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Abstract: Ba0.5Sr0.5TiO3 (BST-0.5) thin films (600 nm) were deposited on single crystal MgO, SrTiO3

(STO), and LaAlO3 (LAO) substrates by pulsed laser deposition at an oxygen partial pressure
of 80 mTorr and temperature of 720 ◦C. X-ray diffraction and in situ reflection high-energy elec-
tron diffraction routinely ascertained the epitaxial quality of the (100)-oriented nanocrystalline
films. The broadband microwave (1–40 GHz) dielectric properties were measured using coplanar
waveguide transmission line test structures. The out-of-plane relative permittivity (ε/

⊥) exhibited
strong substrate-dependent dielectric (relaxation) dispersions with their attendant peaks in loss
tangent (tanδ), with the former dropping sharply from tens of thousands to ~1000 by 10 GHz. Al-
though homogeneous in-plane strain (ε||), enhances ε/

⊥ with BST−0.5
MgO ε /

⊥ > BST−0.5
STO ε /

⊥ > BST−0.5
LAO ε /

⊥
at lower frequencies, two crossover points at 8.6 GHz and 18 GHz eventually change the trend
to: BST−0.5

STO ε /
⊥ > BST−0.5

LAO ε /
⊥ > BST−0.5

MgO ε /
⊥. The dispersions are qualitatively interpreted using (a)

theoretically calculated (T)−(ε||) phase diagram for single crystal and single domain BST-0.5 film,

(b) theoretically predicted ε||-dependent, ε/
⊥ anomaly that does not account for frequency dependence,

and (c) literature reports on intrinsic and extrinsic microstructural effects, including defects-induced
inhomogeneous strain and strain gradients. From the Vendik and Zubko model, the defect parameter
metric, ξs, was estimated to be 0.51 at 40 GHz for BST-0.5 film on STO.

Keywords: dielectric permittivity; loss tangent; epitaxial BST thin films; microwave characterization;
homogeneous in-plane strain engineering; inhomogeneous strain

1. Introduction

As the demand for wireless data communication continues to grow, mutual interfer-
ence of communication devices due to crowded electromagnetic (EM) spectrum currently
available, limits many commercial and military applications. Effective utilization of EM
spectrum requires advanced passive components that can be tuned electronically. To date,
variable thin-film capacitors (varactors) based on voltage-tunable dielectrics, such as Bar-
ium Strontium Titanate (BaxSr1−xTiO3 or BST), are found to be attractive for microwave
applications such as tunable filters, phase shifters, delay lines, and voltage-controlled
oscillators [1–3]. For applications at room temperature, the two major compositions that
are actively considered are Ba0.5Sr0.5TiO3 (BST-0.5) and Ba0.6Sr0.4TiO3 (BST-0.6) [4,5]. Note,
a high relative dielectric permittivity of BST thin films on low-loss microwave substrates
is attractive for reducing the size of the capacitors, and other microwave components
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and circuits. In general, the maintenance of high dielectric permittivity and low loss tan-
gent should result in higher dielectric tunability and lower quality factor (Q) at higher
microwave frequencies.

Recently, homogeneous, and biaxial strain manipulation, also known as strain engi-
neering, has been employed to engineer the properties of epitaxial single crystal films. In
epitaxial perovskite films, where the strain and electrical polarization are coupled, phe-
nomenological formalisms have been used to predict the appearance of unusual phases,
phase transformations, and dielectric anomalies in single crystal and single domain films.
The properties of homogeneous strain-dependent properties of various perovskite dielec-
tric films and multilayers, including BST of various orientations, have been represented
via temperature-strain phase diagrams and dielectric permittivity maps with no mention
of any frequency dependences. To test the applicability of such concepts, and to enhance
the relative permittivity of nanocrystalline but polydomain BST films, one may alter the
degree of strain in the films by either varying the processing methods, substrate materials,
deposition conditions, including the oxygen partial pressure (pO2), and post-annealing
treatments.

Here, a simple preliminary study is undertaken to observe any effects of the magni-
tude and sign (compressive versus tensile) of the in-plane strain, in nanocrystalline and
epitaxial BST-0.5 thin films, on the broadband microwave (1–40 GHz) dielectric properties.
The epi-BST-0.5 films, with a thickness of 600 nm, are deposited on lattice and thermal mis-
matched, non-ferroelectric oxide single crystal substrates, namely magnesium oxide (MgO),
strontium titanate (STO), lanthanum oxide (LAO) by pulsed laser deposition (PLD) at a
fixed pO2, and temperature. The dispersions in the microwave permittivity and substrate
(and thus strain) dependent trends are analyzed and qualitatively interpreted against the
backdrop (briefly outlined in the background) of (a) results of density functional theory and
theoretically calculated temperature-in-plane strain phase diagram and predicted strain-
dependent dielectric permittivity anomaly in oriented, single crystal, and single domain
BST-0.5 film, and (b) well-established and extensive literature reports on the intrinsic and
extrinsic contributions and effects on the dielectric responses.

2. Background
2.1. Intrinsic and Extrinsic Contributions to Dielectric Permittivity in Perovskites

To objectively assess the strain-mediated, microwave dielectric properties of BST-0.5
thin films, both intrinsic and extrinsic influences, underscored by Petzelt and cowork-
ers [6–11], must be considered. These influences are functions of substrate type, growth
conditions, and process-induced microstructure evolution. The intrinsic relative permittiv-
ity, εr, of cubic and centrosymmetric, perovskite-structured paraelectric oxides (e.g., STO
and BST-0.5) stems from electronic and ionic polarizabilities; note, the latter arises from
temperature-dependent transverse optical vibration mode, i.e., the soft mode, and other
optically active lattice vibrations. The temperature dependence of εr above the critical
Curie–Weiss temperature (To) can be described by the Curie–Weiss law, and the frequency
response is rather stable and flat over a very broad range of frequencies from dc to THz
but followed by a series of ionic and electronic resonances at the tail ends of this frequency
spectrum [12,13]. Rupprecht and Bell have reported the X band (8.2−12.4 GHz) εr of 323 for
STO single crystal [14]. Far-infrared spectroscopic ellipsometry of ceramic STO samples at
RT have claimed that, due to the hardening of the soft mode, the intrinsic εr in the terahertz
(THz) region decreased monotonically from ~320−280 with increasing concentration of
oxygen vacancies [15].

