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Abstract: In this study, Al-SiC nanocomposite was fabricated via powder metallurgy route using
different innovative high-energy ball-milling techniques (HEBM). The powder mixture was consol-
idated using high-frequency induction heat sintering process (HFIHS). With the aim of studying
the physical, mechanical, and tribological performance of the fabricated nanocomposites. Relative
density, hardness, compressive yield strength, Young’s modulus, toughness, elongation, specific
wear rate and coefficient of friction were experimentally investigated. A finite element model for the
frictional process was built to find out the distribution of contact stresses as result of samples sliding.
It was found that the highest the energy of the milling, the more improvement in the mechanical and
tribological performance could significantly achieved due to the homogeneous distribution and the
excellent bonding effect of the composite. In addition, field emission scanning electron microscope
was used for studying the sliding surface morphology in order to explicate the mechanism of the dry
wear process.

Keywords: metal matrix composites; ball milling; wear; advanced sintering; tribological performance

1. Introduction

A pure heart is a powerful heart, but a pure material is not enough to sustain in tough
environments. Researchers are continuously putting their efforts into developing effective,
easy, and scalable ways to produce composites materials by mixing different material
systems, i.e., metals, wood, ceramics, natural compounds, and polymers [1]. Composite
materials have superior properties such as light in weight, low thermal expansion, high
stiffness, better strength, and increased fatigue resistance compared to single material [2].
The composite mainly consists of matrix and reinforcement agents. Matrix composites are
based on a two-phase structure; the first phase consists of the soft phase (matrix), and in
the second phase, reinforcements (hard phase) are embedded in the matrix. Therefore, the
matrix holds the reinforcements, shares the applied load, and protects the reinforcements
from environmental and handling issues. Matrix composites can be classified based on
different matrix materials such as metal matrix, polymer matrix, and ceramic matrix.

Metal matrix composites (MMCs) are more acceptable at the industrial level and
preferable comparing with polymer and ceramic matrix composites due to the higher
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temperature range, better radiation resistance, higher bending stiffness and strength, low
absorption of moisture, higher electrical conductivity, high productivity, and higher fire
resistance properties [3]. However, high-end cost and complex fabrication methods are
some drawbacks compared with polymer matrix composites [4]. To reinforce the metal
matrix (second phase), reinforcing agents (i.e., nanoparticles and fibers) with essential
properties are used. The most commonly used reinforced material in MMCs are silicon
carbide (SiC), aluminum oxide (Al2O3), carbon (C), titanium diboride (TiB2), beryllium
Oxide (BeO), boron nitride (BN), boron carbide (B4C), silicon hexaboride (SiB6), chromium
carbide (Cr3C2), titanium boride (TiB), Titanium carbide (TiC), and silicon (Si) [5]. These
reinforcement materials can bind with metals and possess different characteristics, e.g.,
low density, chemical, mechanical compatibility, high thermal stability, good tensile and
compression properties, easy processability, and economical. According to the recently
published report by report and data in June 2020, the global market of MMCs expected to
grow at the rate of 6.0% between 2020 to 2027 and is estimated to reach USD 540 million of
market size by 2027 [6,7]. This huge growth in market share has occurred because of the
positive outcomes in automotive, space equipment, and electronics applications. The manu-
facturers can customize the mechanical, physical, and thermal properties by using different
production techniques such as melting/solidification method [8], thermal spray [9], electro-
chemical deposition [10], powder metallurgy [11], conventional casting [12], spark plasma
sintering [13], traditional hot extrusion [14], and microwave sintering [15].

Aluminum metal matrix composites (Al-MMCs) are the most common and popu-
lar matrix material used in the configuration of MMC due to their distinctive properties
as; high strength with low weight ratio, satisfactory thermal and electrical conductiv-
ity, better corrosion and wear resistance, and remarkable mechanical and tribological
properties [16,17].

Many researchers demonstrated that the mechanical and tribological properties of Al-
MMCs could be improved through the reinforcement of ceramic fillers, e.g., silicon dioxide
(SiO2), and alumina due to their high stiffness, high melting temperature, low density, and
better corrosion resistance [18]. Al-MMC has the largest volume share in MMCs global
market and finds in many end-use industrial applications, such as automotive, aerospace,
electrical, and electronics items [18].

