temperature under ambient condi-
tions within a few minutes [15]. In comparison with CsPbI3, CsPbBr3 presents improved
long-term and moisture stability, which can be explained by Goldschmidt tolerance factor
which was increased due to the replacement of I− by smaller Br− [16]. However, CsPbBr3
has a band gap as large as 2.25 eV, which limits the achievable PCE of its PSCs consider-
ing the Shockley–Queisser limit [15,17]. On the other hand, CsPbI2Br as a mixed-halide
perovskite with an ideal band gap of 1.92 eV exhibits both phase stability and promising
performance at high temperatures or under humidity conditions, and its theoretical PCE
is up to ~21% [18]. Nevertheless, the best PCE achieved is significantly lower than the
theoretical predication [19,20].

To promote device performance of CsPbI2Br, many approaches have been developed,
including doping engineering and surface engineering of the active layer [21,22]. However,
there has been no report about the interfacial electronic structure between the CsPbI2Br
layer and the charge transport layers, which is also vital for the PSC performance. For
instance, PSCs with ZnO as the electron transport layer (ETL) exhibit better performance
than TiO2, not only because of their good optoelectronic properties, but also their more
appropriate work function (WF) [23–27]. Photoemission techniques have been widely used
to find out the interfacial electronic structure in the search for suitable hole transport layer
(HTL) or ETL materials in PSCs. In the meantime, the phthalocyanine family of molecules
provides wide choices for energy level modifications in solar cells [28]. As an example,
copper phthalocyanine (CuPc) is an extensively used molecule for applications in organic
optoelectronic devices and even organic field effect transistors due to its strong absorption,
long exciton diffusion length and outstanding stability [29–32]. Herein, we will evaluate
the viability of CuPc as an HTL material for CsPbI2Br-based PSCs by investigating the
energy level alignment using in situ X-ray photoelectron spectroscopy (XPS) and ultraviolet
photoelectron spectroscopy (UPS). The observed interfacial electronic structure favors hole
injection but cannot efficiently block the electron transfer, which suggests that CuPc may
not be a potential HTL material for high-performance all-inorganic CsPbI2Br solar cells.

2. Materials and Methods

FTO glass substrates were washed sequentially using ethanol, detergent, acetone, de-
ionized water and ethanol, then dried in N2 flow and treated in UV-ozone for
15 min. The SnO2 solution (VSnO2:VH2O = 1:5) was spin-casted upon FTO at 4000 rpm for
30 s, followed by heating at 150 ◦C for 30 min and UV-ozone treatment for 15 min. The
CsPbI2Br thin films were deposited using a one-step approach in a glove box as reported
in the literature [33]. To make perovskite precursor solution, 120 mg cesium iodide (CsI,
99.99%), 106 mg lead iodide (PbI2, 99.99%) and 85 mg lead bromide (PbBr2, 99.99%) powder,
all bought from Xi’an Polymer Light Technology Corp, Xi’an, China were dissolved in
800 µL N,N-dimethylformamide (DMF, 99.9%, bought from Shanghai Aladdin Bio-Chem
Technology Co.,LTD, Shanghai, China) solution and then 120 µL dimethyl sulfoxide (DMSO,
99.9%, purchased from Shanghai Aladdin Bio-Chem Technology Co.,LTD, Shanghai, China)
were added. Afterwards, the prepared precursor solution was maintained at 60 ◦C on a
hot plate overnight. When the precursor solution was cooled down to room temperature,
it was spin-coated upon SnO2 substrate at 3500 rpm for 30 s, with anti-solvent chloroben-
zene dropped onto the spinning film after 10 s of spinning. Finally, gradient annealing at
150 ◦C for 2 min, 250 ◦C for 3 min and then 350 ◦C for 5 min was applied to complete the
fabrication of CsPbI2Br films.
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The CuPc film was prepared by the vapor deposition method, instead of the solution
process approach, which not only minimizes the influence of external carbon contamination,
but also enables the preparation of angstrom-thick film. The photoelectron spectroscopy
measurements were performed in situ after the deposition of CuPc in an ultrahigh vacuum
(UHV) system with a base pressure of ~4 × 10−10 mbar. To minimize the decomposition
of the perovskite film, the as-prepared CsPbI2Br films are transferred from the glove box
(under N2 environment) to the preparation chamber of the photoemission UHV system
within ~8 min. The photoelectrons of XPS and UPS were excited by a monochromatic
Al-Kα (hν = 1486.6 eV) lab source and a Helium lamp (He I: hν = 21.2 eV), respectively.
Photoemission spectra were taken at normal emission by a PHOIBOS 100 analyzer, the
overall instrumental energy resolution for XPS and UPS are 0.45 eV and 15 meV, respectively.
CuPc powder bought from Sigma-Aldrich was put in a quartz crucible heated electrically
for evaporation. The source temperature was heated to ~350 ◦C during evaporation and
the vacuum was lower than 10−8 mbar. The CuPc film thickness and deposition rate were
calculated by comparing the Pb 4f 7/2 XPS signal from the substrate during the film growth
with that from the bare CsPbI2Br substrate. The XPS spectra were fitted by using the
XPSPEAK 4.1 software.