In displacive ferroelectrics, the transition from the paraelectric to tetragonal ferro-
electric state occurs at To when the soft mode frequency approaches zero. At To, com-
position and phase-dependent anomalies in εr (104–105) are observed. Below To, the
non-centrosymmetric material is in the ferroelectric state, in which the overall spontaneous
polarization is electrically-switchable at fields greater than the coercive field, Ec. The volt-
age dependence of the reversible polarization component can be determined by integrating
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the small-signal, capacitance (or εr)−voltage characteristic; note, εr is an intrinsic (bulk or
volume) property of a single domain crystal. In tetragonal, ferroelectric barium titanate
(BaTiO3) single crystal, the prototypical end member of BST, the electronic (e) and phonon-
dominated ionic (ph) contributions to the anisotropic εr, parallel (||) and perpendicular
(⊥) to the polar c-axis, are as follows: εe

|| = 5.8, ε
ph
|| = 56, εe

⊥ = 5.5, and ε
ph
⊥ = 1800–2200.

Note, each contribution is constant down to ~1 GHz below which extrinsic contributions
dominate [16].

For typical displacive-type ferroelectrics with C~105 K, εr∼500 at T = (To + 200 K), but
εr can be significantly altered up to 100 GHz in the paraelectric and ferroelectric states due
to extrinsic effects. In addition to the high εr in the ferroelectric state, extrinsic contributions
to the εr occur from various sources, especially in nanocrystalline, polydomain thin-film
materials. Substrate, physical size, and process-induced effects include microstructural
evolution, chemical inhomogeneity, non-stoichiometry, micro- and nano-polar entities,
localized distortions, and strains due to imperfections, doping, and compensated dipolar
defects [17]. Noteworthy are the formation, motion, and/or vibration of electrostatic
energy-minimizing, ferroelectric 180◦ domains, and strain energy-minimizing ferroelastic,
non-180◦ domains [18–20].

The extrinsic contributions to the polarization and εr in the paraelectric state above To,
that can break the centric macroscopic symmetry, also stem from polar entities characterized
as precursors to the ferroelectric state [21–23]. For instance, the existence of micro- or nano-
polar regions is manifested by spatial variation in magnitude of the polarization, induced
piezoelectricity, and non-linear behavior of dielectric properties, electrostrictive strain, and
thermal expansion. Some documented reports include defect-induced polar regions [24],
nano-polar, residual ferroelectric domains [25], micropolar regions [26], pyroelectricity [27],
and flexoelectricity [28]. Additionally, specific illustrations of extrinsic contributions in
ceramic and thin-film εr are as follows. In the temperature range of 270–1000 K, the X
band (8.2–12.4 GHz) εr for polycrystalline BST-0.5 ceramic, with To of 227 K and C of
7.8 × 104 K, is reported to be 1117 [14]. Subramanyam et al. have reported εr as high as
1200 at 10 GHz for nanostructured BST-0.6 thin films on sapphire substrate [29]. The εr
and dielectric tunability increased with the increase in the film thickness. For a direct
comparison, the observed εr of nanocrystalline epi-BST-0.5 thin films of the current study
were: εBST−0.5

MgO = 1420 > εBST−0.5
STO = 1390 > εBST−0.5

LAO = 1150 at 8.2 GHz but are highly
frequency dependent (discussed later).

2.2. Engineering of Permittivity by Homogenous Strain in Perovksite Oxide Thin Films

In thin films, the out-of-plane direction is stress-free, whereas the in-plane biaxial
stress is primarily due to the (a) difference in thermal expansion between film and substrate
during synthesis at elevated temperatures; (b) lattice mismatch between crystalline lattices
of the thin film and substrate during heteroepitaxial growth. Thus, biaxial strain manipula-
tion, also known as strain engineering, are currently used to engineer material properties
such as electronic band structure, charge transport, dielectric, magnetic, and optical phe-
nomena [30]. Strain engineering, which has been utilized in semiconductor manufacturing
technology and has enabled the deposition of strained, single crystal, epitaxial films, has
been extended to perovskite oxide thin films and heterostructures for the manipulation of
ferromagnetic, dielectric, ferroelectric, piezoelectric, and thermoelectric behavior [31–34].
By considering the effect of internal stresses within the Landau–Ginzburg–Devonshire
(LGD) phenomenological formalism for epitaxial single crystals and single domain ferro-
electric films, where frequency is not a parameter, various investigators have predicted
the appearance of unusual phases and phase transformations. Since strain and electrical
polarization are coupled, modifying the in-plane strain state should result in a change
in polarization and the dielectric response. Pertsev and coworkers calculated the misfit
(homogeneous) strain–temperature phase diagrams for epitaxial STO, BaTiO3 (BTO), and
PbTiO3 (PTO) films and predicted effects of stresses on the phase transformation behav-
ior, existence of unusual ferroelectric phases that are not possible in single crystals and
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bulk ceramics, and unusual dielectric responses with strain [35–40]. Moreover, Ban and
Alpay [40] established theoretical misfit strain–temperature phase diagrams for single
domain, epitaxial BST films on cubic substrates. They also provided theoretical estimation
of the εr of (001) Ba0.7Sr0.3TiO3 (BST-0.7) and BST-0.6 films on (001) Si, MgO, LAO, and STO
substrates as a function of misfit strain and film thickness but also with no discussions on
frequency dependences. While a monotonic increase in the εr with increasing film thickness
was estimated for films on LAO and STO substrates, a substantial increase in the εr of films
due to a structural instability at ~40 nm was predicted for films on MgO substrates. Such
theoretical approaches that predict the unusual trends of εr may provide guidance for prac-
tical, experimental research on materials for microwave devices, but their eventual validity
can only be ascertained by comparison with experimental data over a broad frequency
range on both single domain (single crystal) and polydomain (and nanocrystalline) films.
Ironically, despite the vast literature reports on strain engineering of perovskites, no data
or discussion on εr, measured over a broad microwave frequency range, of epitaxial single
crystalline films by any vapor deposition techniques, have been reported to date, and
neither have intrinsic and extrinsic contributions to the εr been quantitatively determined.