In terms of reinforcement material, SiC has a huge volumetric share in the global
MMCs market and is most suitable for Al-MMC due to high demand from electrical,
electronics, automotive, and other segments. SiC increases the tensile strength, hardness,
density, wear resistance, and tribological properties of Al-MMCs. The mechanical proper-
ties of the MMCs depend on many factors such as particle distribution, weight fraction,
and the production method play a vital role in the tribological and mechanical properties
of Al-MMCs. Figure 1 validates the importance of Al and SiC as the most consumable
materials by companies in the production of MMCs [5,6].

Recently, metal matrix nanocomposites (MMnCs) where nanosized reinforced fillers
are used that overcome the cracking problems in MMCs due to the use of macroparticles.
Nanosized-SiC (nSiC) showed improved mechanical and tribological properties in Al-
MMnCs without lowering the ductility in the structure [19–21]. The reinforcement material
size is not only the parameter to enhance the mechanical property of Al-MMnCs but also
the type of production techniques and their conditions [21]. Hence, different approaches
have been utilized under different conditions to fabricate Al-MMnCs reinforced with nSiC
particles such as Flake powder metallurgy.
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Figure 1. Core matrix and reinforced materials and their usage volume in MMCs.

Globally, the flake powder metallurgy is a widely used powder metallurgy technique
that utilizes hot pressing, sintering, vacuum pressing, extrusion, and ball mill mixing routes
owning special attributes such as the lower temperature, cost-effective and homogeneous
distribution of nSiC within the Al-matrix. High-frequency induction-heated sintering
(HFIHS) fabrication is a quick and high temperature with pressure powder metallurgy
method that produces uniform and dense MMnCs with good thermal conductivity where
the induced current is the main heating mechanism of the HFIHS method [22]. Over the
past several years flake powder metallurgy technique has observed as the most refined
method to produce MMnCs, several studies such as Morsi and Esawi [23], Razavi et al. [24],
Tjong [25], Jiang et al. [26] reported that the mechanical milling was used to shorter the size
of particles prior to sintering and confirmed the significant enhancement of mechanical
properties without compromising the ductility. Different studies showed that reducing filler
size prior to sintering can tackle the problem faced with conventional powder metallurgy.
Studies of Lin et al. [27] and Kai et al. [28] utilized the ball milling to produce strong and
yet ductile MMnCs with 435 and 364 MPa strength and 0.06 and 0.09 ductility, respectively.
Many investigations have been published involving the various aspects of Al-nSiC MMnCs
preparation. For example, Reddy et al. [29] successfully fabricated the nSiC reinforced Al-
MMnCs by flake-powered metallurgy technique using a high energy ball mill and observed
a significant increase in the mechanical strength of the Al-MMnCs with the addition of 1.5%
nSiC content. Saud et al. [30] demonstrated the fabrication of the ultra-ductile composite
by utilizing the two-speed milling strategy. This study attracted the research community in
the way that the compressive and hardness strength increased by 200% without changing
the concentration of nSiC in Al-nSiC MMnC. In the continuation enhancing mechanical
properties, the same team explored the new way that used three-speed route instead of
the two-speed strategy [31]. Mechanical tests of the well distributed and strong bonded
Al-nSiC MMnC showed superior yield compressive strength (180%), ultimate compressive
strength (101%), and hardness (92%), with 0% loss in uniform elongation compared with
two-speed strategy. Xu et al. [32] investigated the effect of shifting the ball-milling speed
on the strength and ductility of aluminum matrix reinforced by carbon nanotube using
flake powder metallurgy. They found that utilizing two sequential speeds could achieve a
balance between interfacial bonding, uniform dispersion, and structural integrity of the
carbon nanotube inside the aluminum matrix. Furthermore, enhancement in the composite
ductility was achieved.

The tribological properties of aluminum matrix composite were investigated in the
form of measuring the friction coefficient and the wear rate [33,34]. Most researchers
tried to study adding reinforcement materials and measuring their effect on the aluminum



Crystals 2021, 11, 700 4 of 22

tribological properties. P. Ashwath et al. [35] investigated the effect of reinforcing aluminum
matrix with SiC, Al2O3, and graphene particles. The powders were mixed utilizing ball
milling before sintering at 550 ◦C. They could prove that 1% of graphene was able to
enhance the characteristics of aluminum. Ravindran et al. [36] reinforced aluminum
with hybrid materials, silicon carbide (SiC) and graphite (Gr), using powder metallurgy.
They found that the addition of soft material (graphite) besides a hard one (SiC) could
significantly enhance the wear resistance.