Grazing incidence X-ray diffraction (GIXRD) was done at the BL14B1 beamline
of Shanghai Synchrotron Radiation Facility (SSRF) and the applied photon energy of
X-ray was 10 keV. The 2-dimensional GIXRD images were taken by using a MarCCD
225 detector vertically placed along the X-ray path away from the samples. The sample–
detector distance was calibrated from the analysis of the GIXRD pattern from a lanthanum
hexaboride sample by using FIT2D. A Zeiss GeminiSEM 300 system was used to mea-
sure high resolution field emission scanning electron microscopy (FESEM) with up to
2 × 106 magnification to investigate the film surface morphology.

3. Results and Discussion

As shown in Figure 1a, the top-view SEM image of a fabricated CsPbI2Br film reveals
a densely packed smooth surface without pin-holes, indicating the high quality of the film.
To further verify the film quality, the GIXRD pattern from a CsPbI2Br film and its derived
1D-GIXRD are shown in Figure 1b,c, respectively. There are intense diffraction streaks along
the diffraction rings for perovskite in Figure 1b, indicating the formation of highly crystal-
lized film with strong preferential orientations. The three characteristic diffraction peaks in
Figure 1c at scattering vectors (q = 4πsin θ/λ) q ≈ 10 nm−1, q ≈ 14.5 nm−1 and q ≈ 20.3 nm−1

correspond to the (100), (110) and (200) crystal planes of α-phase (cubic phase) perovskite,
respectively, which is in line with previous reports [34]. The present GIXRD pattern is a
little different from the cubic CsPbI3 perovskite phase, owing to the presence of bromide
content. No diffraction peaks associated with PbI2 (q ≈ 9.0 nm−1), PbBr2 (q ≈ 9.1 nm−1) and
δ-phase (orthorhombic phase, q ≈ 7.1 nm−1) CsPbI2Br can be seen in Figure 1c, indicating a
complete phase transition from the perovskite precursor to α-phase CsPbI2Br [35]. It is worth
noting that there are bright streaks at (100) and (110) diffraction rings in Figure 1b, indicating
preferential orientations of the perovskite crystalline.

In the XPS survey spectrum of the pristine CsPbI2Br film (cf. Appendix A Figure A1),
oxygen and adventitious carbon signals (around 530 eV and 285 eV, respectively) in the
pristine perovskite are barely observable, demonstrating minimized surface contamination.
It is also noticed that no Sn signal (Sn 3d5/2 at ~485 eV) can be detected, attesting that the
high temperature of up to 350 ◦C used for annealing did not lead to the upward diffusion
of SnO2.
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Pb 4f7/2, I 3d5/2 and Br 3d5/2 peaks for pristine CsPbI2Br film are located at 724.99 eV, 138.61 
eV, 619.41 eV and 68.74 eV, respectively. Upon the deposition of CuPc films, the binding 
energy of all these characteristic features remains almost constant within an uncertainty 
of less than 0.05 eV, as shown in their corresponding figure as well as their evolutions 
with increasing CuPc thickness summarized in Figure 2e, which indicates no band bend-
ing at this side of the CuPc/CsPbI2Br interface. 