The extrinsic enhancement of εr may also be attained by strain via the creation of polydo-
main structures in nanocrystalline and epitaxial ferroelectric films, whose dielectric properties
may not be bounded by the intrinsic limits of a defect-free and single domain bulk [41,42]. A
recent study by Gu et al. [42] reported resonant domain-wall enhanced dielectric tunability
and quality factor (Q) in BST thin films on SmScO3 substrate. The nanostructured BST-0.8 thin
film with moderate in-plane tensile strain, exhibited resonant nanoscale domain walls and
very high Q (>105) up to 10 GHz that was comparable to bulk single crystals. Thus, a large
dielectric tunability and low dielectric loss tangent were simultaneously achieved in these
films. Moreover, various reports on strain-engineered BST thin films have been documented
in the literature but no clear distinctions between intrinsic and extrinsic contributions to
the measured dielectric properties have been made [43–52]. The approaches have included
fabrication on different substrates [43], different film thicknesses [44], different orientation of
crystalline substrates [44–47], different buffer layers on Si substrates [48,49], and platinized
Si substrates [50]. Campbell et al. fabricated a series of nanostructured ferroelectric thin
films of BST-0.6 on LAO substrates using a pulsed laser deposition system with real-time,
in situ process control [51]. The dielectric constant increased with increasing compressive
misfit strain in very good qualitative agreement with predictions after Ban and Alpay [40] for
the ferroelectric cubic (c) phase. In general, εr of epitaxial BST thin films shows dispersive
behavior at microwave frequencies, stabilizing above 30 GHz [46]. Most of the previous
studies only analyzed over a limited bandwidth [42–50], at a single frequency [47] or multiple
discrete frequencies [50]. Hence, successful implementation of BST films as electrically tun-
able dielectrics in microwave devices requires an understanding of both their processing and
frequency-dependent dielectric properties [51,52] but with careful considerations of conflating
issues of strain and intrinsic/extrinsic effects [17].

3. Experimental Section

The deposition parameters for cubic (paraelectric) BST-0.5 thin-film composition by
pulsed laser deposition (PLD) in this study were guided by a previous study on the
deposition of epitaxial and nanocrystalline ferroelectric BST-0.6 thin films on (100) LAO
single crystal substrates by PLD [51]. In that previous study, the effect of PLD deposition
parameters (i.e., growth temperature, energy density of chamber oxygen partial pressure,
target-substrate distance, laser pulses, target scan pattern, and pulse repetition rate) on
the grain size, roughness, oxygen deficiency, and microwave properties were thoroughly
evaluated [51]. The oxygen partial pressure (pO2) of 75 mT during the PLD process yielded
an average grain size <100 nm for the BST-0.6 thin films on LAO substrates. In the current
study, ceramic powders and targets were synthesized in house using the solid-state reaction
route; note, details of the procedures are reported elsewhere [52]. The BST-0.5 thin films
(600 nm) were deposited on isotropic substrates (i.e., (100) STO, (100) MgO, and (100)
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LAO single crystals) by PLD using an LPX-210 LambdaPhysik GmbH KrF excimer laser,
operating at 248 nm with a pulse energy of 250 mJ and pulse repetition rate of 10 Hz.
For a growth rate of ~4 nm/min for BST-0.5 thin films, the substrate temperature was
maintained at 720 ◦C during deposition, and oxygen partial pressure (pO2) in the chamber
was fixed at 80 mTorr to minimize oxygen deficiency and decrease surface roughness in
stoichiometric BST-0.5 thin films. Note, reflection high-energy electron diffraction (RHEED)
is a high-sensitivity surface science tool for determining the crystalline quality of substrate
and thin films [53]. Therefore, the epitaxial growth modes and textured growth of BST-
0.5, phase formation, and orientation of the thin films were routinely monitored in situ
by RHEED and in real time, and ex situ, by X-ray diffraction (XRD). The RHEED (Staib
Instruments RH30) patterns were recorded at 24 keV beam energy and 1.4 A filament
current, and XRD in Bragg–Brentano geometry was carried out Rigaku D/Max Ultima III
X-ray diffractometer using Cu-Kα1 radiation.

The dielectric properties of the as-deposited and unannealed BST thin films were deter-
mined at microwave frequencies (1–40 GHz) using coplanar waveguide (CPW) transmission
line test structures, using conformal mapping techniques, described elsewhere [54]. The CPW
test structures were designed for a simple shadow-mask electrode deposition process on the
BST thin films. The dimensions of the gaps and widths were chosen based on the limits of a
laser-machining process for the fabrication of the shadow masks used. The center conductor
width was chosen as 200 µm, with the gaps between the center conductor and the ground
lines chosen as 100 µm. The ground lines were 750 µm wide. The test structures were probed
using standard ground-signal-ground (GSG) probes with a 250 µm pitch and transmission
lines of 5 mm length. A 0.85 µm thick Ti/Pt/Au thick electrode stack was deposited through
a shadow mask by electron beam deposition to form the CPW transmission lines on BST thin
films. Based on the conductor thickness, the frequency at which the conductor thickness was
higher than the skin depth was approximately 8 GHz. Although the total measured insertion
loss was accurate, it was difficult to separate the dielectric and conductor losses below 8 GHz
due to the conductor thickness. While the relative dielectric permittivity was accurate over the
broadband frequencies up to 40 GHz, the loss tangent was only accurate above 8 GHz. The
technique for the extraction of dielectric properties of thin films using the CPW transmission
lines are detailed elsewhere [54]. Please note that CPW test structures were only fabricated on
five 1 cm × 1 cm substrates each of LAO, MgO, and STO.