Based upon the literature survey, reinforcing aluminum matrix with different types
of materials using flake powder metallurgy can affect its mechanical and tribological
properties. In the current study, the dispersion and co-deformation of performance Al/SiC
powders at three different ball-milling scenarios, based on shifting the speed of the ball-
milling process, were investigated. Furthermore, the physical, mechanical, and tribological
properties were analyzed according to the composite samples production scenario. The
density, hardness, compressive yield strength, Young’s modulus, toughness, and ductility
of the Al/SiC composite samples were estimated as functions of the production scenario.
The coefficient of friction and specific wear rate were measured from the dry sliding of
Al/SiC composites against a stainless-steel disk. A finite element model was constructed
to investigate the contact stresses during the frictional process. The morphology of the ball-
milled powder and worn surfaces were examined using field emission scanning electron
microscopy (SEM).

2. Experimental Procedure
2.1. Raw Materials

Aluminum fine powder and SiC nanoparticles were selected in the current investi-
gation as the representative materials. The Al powder was purchased from Loba Chemie
(India) with 98% purity and an average particle size of 35 µm, as shown in Figure 2a. SiC
nanoparticles were provided by Sigma Aldrich with an average particle size of 60 nm, as
shown in Figure 2b,c. As shown in Figure 2a, aluminum powder has irregular shapes of
different sizes. Figure 2b,c illustrate the FESEM and HRTEM of the as-received SiC powder,
which appears has some agglomeration. However, all images show that the raw materials
particle size is still around the supplier measurement.
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2.2. Ball-Milling Processes of Al/SiC Powders

The Al/SiC mixture was processed via a ball-milling route using a stainless-steel jar
and planetary ball mill (Pulverisette 7, Fritsch, Idar-Oberstein, Germany) with balls to
powder ratio of 12:1. A constant percentage of 5 wt.% SiC was added to the aluminum
powder in addition to 2 wt.% stearic acid powder (used as processing control agent) to
avoid severe cold welding. Then, the Al/Sic powders were mixed with three different
ball-milling scenarios according to the rotational speed and the time period in order to
observe the efficiency of shifting the milling speed towards the uniform distribution of
the reinforcement nanoparticle in the aluminum metal matrix nanocomposites. The first
scenario working on milling the mixed powder in two stages with two different speeds, 150
rpm for 8 h followed by 300 rpm for 4 h as listed in Table 1. The first scenario was denoted
as LHSBM for low–high-speed ball milling. The second scenario uses three speeds instead
of two speeds, 150 rpm for 8 h followed by 300 rpm for 4 h, and 150 rpm for 2 h. The second
scenario was denoted as LHLSBM for low–high–low speed ball milling. The last scenario
was the same as the second scenario with a difference in the previous speed, which became
450 rpm for 1 h. The third scenario was denoted as LHHSBM for low–high–high-speed
ball milling. For all scenarios, the milling process was performed continuously for 15 min
followed by 10 min off in order to cool down the milling jars until completing the total
milling time.

Table 1. Sample justification and ball-milling parameters.

Sample
Code

Ball Milling Stages
Stage 1 Stage 2 Stage 3

rpm time rpm time rpm time

LHSBM low–high speed 150 8 hr 300 4 hr — —
LHLSBM low–high–low speed 150 8 hr 300 4 hr 150 2 hr
LHHSBM low–high–high speed 150 8 hr 300 4 hr 450 1 hr

2.3. Consolidation (Sintering)

The 8 wt.% Al/SiC composite powders by LHSBM, LHLSBM, and LHHSBM were
then consolidated using an advanced sintering process through a high-frequency induction
heat sintering furnace (HFIHS) from ELTek Co., South Korea. The powder mixture was
filled into a graphite die (Figure 3a) with 10 mm inner diameter to produce samples with
10 mm diameter and 15 mm height. During 5 min of holding time, the compaction and
sintering processes were completed simultaneously at 40 MPa and 580 ◦C in vacuumed
atmosphere. The heating rate during the consolidation process was 160 ◦C/min while
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the cooling rate was completed freely as furnace cooling, as shown in Figure 3b. The
as-fabricated Al/SiC nano-composites samples were denoted as LHSBM-Al, LHLSBM-Al,
and LHHSBM-Al.
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2.4. Material Characterization and Testing

To investigate the effect of using different milling scenarios on the produced pow-
der morphology (particle size and shape), the microstructure of LHSBM, LHLSBM, and
LHHSBM powders were characterized utilizing field emission scanning electron mi-
croscopy (FESEM) Model: JEOL JSM-7600F, Tokyo, Japan. The homogeneity of nano
additives distribution was evaluated utilizing energy-dispersive X-ray spectroscopy (EDS).
The consolidated Al/SiC nanocomposite samples’ chemical composition was examined
using an X-ray diffraction pattern that uses D8 discover from Bruker, Germany, with filtered
Cu Kα radiation (λ = 1.5406 Å).