 
Figure 2. (a) Cs 3d, (b) Pb 4f, (c) I 3d and (d) Br 3d core level spectra at the CuPc/CsPbI2Br interface. (e) The evolutions of 
core-levels as functions of CuPc thickness. The binding energies of the core-levels are referred to those of the pristine 
CsPbI2Br film. 

Figure 3 shows the evolutions of C 1s, N 1s and Cu 2p for the CuPc film as functions 
of film thicknesses. In C 1s spectra (cf. Figure 3a), the peak at 285.5 eV for the pristine 
CsPbI2Br film is assigned to adventitious carbon [36]. Features corresponding to CuPc ap-
pear and become dominant after 5 Å deposition. The inset shows the fitting curve for C 1s 
spectrum at a CuPc thickness of 117 Å. The C-1 (284.8 eV) and C-2 (286.2 eV) are assigned 

Figure 1. (a) The SEM image; (b) 2D GIXRD pattern and (c) 1D GIXRD spectra derived from (b).

To investigate the electronic structure at the CuPc/CsPbI2Br interface, XPS measure-
ments were conducted and the core level spectra of the elements from CsPbI2Br film with
different CuPc thicknesses are reported in Figure 2a–d. The binding energies of Cs 3d5/2,
Pb 4f 7/2, I 3d5/2 and Br 3d5/2 peaks for pristine CsPbI2Br film are located at 724.99 eV,
138.61 eV, 619.41 eV and 68.74 eV, respectively. Upon the deposition of CuPc films, the bind-
ing energy of all these characteristic features remains almost constant within an uncertainty
of less than 0.05 eV, as shown in their corresponding figure as well as their evolutions with
increasing CuPc thickness summarized in Figure 2e, which indicates no band bending at
this side of the CuPc/CsPbI2Br interface.
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Figure 3 shows the evolutions of C 1s, N 1s and Cu 2p for the CuPc film as functions
of film thicknesses. In C 1s spectra (cf. Figure 3a), the peak at 285.5 eV for the pristine
CsPbI2Br film is assigned to adventitious carbon [36]. Features corresponding to CuPc
appear and become dominant after 5 Å deposition. The inset shows the fitting curve for
C 1s spectrum at a CuPc thickness of 117 Å. The C-1 (284.8 eV) and C-2 (286.2 eV) are
assigned to aromatic carbon of the benzene rings and pyrrole carbon linked to nitrogen,
respectively, with corresponding shake-up features located at higher binding energy of
286.8 eV and 288.2 eV, which agrees well with previous reports [37–39]. No additional
features in C 1s spectra are observed, suggesting no chemical bonds formed between CuPc
and CsPbI2Br. The peak positions of C-1 feature are guided by solid bars in Figure 3a,
which shift to lower binding energy continuously by ~0.23 eV from 2 Å to 117 Å. The
thickness-dependent N 1s and Cu 2p spectra are shown in Figure 3b,c, respectively. It
is noticed that N 1s peaks shift almost identically to the lower binding energy side by
~0.23 eV. Although Cu 2p cannot be resolved below 5 Å due to the very low atomic
concentration of Cu, it also shifts with increasing thicknesses to lower binding energy.
The local shift of all core levels in the same fashion is the characteristic for the band
bending [40,41]. In summary, all the photoemission peaks from the CuPc shift towards
lower binding energy continuously during evaporation, pointing to an upward band
bending at the CuPc side of the CsPbI2Br/CuPc interface.
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The UPS spectra can be used additionally to explore the possible chemical interaction
and band bending at the CuPc/CsPbI2Br interface. Figure 4 illustrates the changes of
VB spectra and the secondary electron cut-off (SECO) with increasing CuPc thickness on
CsPbI2Br. As shown in Figure 4a, the VBM of the pristine CsPbI2Br occurs at 1.78 eV, and
HOMO onset of CuPc molecule is found at ~1.52 eV after 2 Å deposition. The HOMO onset
gradually shifts to lower binding energy by ∼0.23 eV, consistent with the core level results.
No additional VB features are observed, confirming weak CuPc–CsPbI2Br interactions. In
Figure 4b, the WF of the pristine CsPbI2Br film is determined to be ∼3.76 eV. It increases
gradually to 3.91 eV at 15 Å and remains almost unchanged for further CuPc deposition.