Table 1 lists properties and parameters of the BST-0.5 thin-film composition and
isotropic substrates used in this study, along with theoretical estimates of percent strain
due to film-substrate thermal expansion and lattice mismatches. The latter scales with
(αf − αs) and (TDep − TRT), where αf and αs are the reported coefficients of thermal expan-
sion of substrate and BST-0.5 composition, respectively, TDep is the thin-film deposition
temperature (720 ◦C), and TRT is room temperature (25 ◦C). The percent (%) lattice mis-
match or nominal in-plane strain at TRT may be estimated using (as − af)/as, where, as
and af are reported lattice parameters of the isotropic substrates and free standing (or
unconstrained) cubic BST-0.5 film, respectively, at TRT [40].

Table 1. Properties and parameters of isotropic substrates and a freestanding (or unconstrained) cubic BST-0.5 film with
estimated percent strains due to film-substrate lattice mismatch at TRT = 25 ◦C and TDep = 720 ◦C, and film-substrate
thermal expansion mismatch.

Substrates & BST
Film

Crystal Structure/
Space Group

Thermal Expansion
Coefficient, α (10−6 K−1)

% Thermal
Mismatch

Lattice Parameter,
a (nm) % Lattice Mismatch

TRT TRT

MgO Cubic/Fm3m 12.8 −0.195 0.4216 6.4

SrTiO3 or STO Cubic/Pm3m 10.9 −0.063 0.3905 −1.1

LaAlO3 or LAO Cubic/Pm3m 9.2 0.056 0.3789 −4.2

Ba0.5Sr0.5TiO3 or
BST-0.5 thin film Cubic/Pm3m 10 — 0.3947 —
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4. Results and Discussions
4.1. Deposition and Characterization of BST-0.5 Films by PLD

At deposition temperature (TDep), the lattice mismatch between the BST-0.5 film
and STO substrate was −0.99%, and a tensile stress existed at the interface during the
early stages of deposition. A time sequence of RHEED patterns, observed during the
growth of a (100) BST-0.5 thin film on commercial single crystal (100) STO substrate at
720 ◦C, is illustrated in Figure 1. Prior to growth, the flat substrate had a strong specular
reflection and very little streaking, which indicates a smooth diffracting surface with
long-range coherence or large terrace size [55]. Also, the absence of characteristic surface
reconstructions patterns is indicative of film stoichiometry. Following the sharp RHEED
pattern of the STO substrate (t = 0 s), and upon increasing thickness with time, the RHEED
patterns began to exhibit well-contrasted streaky lines (t = 20 s and 100 s) as expected
for a 2D, layer-by-layer growth mode. With time, the sharp streak pattern turned into
spots (t = 250 s and 1000 s), which characterizes a rougher surface with 3D, island growth
mode [56–59]. The sharp RHEED features, along with well defined streaks and spots,
indicate a flat surface and good nanocrystalline quality of epitaxial BST-0.5 film, with
Stranski–Krastanov growth mode.
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Figure 1. Representative RHEED patterns along [100] azimuth observed during the growth of (100) BST-0.5 thin film on
single crystal (100) STO as a function of time, and therefore, increasing film thickness. Note, very little streaking in (100)
STO substrate prior to deposition (t = 0 s) is indicative of a diffracting surface with long terraces.

In contrast, the lattice mismatch between the BST-0.5 film and MgO substrate at TDep
was +6.58%, and a compressive stress existed at the interface during the early stages of
deposition. A time sequence of RHEED patterns, observed during the growth of a (100)
BST-0.5 thin film on commercial single crystal (100) MgO substrate at 720 ◦C, are illustrated
in Figure 2. The MgO substrate had a strong specular reflection and very little streaking,
which indicates a smooth diffracting surface with long-range coherence. In addition,
Kikuchi lines observed (t = 0 s) in the RHEED image indicate the cleanliness and long-
range order of the substrate. Following an initial decline in intensity of the sharp RHEED
pattern within a few seconds along the [100] azimuth, and upon increasing thickness with
time, the pattern turned directly into spots (t = 25 s and 50 s), which characterizes a rougher
surface with direct 3D, island (or Volmer–Weber) growth mode of epitaxial BST-0.5 thin
film on MgO. A single RHEED pattern along the [110] azimuth at 104 s is illustrated in the
extreme RHS panel in Figure 2, again indicating the nanocrystalline quality of epitaxial
BST-0.5 film on MgO.
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Figure 2. Representative RHEED patterns observed during very early stage of the growth of (100) BST-0.5 thin film on
single crystal (100) MgO SrTiO3 as a function of time in seconds, and therefore, increasing film thickness. Note, the very
sharp substrate pattern (at t = 0 s) quickly turns into spots (t = 25 s and 50 s) along the [100] azimuth. A pattern along the
[110] azimuth at 10,000 s is in the extreme right panel.
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The phase purity and crystallinity of the deposited BST-0.5 films were confirmed by
X-ray diffraction (XRD) at RT; note, λ = 0.154 nm for Cu-Kα1. Figure 3 shows a typical
θ-2θ scan pattern of an epitaxial BST-0.5 film on single crystal MgO substrate. The sharp
characteristic peak at 2θ = 22.36◦ corresponds to an out-of-plane lattice parameter or
spacing (i.e., d001 or a⊥) of 0.3973 nm. Similar diffraction patterns but with different values
for 2θ peak, and, therefore, different lattice parameters and out-of-plane {100} orientations,
were observed in films on STO (2θ = 22.25◦; d001 = 0.401 nm) and LAO (2θ = 22.56◦;
d100 = 0.394 nm). For all films on single crystal substrates, only the {100} family of peaks
appeared, which implies that these single-phase films have in-plane, strain-dependent,
cube-on-cube epitaxial relationships with the substrates.
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Figure 3. X-ray diffraction (XRD) pattern of BST-0.5 film, under in-plane compression, on single
crystal (100) MgO substrate. The peak at 2θ = 22.36◦, the out-of-plane lattice spacing (i.e., d001 or a⊥)
was calculated to be 0.3973 nm, which is higher than the interplanar spacing, d001 (0.3947 nm), of
unconstrained or freestanding cubic BST-0.5 film.