The measurement of density evaluated the physical properties of the Al/Sic nanocom-
posite samples, ρE, using Archimedes’ method utilizing Equation (1) [37] and compared
with theoretical ones ρT calculated using Equation (2) according to the ASTM standard
test [38]. Then, the voids volume fraction was calculated using Equation (3), where ρalc,
ρair, ρAl , and ρSiC are the densities of alcohol, air, aluminum powder, and SiC nanoparticles
(g/cm3), respectively, and mSair and mSalc are the corresponding nanocomposite masses in
air and alcohol (g), respectively. WAl , and WSiC are the weight fractions of Al and SiC in
the composite, respectively.

ρE = (ρalc − ρair)×
mSair

mSair − mSalc
+ ρair, (1)

ρT =
1(

WAl
ρAl

+ WSiC
ρSiC

) , (2)

Pv(%) =
ρT − ρE

ρT
. (3)

The mechanical characteristics of Al/SiC nanocomposites were evaluated via Vickers
hardness and uniaxial compression test. The composite samples’ hardness was measured
after polishing utilizing Vickers hardness tester (WOLPERT UH930, Wilson Hardness,
Shanghai, China, with a load ranging from 1 to 250 kgf). The hardness was measured five
times for each nanocomposite, and the average was calculated considering the standard er-
ror. The samples’ compressive properties were then extracted from the compression test us-
ing Instron 5582 Microtester (Instron, University Ave, Norwood, USA) with a strain rate of
10−3/s According to ASTM: E9-89a for the testing procedure and the specimen dimensions.

To investigate the effect of different milling strategies on the produced Al/SiC sam-
ples’ tribological properties, a pin-on-disc test apparatus (Figure 4) was utilized in a dry
sliding condition for the metal matrix composite samples according to ASTM G99-95 [39].
The pin was represented by the composite sample with dimensions of 10 mm diameter
and 15 mm height, while the contact surface was 78.5 mm2, whereas the disk is stainless
steel with 20 cm diameter and 13 µm roughness. Each sample was thoroughly polished
with fine-grade paper and cleaned with acetone solution, dried by a high-pressure air
jet to remove any contaminations before starting each wear test. Moreover, all samples
were accurately weighed before and after the wear test using an electronic balance with
four-digit accuracy. The wear test was performed for 5, 10, 15, and 20 min per sample
using a constant weight of 10 N, with a track diameter of 150 mm and rotational speed of
100 rpm. The experimentation was repeated around five times to ensure repeatability, then
both friction coefficient and specific wear rate were calculated with standard error consider-
ation. The recorded mechanical and tribological properties were utilized in constructing a
dynamic model for the friction process using the explicit dynamics package of the ANSYS
software to investigate the generated stresses on the surface of the Al/SiC composites.
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Since the physical contacting bodies do not interpenetrate, the algorithm must es-
tablish a relationship between the two contacted surfaces to prevent them from passing
through each other in the analysis. For nonlinear solid body contact of faces, Normal
Lagrange or Augmented Lagrange formulations can be used. Based on the Ansys software
database, the augmented Lagrange method is less sensitive to the magnitude of the contact
stiffness. Therefore, in the current investigation, the Normal Lagrange was used where an
extra degree of freedom is added to satisfy contact compatibility. Consequently, instead
of resolving contact force as contact stiffness and penetration, the contact force is solved
explicitly as an extra DOF (where we defined only the applied normal load 10 N in the
z-direction). Furthermore, the friction coefficient was fed to the program as a constant
value based on the measured values of each specimen.

During both fabrication and experimental testing processes, the composite samples’
surface morphology was observed using FE-SEM to investigate the worn surfaces and
explore the wear mechanism.

3. Results and Discussions
3.1. Ball-Milled Powder Morphology

The morphology of the produced mixed powder and the distribution of the reinforce-
ment into the matrix can affect the different properties of the composites. Consequently,
and to understand the effect of different conducted ball-milling scenarios on the morphol-
ogy of the produced mixed powder, FESEM was used, as shown in Figure 5. Figure 5
represents the first utilized route LHSBM-Al with different scales. It is noticed that most of
the produced powder has a flakey shape with uniform size and rough surface. The high
surface roughness of the surface of the particles could be attributed to the predomination
of fracturing.