Figure 5a summarizes the evolutions of core-levels, HOMO onset of CuPc and WF
as functions of film thickness. It is clear that core-levels and HOMO onset shift almost in
the same way to lower binding by ~0.23 eV, conforming the ‘band bending’ like shift at
CuPc side. The band bending is also verified by the shift of WF to lower binding energy,
but only by ~0.15 eV, which indicates the formation of dipole of ~0.08 eV at the side of the
CuPc. The energy level diagram at the CuPc/CsPbI2Br interface is depicted in Figure 5b. It
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should be noticed that the uncertainty of this energy diagram is estimated to be ~0.05 eV.
For bare CsPbI2Br substrate, the VBM is found at ~1.78 eV below the Fermi level, which
places the conduction band minimum (CBM) ~0.14 eV above the Fermi level considering
a band gap of 1.92 eV [42], indicating the heavily n-type nature of as-prepared CsPbI2Br
film. To achieve thermodynamic equilibrium, electrons are accumulated at the CuPc side,
leading to an upward band bending as well as a dipole of ~0.08 eV [40,41]. Considering
the band gap of 1.7 eV and HOMO onset ~1.52 eV at CuPc/CsPbI2Br interface [30], the
LUMO is placed at ~0.18 eV above Fermi level. A ~0.23 eV ‘band bending’ like shift occurs
at the CuPc side due to the electron accumulation until the thermodynamics equilibrium
is reached. The hole injection barrier at the CuPc/CsPbI2Br interface, as indicated by the
difference between CsPbI2Br VBM and CuPc HOMO, is ~0.26 eV, which is comparable with
that of 0.4–0.5 eV found at the extensively studied Spiro–OMeTAD/CH3NH3PbI3 interface
and facilitate holes injection/transfer from perovskite into the CuPc [43]. On the other
hand, the electron blocking barrier (∆Ec), which is the energy offset between CsPbI2Br
CBM and CuPc LUMO, is determined to be ~0.04 eV at the interface, which would be too
small to prevent photogenerated electrons from flowing into the CuPc layer. Although
there are some reports about inorganic perovskite solar cell based on CuPc HTL [44,45],
the present study from an energy level alignment point of view suggests that CuPc may
not a very promising HTL for all-inorganic PSCs applications.
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Figure 5. (a) The relative energy level shifts of N 1s, Cu 2p, C 1s, CuPc HOMO and WF as functions
of CuPc thickness. The energies refer to those of the 117 Å CuPc. (b) The energy level diagram at the
CsPbI2Br/CuPc interface.

4. Conclusions

The electronic structure at the CuPc/CsPbI2Br interface was studied by using in situ
XPS and UPS spectra. No chemical interaction occurs between CuPc and CsPbI2Br. The
electron accumulation at the CuPc side causes an upward band bending and an interfacial
dipole. The interfacial energetics facilitate the hole injection/transfer from CsPbI2Br to
CuPc but are not sufficient to block the electron flow into the CuPc, which cannot efficiently
suppress recombination of photogenerated electrons and holes at the perovskite/HTL
interface. The present spectroscopic work suggests that CuPc may not serve as an ideal hole
transport material with desirable interfacial energetics for all-inorganic PSCs applications.
As it was reported that the HOMO–LUMO gaps of phthalocyanine species vary in the order
of FePc < CoPc > NiPc > CuPc > ZnPc [46], CoPc possesses the largest HOMO–LUMO gap
which would be able to form a higher and more efficient electron blocking barrier than
CuPc. Of course, the exact interfacial energetics have to be investigated experimentally to
verify the suitability of CoPc as a hole transport material.
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