4.2. Substrate-Dependent in-Plane Strain in BST-0.5 Films

The residual in-plane strain, compressive or tensile, in a perovskite thin film on vari-
ous substrates (single crystal, polycrystalline, and glassy) is dependent on several factors,
including (a) film-substrate coefficient of thermal expansion mismatch; (b) film-substrate
lattice mismatch; (c) phase transformation and modification of the crystal symmetry with at-
tendant cation–anion displacements (e.g., ferroelectric–paraelectric); (d) tilt, distortion, and
rotation of TiO6 octahedra (e.g., antiferrodistortive octahedral rotations); (e) chemical strain
(e.g., for example, defect-induced lattice parameter change due to change in the chemical
environment such as formation of oxygen vacancies); (f) epitaxial (i.e., cube-on-cube) ver-
sus nanocrystalline (e.g., textured, randomly oriented) films; (g) presence of buffer layers;
(h) pitch/thickness of individual layers in a multilayer superlattice; (i) strain relieving
dislocation formation; (j) film growth temperature; (k) film thickness [30–37,50,60–62].

The strain due to oxygen vacancies are perhaps lower (but highly substrate depen-
dent) due to PLD deposition at a high pO2 of 80 mTorr, and the absence of paraelectric–
ferroelectric transition eliminates strains due to phase transformation [50,63]. For the
evolution of in-plane strains during PLD deposition of (100) BST-0.5 thin films of cubic
paraelectric composition, undergoing cube-on-cube epitaxial growth on (100) single crystal
substrates, thermal expansion mismatch and lattice mismatch are important factors for
consideration. At the early stage of deposition at 720 ◦C, due to the lattice mismatch
between BST-0.5 thin-film lattice and substrate during heteroepitaxial growth, the film
is homogeneously strained into registry with the substrate in the interfacial plane and
is in the so called “pseudo-morphic state”. Upon increasing thickness, the build-up of
elastic strain energy makes the epitaxial film unstable, and at a critical thickness (hc),
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the strain energy is relieved and eventually reduces to zero by the introduction of mis-
fit dislocations at the interface. Consequently, a relaxed film is formed with its natural
deposition-temperature lattice parameter. Typically, hc for perovskite oxide films can range
from 1 monolayer (~0.4 nm) to hundreds of monolayers [64–67]. Since the BST-0.5 films
here were 600 nm thick and significantly above hc, they were relaxed at the growth tem-
perature (Tdep). Earlier, RHEED revealed Stranski–Krastanov (i.e., layer-plus-island) and
Volmer–Weber (i.e., three-dimensional island) growth modes of BST-0.5 film on STO and
MgO substrates, respectively. Such mechanisms facilitate the nucleation of dislocations
in oxide films, which assist the strain relaxation at Tdep [68,69]. Note, edge dislocations,
uniformly distributed along the entire BST-0.5/LAO interface, and both edge and threading
dislocations in BST-0.5/MgO to relieve misfit stresses have been previously observed by
high-resolution transmission electron microscopy [70,71]. To estimate the in-plane strains
in epitaxial BST-0.5 on single crystal substrates, two assumptions are made, namely, (a) the
coefficient of thermal expansions of film and substrate are constant, and (b) additional
formation of dislocations during cooling from 720 ◦C to RT is minimal. Thus, any in-plane
biaxial strain (ε‖) upon cooling to RT is predominantly due to thermal strain (column 4 in
Table 1) and may be calculated using

ε‖ =
a‖ − aRT

aRT
(1)

where, a‖ is the in-plane lattice parameter of a constrained BST-0.5 film at RT (and estimated
below using STO-BST as an example of a film-substrate pair), and aRT = 0.3947 nm is the
lattice parameter of an unconstrained BST-0.5 film at RT (Table 1). As the BST-0.5 film cools
down to RT and becomes strained into compression by the rigid and thick STO substrate
due to thermal expansion mismatch, the net change in the in-plane lattice parameter of
BST-0.5 will not only be dictated by the magnitude of the net change in the in-plane lattice
parameters of STO but also must match it. Therefore,

aSTO
Tdep
− aSTO

RT = aBST−0.5
Tdep

− aBST−0.5
RT (2)

or, a‖ = aBST−0.5
RT = aBST−0.5

720 0C −
(

aSTO
720 0C − aSTO

25 0C

)
(3)

Using the RT literature data and the estimated Tdep data given in Table 1 (and reiterated
in Table 2), the in-plane lattice parameter of BST-0.5 thin film on STO is estimated as

a‖ = 0.3974− (0.3935− 0.3905) = 0.3944 nm (4)

Table 2. In-plane lattice parameters (a‖) and percent (%) in-plane strain (biaxial compressive or tensile) at RT in constrained
BST-0.5 films deposited on single crystal substrates. The cubic lattice spacing of unconstrained BST-0.5 thin film at RT (aRT)
and 720 ◦C (a720 ◦C), as well as for substrates at these temperatures are taken from Table 1.