Furthermore, it seems that some particles were broken. With a focus on the surface of
flake aluminum particles, the broken particles were deposited on its top surface, regarding
the distribution of SiC with aluminum matrix, a noticeable agglomeration of the SiC with
clusters of few particles which could be attributed to the weak bonding between the
aluminum and SiC. Therefore, the dominant deformation performance for the powder is
flattening with some fracturing.
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The morphology of the produced powder depends on the mechanism of producibility
during the ball-milling process. Figure 6a,b describe how the speed and movement of the
balls during the ball-milling process affected the powder shape. In the first step, where
the speed was low 150 rpm, the shear force generated by balls collisions led to flattening
the aluminum particles and distributing SiC nanoparticles. Fan et al. [40] investigated the
effect of low speed on the ball-milled powders, and they could prove that low speed can
distribute reinforcement uniformly and produce powders with flake shapes. Increasing
the speed in the next step to be 300 rpm led to an increase in the compressive force,
and consequently, SiC nanoparticles incorporated inside the aluminum flakes; however,
Figure 5 shows that the bonding between some SiC and Al is not strong enough. Finally,
Figure 6c illustrates that the aluminum flakes were produced with a uniform distribution
of the SiC.
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Figure 6. A schematic of the producibility of LHSBM-Al powder; (a) stage 1, (b) stage 2, and
(c) stage 3.

In the second scenario, the output mixed powder will be the input for an additional
step. Figure 7 illustrates the morphology of aluminum and SiC after applying the third
step by downshifting the speed of the ball-milling process to be 150 rpm again, LHLSBM.
Minimizing the milling speed at the third step led to a decrease in the compressive force,
and the mixed powder return to be subjected to shear force. Consequently, the surface
of the flakes becomes smoother as the broken particles are removed from the surface, as
shown in Figure 7. Furthermore, the agglomeration of SiC becomes unnoticeable. It is
also noticed that the thickness of aluminum flakes has been decreases where the dominant
deformation performance for the powder changed from fracturing to be cold welding.
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Figure 7. FESEM images for LHLSBM-Al powder.

In the third scenario, the output mixed powder of LHSBM will be the input for an
additional step where the speed will increase to be 450 rpm, LHHSBM. The morphology of
LHHSBM mixed powder is illustrated in Figure 8. The ball-milled powder shape changed
from a flakey form to be equiaxed. According to Matori et al. [41], this phenomenon appears
when a balance between fracturing and cold welding occurs, and the milled powder attains
the steady state. As shown in Figure 8, the milled particles become large because increasing
the speed in the third step led to an increase in the compressive force, causing welding
between some aluminum flakes. Furthermore, the SiC agglomeration approximately
disappeared. Figure 9 shows the mechanism of motion during the ball-milling process
with the addition of the third step at high speed.
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After the consolidation of the three ball-milled mixed powders, XRD was utilized to
investigate the chemical composition of the three Al/SiC composites. Figure 10 illustrates
the XRD diffraction peaks for the composite material produced with the three ball-milling
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scenarios. The peaks of aluminum and SiC are clear, matching with the previous investi-
gation conducted by Almotairy et al. [31]. At 2 thetas, equal to approximately 62 degrees,
some peeks appeared at LHSBM and LHHSBM which confirm the presence of Al2O3
generated from the oxidation after the milling process. However, in LHLSBM, the peeks of
Al2O3 disappeared because of the third step, where the energy of milling was decreased.
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Figure 10. XRD of LHSBM, LHLSBM, and LHHSBM consolidated samples.

3.2. Physical Properties

The physical properties of composite material can be represented in the measurement
of the density of the samples. The density of the composite depends on the ratio of
the added reinforcement to the original matrix. Consequently, the densities of the three
produced composites were calculated theoretically and compared with their densities
that were measured experimentally, as shown in Figure 11 with respect to the production
scenario. The results illustrate that the theoretical density for the three samples is the same
because it depends on the ratio of the SiC ratio to the aluminum ratio and the density of
each one separately, which are the same in the three samples. Regarding the measured
densities, a noticeable difference emerged between the three specimens. The discrepancy
in density among the three produced samples could be attributed to the formation of
pores and voids during the consolidation process and the morphology of the produced
powders. Consequently, the porosity volume fraction was calculated and illustrated in the
same figure.

The density of the LHSBM sample seems to be relatively low compared with the
other two samples. The decrease in the LHSBM sample could be attributed to the low
milling time, which produces large flake particles with a high surface roughness that
increases the porosity volume fraction and decreases the densification rate [5] to the other
samples. On the other hand, the LHHSBM sample shows a very mall difference between the
theoretical and experimental measured density, emphasizing the effectiveness of utilizing
the LHHSBM scenario in achieving a complete dense Al/SiC composite.
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3.3. Mechanical Properties

The Mechanical characteristics of metal matrix composites usually depend on various
variables, including bonding between composite elements, micro-nano-structure, param-
eters of consolidation, and others [42]. Figure 12 illustrates the variation in the hardness
for the three aluminum/SiC composite samples. The samples microhardness for LHSBM,
LHLSBM, and LHHSBM were 44.5, 63.2, and 165.2, respectively. The results show that
utilizing different scenarios of ball milling, based on the steps and speeds, could have
a different effect on the hardness of the produced samples even if they have the same
percentage of reinforcement additives. LHSBM recorded the lowest hardness value, and
this result could be attributed to the low time of ball milling compared to the other two
utilized scenarios.
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On the contrary, LHHSBM hardness recorded an enhancement in the hardness, which
reach 260% and 160% relative to LHSBM, and LHLSBM, respectively. The enhancement in
the LHHSBM harness could be attributed to the high energy acquired from the increase
in the compressive force due to increasing the speed in the last step, which decreases the
residual dislocation and strengthens the interfacial bonding between the aluminum and SiC.
Moreover, utilizing LHHSBM yields enhancement in the hardness because of the effective
load transfer from the aluminum matrix to the SiC hard particle, which can be evidence of
the uniform distribution of SiC inside the aluminum matix strong bonding between them.
LHLSBM recorded a moderate hardness with an enhancement of 39% relative to LHSBM.
Although the speed in the third step decreased, increasing the ball-milling time led to an
increase in the hardness, which is in accordance with Abd-Elwahed et al. [43].

To investigate the effect of utilizing different ball-milling scenarios on the load-carrying
capacity, the three Al/SiC samples were compressed. The compression properties were
measures, as shown in Figures 13 and 14. Figure 13 illustrates the average Young’s modulus
and compressive yield strength concerning the three composite samples produced by
different ball-milling scenarios. Figure 14 shows the average elongation and toughness
with respect to the same three composite samples.
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tion scenarios.

The compressive properties of LHSBM, LHLSBM, and LHHSBM Al/SiC composites
were the same as usual results of ball-milling processes, which states that the consolidated
materials acquires high strength low elasticity as a result of increasing the energy of the
milling process [9,10]. Therefore, the LHHSBM sample recorded the highest Young’s
modulus and compressive yield strength with 11 GPa and 500 MPa, respectively. The en-
hancement in Young’s modulus and compressive yield strength of the LHHSBM sam-
ple relative to the LHSBM sample reached 209.7% and 201.6%, respectively, and for the
LHLSBM sample was 141% and 159.5%, respectively. The LHLSBM sample also recorded
an enhancement in Yong’s modulus and yield strength relative to LHSBM with 25.5% and
16.2%, respectively. These enhancements in LHLSBM and LHHSBM samples relative to the
LHSBM sample could be attributed to the additional step of milling and for the mechanism
of powder deformation.
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In ball milling, the dominant factor affecting the mechanism of powder deformation
is the force resulting from the frequency of collision balls. As mentioned in the ball-
milled powder morphology subsection, the collision force could be classified into shearing
and compressive forces [44,45]. The shear force resulting from balls friction and rolling
could effectively disperse the nanoparticles among the matrix particles [46]. However, the
compressive force is considered an efficient way to deform the powder to be flattened,
and the prolonged time contributes to cold welding. Increasing the milling speed would
increase both types of forces but with different growth rates [32]. The steps of producing
the LHHSBM sample can help in understanding the unprecedented improvement in
the mechanical properties. The first scenario of ball-milling LHSBM is the input of the
third scenario, LHHSBM. Therefore, the powder was subjected to a low milling speed of
150 rpm, which uniformly distributed the SiC nanoparticles into the aluminum matrix, and
aluminum powder evolved into a flake shape. Then, the speed was doubled to be 300 rpm,
which increased the compressive force relative to the shear force and laminate the broken
aluminum particles with the appearance of some clusters. However, the shear force was
enough to distribute the SiC uniformly on the aluminum flakes. Finally, the mixed powder
was subjected to a higher speed 450 rpm that significantly increased the compressive force,
enhancing the bonding strength between the aluminum and SiC. Moreover, with prolonged
time, aluminum flakes began to be subjected to cold welding, enhancing inter-flake bonding.
Consequently, a simultaneous enhancement of the strength in the in situ LHHSBM Al/SiC
composite. To summarize the compression results, the LHHSBM SiC composite sample
exhibited the highest strength, but twice and triple times less than LHSBM SiC composite
sample in elongation and toughness. This degradation in elongation and toughness is due
to the high energy acquired during the last step of milling [47].