Substrates and
BST Film

Lattice Parameter, a (nm) In-Plane Lattice Spacing (a‖) of
Constrained BST-0.5 Film (nm)

% In-Plane Strain
(ε‖) in BST-0.5 Film

State of In-Plane
strain In BST-0.5 FilmRT = 25 ◦C TDep = 720 ◦C

MgO 0.4216 0.4254 0.3936 −0.279 Highly Compressive

STO 0.3905 0.3935 0.3944 −0.076 Moderately
Compressive

LAO 0.3789 0.3813 0.3950 +0.076 Moderately Tensile

Unconstrained or
relaxed BST-0.5 film 0.3947 0.3974 — — —



Crystals 2021, 11, 852 9 of 19

Therefore, the percent in-plane strain (Equation (1)) in BST-0.5 thin film on STO is
found to be

ε‖ =

( a‖ − aRT

aRT

)
× 100 =

(
0.3944− 0.3947

0.3947

)
× 100 = −0.076% (5)

Similarly, the calculated (biaxial) percent in-plane strain in BST-0.5 thin film on MgO
is also negative (i.e., compressive), but on LAO, the in-plane (biaxial) strain is tensile
(Table 2).

4.3. Relative Locations of Nanocrystalline epi-BST-0.5 Films within Primary Phase Fields of
Calculated “Temperature-In-Plane Strain” Diagram with Predicted Dielectric Anomaly

Based on the LGD phenomenological models [36–40,50,72] and results of density
functional theory [73], theoretically calculated temperature (T)-in-plane strain (ε||) phase
diagrams for {100}- and {111}-oriented, single domain and epitaxial BaxSr1−xTiO3 films (i.e.,
BST-x with x = 1.0, 0.9, 0.8, 0.7, 0.6, 0.4, and 0.2) have been well documented in the literature.
Against the backdrop of this knowledge, and to reconcile and/or contravene experimental
microwave results of this study, a schematic T-ε|| phase diagram for nanocrystalline (100)
epi-BST-0.5 film is shown in Figure 4 (not-to-scale). The theoretically calculated phase
diagram predicts three, homogenous strain-dependent primary phase fields: paraelectric
(P) within moderately compressive and tensile zones centered around zero strain, with
the width spanning between a % ε|| of ±0.1 at RT, and two low-symmetry phase fields:
tetragonal (T(c)) in the high compression zone and orthorhombic (O(aa)) in the high tensile
zone [74].
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The nanocrystalline epi-(100) BST-0.5 on STO and MgO should lie in the P phase
field and T(c) phase field, respectively, near the P-T(c) phase boundary in the compression
zones. Based on data in Table 2, a film with high in-plane compression strain (tetragonality
>> 1 ) on MgO at RT and within the T(c) phase will be on the left side of the T(c)-P phase
boundary. In essence, the in-plane compressive strain (i.e., epilayer compressed in the
lateral direction) will be accommodated by out-of-plane tetragonal distortion. Note from
Figure 3, the out-of-plane lattice spacing (i.e., d001 or a⊥) of constrained BST-0.5 film on
MgO was found to be 0.3973 nm, which is higher than the interplanar spacing, d001 (0.3947
nm), of unconstrained or freestanding cubic BST-0.5 film. However, a pseudo-cubic film
on STO, with moderate in-plane compression strain (tetragonality ≥ 1), is predicted to
be on the right side of the P-T(c) phase boundary and within the P phase. Conversely,
a pseudo-cubic and epitaxial (100) BST-0.5 films on LAO with moderate in-plane tensile
strain (tetragonality ≤ 1) is predicted to be on the left side of the P-O(aa) phase boundary
and within the P phase.

It is also relevant to note that according to theoretical predictions [34–40,50,72–76],
the Curie–Weiss constants and Curie–Weiss temperatures change with misfit strain. In
addition, strain-based transformations due to structural instabilities via polarization ex-
pansion/contraction or rotation at the T(c)-P, P-O(aa), and P-M(r) boundaries lead to
strain-mediated (i) rapid variation in the components of the polarization and, consequently,
(ii) unusually large or anomalous dielectric (shown in the inset of Figure 5) and piezoelectric
responses. The out-of-plane relative dielectric permittivity (ε/

⊥) exhibits a Curie–Weiss-type
anomaly in both the temperature and in-plane strain (ε||) dependences and, contingent
on external conditions, the anomaly can exhibit features corresponding to the second or
first order ferroelectric phase transitions. In the qualitative representation of T-ε||-structure
behavior in Figure 4, the open stars (
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where, C (1.135 × 105 K) is the Curie–Weiss constant of unconstrained BST-0.5 film, ε0
(8.854 × 10−12 Fm−1) is the permittivity of free space, Q12 (−0.034 m4C−2) is the elec-
trostrictive coefficient, s11 (4.33 × 10−12 m2N−1) and s12 (−1.39 × 10−12 m2N−1) are the
elastic compliances, To (237.7 K) is the Curie temperature of an unconstrained BST-0.5 film,
ν (0.23) is the Poisson’s ratio, ε|| (−7.6 × 10−4) is the in-plane strain (Table 2), and α f and
αs are the thermal expansion coefficients of the film and substrates (Table 1), respectively.
The calculated values of C⊥ and T⊥ were found to be 1.064 × 105 K and 285 K, respectively.
In essence, in film ( f )-substrate (s) couples where α f < αs (i.e., BST-0.5 films under in-plane
compression on MgO and STO), C⊥<C and T⊥>To, and vice versa for BST-0.5 film under
in-plane tension on LAO; results that are consistent with previous reports [36,74]. Addi-
tionally, the inset in Figure 5 (not-to-scale) shows the predicted anomaly in ε||-dependent,
ε/
⊥ at RT in the vicinity of the T(c)-P phase boundary but, note again, with absolutely

no mention of any frequency ( f ) dependence of permittivity, ε/
⊥( f ). With a dielectric

permittivity,
(

ε/
)−1

, of 1500 for unconstrained BST-0.5 film, the ε/
⊥ of BST-0.5 film, con-
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strained via moderate in-plane compression strain on isostructural STO, is estimated to be
12,206 by using the following relation(