3.4. Tribological Properties

To recognize how the sample preparation technique (different ball-milling scenarios)
can affect the friction coefficient of Al/SiC nanocomposite, the three SiC samples were
rubbed under a constant load of 10 N against a stainless-steel disk with a speed of 100 rpm.
Figure 15 shows the real-time variation of the friction coefficient for the three Al/SiC
samples for 20 min. It is observed that the friction coefficient decreases with the increase in
time for all the fabricated specimens. Furthermore, LHHSBM recorded the lowest friction
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coefficient with the change of time. However, LHSBM and LHLSBM results overlap with a
slight increase in the values of the friction coefficient in LHSBM.
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Figure 15. The real-time friction coefficient of Al/SiC composites under 10 N load.

For more understanding of the effect of sliding time on the friction coefficient of the
Al/SiC samples, the tribological experiments were repeated for different sliding times 5,
10, 15, and 20 min, and the average friction coefficients were estimated considering the
standard errors, as shown in Figure 16. It is evident that increasing the sliding period
led to a decrease in the coefficient of friction. The noticeable reduction in the friction
coefficient for the three samples with increasing the friction period could be attributed
to the smoothness on the Al/SiC surface due to the rubbing against the stainless-steel
disk for a long sling time. Nevertheless, the tribological characteristics for the Al/SiC
samples remain the same; LHHSBM recorded the lowest friction coefficient relative to
LHSBM and LHLSBM. The decrease in friction coefficient can denote an improvement in
the load-carrying capacity [14], which can be evaluated according to the stress distribution
between the contact surfaces, AL/SiC samples, and stainless-steel disk.
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To explore the load-carrying capacity for the three Al/SiC samples, a 3D finite element
model (FEM) was constructed utilizing the explicit dynamics package of the ANSYS
software that represents the friction experiment, as shown in Figure 17. The FEM was
constructed in two main parts; first, a hollow disk with an outer diameter of 160 mm and
inner diameter of 140 mm represents the stainless-steel disk. Second, a cylindrical pin with
a diameter of 10 mm and a height of 13 mm represents the Al/SiC composite sample. Both
the disk and the bin were meshed utilizing hexahedron and tetrahedron, automatic mesh.
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Mesh size selection has been optimized during this work, starting by a very fine size
up to the largest possible size. The final conclusion was that even the mesh was refined,
the results are approximately the same with a negligible difference. Consequently, and to
save the solution time, mesh size was selected based on the automatic mech offered by the
software itself.

According to the experimentally measured values, the mechanical properties of the
three Al/SiC were fed to the ANSYS software. The measured friction coefficients were
defined between the contact surface in order to measure the different generated stresses
resultant from the rubbing process.

The boundary conditions were added accurately as follows:

a. The stainless-steel disk rotates with a constant speed of 100 rpm clockwise.
b. The pin, Al/SiC composite, was fixed in the x-y plane and free in the z-direction.
c. A load of 10 N was applied on the surface of the pin in the z-direction, which can

push the pin towards the hollow disk.
d. The contact between the pin and the hollow disk was recognized as frictional.

Figure 18 illustrates the different stresses generated from the friction between the
three Al/SiC composite samples and the stainless-steel disk. As shown in the figure, the
motion direction of the stainless-steel disk resulted in concentrated stress on the edge of the
composite samples for all cases. Utilizing the LHHSBM scenario in producing the Al/SiC
composite sample led to a reduction in the maximum equivalent stress generated on the
surface of the composite, as shown in Figure 19. This decrease in the maximum equivalent
stress resulted from improved composite strength due to the utilization of the LHHSBM
technique. Therefore, the load-carrying capacity growing properly in which a decrease
in the friction coefficient has been achieved [48]. On the other hand, Figure 19 recorded a
reduction in the shear stress generated on the surface of the Al/SiC sample produced by
LHHSBM relative to the other two samples, resulting in the recorded drop in the friction
coefficient [49].
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Figure 20 illustrates the frictional stress and the thickness of the wear layer during the
friction process for the three Al/SiC composites. LHHSBM sample recorded the lowest
frictional stress and shear stress; consequently, it is predictable that the wear rate in the
LHHSBM sample will be lower than the other two composite samples. To investigate the
wear that occurred in the three Al/SiC samples, the specific wear rate was calculated for
each sample after rubbing for different sliding distances 120, 240, 360, and 480 m, as shown
in Figure 21. As expected from the finite element analysis, the LHHSBM sample recorded
the lowest specific wear rate compared with LHSBM and LHLSBM samples at different
sliding distances. These results could be attributed to the enhancement archived in the
mechanical characteristics for the LHHSBM technique, which showed that utilizing the
LHHSBM scenario improved the strength of the produced composite. As illustrated in
the powder morphology subsection, utilizing LHHSBM enhanced the bonding strength
between the aluminum and SiC, which prohibited the degradation of the Al/Sic during
the frictional process and consequently improved the wear resistance. Moreover, the
finite element analysis showed a reduction in the shear stress on the LHHSBM Sample
surface, reducing the wear rate. In LHSBM composite sample, the weak bond between the