ε/
⊥

)−1
=
(

ε/
)−1
− 2ε0

(
2q12 −

2ν

1− ν
q11

)
×
[
ε||

]
=
(

ε/
)−1
−
[

T⊥
C⊥
− T0

C

]
(9)
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The theoretically predicted tails of ε/
⊥ in BST-0.5 and the relative location or position

coordinates (ε||, ε/
⊥) of BST-0.5 films are only qualitatively represented. Note, one tail within

the ferroelectric T(c) phase field contains the BST-0.5 film under high in-plane compression
on MgO, and the other tail within the paraelectric P phase field contains both the BST-0.5
film under moderate compression on STO and the BST-0.5 film under moderate tension
on LAO. Despite the non-single domain nature of the nanocrystalline epi-BST-0.5 films,
the trend in ε/

⊥ with in-plane strain is predicted to be as follows: BST−0.5
MgO ε /

⊥ > BST−0.5
STO ε /

⊥ >
BST−0.5
LAO ε /

⊥.

4.4. Microwave (1–40 GHz) Properties of BST-0.5 Thin Films at RT and Zero Dc Bias

Figure 5 illustrates the ε/
⊥ and dielectric loss tangent, tanδ, of BST-0.5 films on single

crystal substrates at RT in the 1–40 GHz range; note, the strong dielectric (relaxation)
dispersions with their attendant peaks in tanδ observed below 10 GHz. The experi-
mental data at low frequencies show that the predicted substrate-dependent ε/

⊥ holds
(i.e., BST−0.5

MgO ε /
⊥ > BST−0.5

STO ε /
⊥ > BST−0.5

LAO ε /
⊥), but here the ε/

⊥ s are highly frequency depen-
dent, dropping sharply from tens of thousands to ~1000 by 10 GHz.

The overall behavior of epitaxial (100) films on single crystal MgO, STO, and LAO
substrates are similar, e.g., ε/

⊥ ranges between 1470 (on MgO at 8 GHz) and 146 (on LAO at
40 GHz), with corresponding tan δs of 0.0298 and 0.131, respectively. Up to a frequency of
8.6 GHz, BST−0.5

MgO ε /
⊥ > BST−0.5

STO ε /
⊥ > BST−0.5

LAO ε /
⊥, all epitaxial films exhibit a precipitous drop

in ε/
⊥ obeying a power law, ε/

⊥ ∝ f − n, with exponent, n, being substrate and frequency
range-dependent; the values of n up to 10 GHz, between 10 and 20 GHz, and between 20
and 40 GHz on MgO, STO, and LAO substrates are obtained as follows: n = 1.73, 1736,
and 1.75 up to 10 GHz, n = 1.475, 1.49, 1.55 between 10 and 20 GHz, and n = 1.22, 1.25,
1.35 between 20 and 40 GHz, for MgO, STO and LAO substrates, respectively. Overall,
the reduction of ε/

⊥ with frequency of the film on MgO is the highest, on STO the lowest,
and on LAO in between. The tanδ of the epitaxial films increases with frequency above
10 GHz for all the samples. The film on LAO exhibits the highest tanδ and a distinct peak
at 32 GHz, the film on STO has the lowest tanδ with MgO in between, but with their loss
peaks shifted to higher frequencies at 37 GHz and >40 GHz, respectively.
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From the data in Figures 5 and 6, it is clear that the ε||−mediated, ε/
⊥ of BST-0.5 films

are consistent with the theoretically predicted trend of BST−0.5
MgO ε /

⊥ > BST−0.5
STO ε /

⊥ > BST−0.5
LAO ε /

⊥,

but all ε/
⊥ are not only frequency dependent (N.B., the diminution in ε/

⊥ from 10 s of
thousands to below 1500 by 10 GHz), that trend breaks down above 8.6 GHz as illustrated
in Figure 6. A ε/

⊥ of 1308.5 at 8.6 GHz is the crossover point of ε/
⊥ between BST-0.5 films on

MgO and STO, and ε/
⊥ of 416.4 at 18 GHz correspond to the crossover point of ε/

⊥ between
BST-0.5 films on MgO and LAO. Therefore, a crossover point at 8.6 GHz changes the trend
in ε/
⊥ to: BST−0.5

STO ε /
⊥ > BST−0.5

MgO ε /
⊥ > BST−0.5

LAO ε /
⊥, and another crossover point at 18 GHz again

changes the trend in ε/
⊥ to: BST−0.5

STO ε /
⊥ > BST−0.5

LAO ε /
⊥ > BST−0.5

MgO ε /
⊥.
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4.5. Factors Influencing Microwave Dielectric Responses of BST-0.5 Thin Films

As briefly outlined in the background, contributions to the microwave dielectric
response in thin films stem from intrinsic (i.e., electronic, lattice, homogeneous strain,)
and extrinsic (e.g., motion of domain and/or phase boundary, short range polar entities)
effects. While the former is manifested in both monodomain and polydomain single
crystal films, the latter exerts an additional influence on nanocrystalline but epitaxial thin
films that are polydomain. Moreover, processing parameters, film thickness, crystalline
quality, inhomogeneous strain, and microstructural effects including grain size, defects, and
chemical inhomogeneity play important roles. As indicated in past microwave dielectric
studies, these extrinsic factors are highly influential below 100 GHz. In this work, the
BST-0.5 films on single crystal substrates were deposited under identical conditions: pO2 80
mTorr and 720 ◦C. The phase pure, nanocrystalline films, with constant thickness (600 nm)
but some grain size variations, clearly exhibit substrate and in-plane strain-dependent
microwave dielectric responses. These responses are a result of the juxtaposition, and
perhaps coupled effects of homogeneous in-plane strains, nano-polar regions, and strain
relieving growth defects (and consequent inhomogeneous strains).