Crystals 2021, 11, 700 18 of 22

aluminum and SiC led to the escape of some SiC nanoparticles from the aluminum matrix
during the sliding process. These SiC nanoparticles worked as abrasive particles to the
Al/SiC composite sample; consequently, the specific wear rate increased [50]. In summary,
there is an agreement between experimental and finite element analysis results that prove
the effectiveness of utilizing LHHSBM in Al/SiC composite production.
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For more clarification of the wear characteristics of the Al/SiC composite produced
with three different ball-milling scenarios, the worn surfaces were analyzed utilizing a scan
electron microscope (SEM), as shown in Figure 22. Figure 22a illustrates the worn surface
of the LHSBM sample. Obviously, the worn surface is ploughed. Some particles were
escaped from the matrix that acted as debris—furthermore, a degradation in the surface
due to micro cutting causes some delamination regions. An increase in the specific wear
rate occurred due to the surface degradation, and the delaminated areas increase the shear
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resistance in which the friction coefficient raised. The kind of wear, in this case, could be a
merge between abrasive and delamination mechanism.
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Figure 22b illustrates an initiation of the LHLSBM composite sample surface to be
damaged and a microcracks propagation. The delaminated areas and the micro-plowing
decreased compared with the surface of the LHSBM sample due to the enhancement in the
mechanical properties after utilizing the LHLSBM scenario. The wear mechanism in the
LHLSBM was converted to be a fatigue mechanism. Utilizing the third ball-milling scenario
(LHHSBM) led to an enhancement in the hardness and the strength of bonding (interfacial
adhesion) between the aluminum matrix and the SiC nanoparticles. Consequently, the
stresses generated on the sample surface could transfer among the composite components
leading to an enhancement in the wear resistance. The SEM analysis of the surface shows
a smoothness with unnoticeable cracks, micro-plowing, and a little bit of wear debris, as
shown in Figure 22c.

4. Conclusions

This investigation experimentally evaluates the evolution of utilizing different high-
energy ball-milling techniques on the mechanical and tribological properties of Al/SiC
composite. Three different ball-milling scenarios were used based on the milling step
number and milling speed. The output powders morphology for each milling scenario was
studied, and the mechanisms of production were illustrated. Through comparative inves-
tigation of the low–high-speed ball milling (LHSBM), low–high–low-speed ball milling
(LHLSBM), and low–high–high-speed ball milling (LHHSBM), the following conclusions
can be drawn:

n The two speeds ball-milling scenario (LHSBM) was considered on the basis of which
the comparison is made. The mechanism of utilizing such a scenario was uniform
dispersion of SiC and deformation of aluminum powder into flakes with a rough
surface and insufficient bonding between the aluminum and SiC. The mechanical
and tribological results of this milling scenario were considered the base in which the
other results were compared.

n Regarding the second ball-milling scenario (LHLSBM), the flake particles became
smooth with fewer broken particles due to the increasing shearing force compared
with the compressive force during the milling process. Consequently, a slight enhance-
ment in the mechanical and tribological properties was achieved relative to LHSBM.

n In the last ball-milling scenario (LHHSBM), a balance between interfacial bonding,
regular dispersion, and structural integrity for the SiC and aluminum particles. There-
fore, improvement in Young’s modulus, compressive yield strength and hardness
by 209.7%, 201.6%, and 260%, respectively, relative to LHSBM. Furthermore, the
wear resistance increased by approximately 147.5% relative to LHSBM. An agreement
between experimental and finite element analysis results proves the effectiveness of
utilizing LHHSBM in Al/SiC composite production compared with other scenarios.
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