(1) Epitaxial (100) BST-0.5 film, with a high in-plane thermal compression strain (ε||)
of −0.279% on single crystal MgO substrate, exists on the left of the P-T(c) phase
boundary within the T(c) phase at RT (Figure 4). Thus, as the polarization component,
P2

3 6= 0 within T(c), it is ferroelectric. Therefore, due to contributions from (a) intrinsic
electronic and homogeneous strain-mediated, lattice (Equation (8)), and (b) extrinsic
strain energy-minimizing, non-180◦ ferroelastic, domains and nano-polar regions,
the ε/

⊥ is in the tens of thousands at low frequencies. However, reduction in the
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contributions from homogeneous ε|| and such nano-domain regions with frequency,
coupled with the presence of spatial strain gradients due to misfit and threading
dislocations (Section 4.2) are responsible for the highly dispersive relaxation up to
10 GHz and gradual reduction in ε/

⊥ between 10 and 40 GHz [77]. Regardless of the
sign of inhomogeneous in-plane strain, the coupling of strain gradient to polarization
via flexoelectricity reduces the intrinsic contribution to ε/

⊥ [78,79]. Apparently, strain
fields surrounding the dislocations also enhance the depolarization fields and higher
film thicknesses are required for polarization saturation [17]. Indeed, for a 350 nm
PLD BST-0.5 film, it has been demonstrated that a reduction in dislocation density, by
ex situ annealing in flowing oxygen at 1150 ◦C for 24 h, has resulted in an increase in
permittivity from 870 (as-deposited) to 2000 (annealed) at 20 GHz [71].

(2) Epi-(100) BST-0.5 film, with a moderate in-plane thermal compression strain (ε||)
of −0.076% on single crystal STO substrate, exists on the right of the P-T(c) phase
boundary within the P phase at RT. The polarization component, P2

3 = 0 within P,
but since it is pseudo-cubic and within the Curie–Weiss region, strain-based residual
ferroelectricity and polar nanoregions makes the material dielectrically active. At
very low frequencies, the ε/

⊥ is in the tens of thousands, but in Section 4.3, the in-
plane compression strain-dependent ε/

⊥ was estimated to be 12,206. Therefore, rather
high, and frequency-dependent extrinsic contributions to the ε/

⊥ are unequivocal.
Contributions from residual ferroelectricity and/or nano-polar regions, coupled with
the intrinsic contribution, makes the overall ε/

⊥ lower than that of BST-0.5 film on
MgO below 8.6 GHz. However, the crossover (Figure 6) at 8.6 GHz is the direct result
of the elimination of frequency-dependent domain contribution in films on MgO and
the higher crystalline quality of films on STO due to the Stranski–Krastanov growth
mode. The low lattice mismatch of the film at growth temperature (Table 1) minimizes
the detrimental effects of dislocations, which are present in low densities. Thus, in
the 8–40 GHz range, extrinsic tanδ is lower compared to films on MgO.

(3) Epi-(100) BST-0.5 film, with a moderate in-plane thermal tensile strain (ε||) of + 0.076%
on single crystal LAO substrate, exists on the left of the P-O(aa) phase boundary
within the P phase at RT. The frequency dependence of the dielectric response (ε/

⊥
and tanδ) of this film parallels that of STO but is a little inferior because of the
expected (a) C>C and T<To; (b) dislocations (due to high lattice mismatch at growth
temperature; Table 1 and Section 4.2); (c) charged oxygen vacancy defects created
for strain relief. Note, first-principles calculations have shown that oxygen vacancy
defect formation energy is lowered by tensile strain due to an electrostatic effect. This
in turn can produce inhomogeneous strain since vacancy concentration gradients
represent a special case of strain gradients [80–83].

4.6. Defect Parameter of BST-0.5 Thin Film on STO Using the Vendik and Zubko Model

The phenomenological Vendik and Zubko model considers random built-in electric
fields, stemming from the presence of dipolar or charged defects, which suppress dielectric
permittivity in paraelectric materials. Additionally, the microwave energy is converted
to a low frequency hyper-sound or acoustic phonons that are dissipated by the lattice
as dielectric losses [82–86]. This model may be used to determine the defect density
and inhomogeneity via the useful defect parameter metric, ξs. In essence, ξs reflects
the statistical dispersion of charged defect-induced biasing field, which is a function of
nanocrystalline size, the charge density at their boundaries, and charged imperfections.
Moreover, the value of ξs correlates with the microwave dielectric loss in the incipient
ferroelectrics [85]. The as-deposited, moderately in-plane strained epi-BST-0.5 film on
STO showed a relatively low loss and the highest permittivity up to 40 GHz. Therefore,
based on the in-plane strain, film quality, and overall microwave measurement data, the
following trend is expected: ξs

BST−0.5
MgO > ξs

BST−0.5
LAO > ξs

BST−0.5
STO . The zero bias, out-of-plane

relative dielectric permittivity, ε/
⊥, of constrained epi-BST-0.5 film on STO, when corrected
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for in-plane strain via usage of C⊥ and T⊥, may be represented by the Vendik and Zubko
model as follows

ε⊥ =
C⊥
T⊥{

[ξ2
s+η(TRT)

3]
0.5

+ξS

} 2
3
+
{
[ξ2

s+η(TRT)
3]

0.5−ξs

} 2
3−η(TRT)

η(TRT) =
√
(θD/4T⊥)

2 + (TRT/T⊥)
2 − 1

where (from Section 4.2), ε/
⊥ is at TRT = 298 K, C (1.064 × 105 K) is the Curie–Weiss

constant of constrained film, T (285 K) is the Curie–Weiss temperature of constrained
film, η(TRT) is 0.0568, θD (175 K) is the Debye temperature of unconstrained BST-0.5 film,
and ξs is the measure of density of defects and inhomogeneity in constrained BST-0.5 film.
For the experimentally measured ε/

⊥ of 388 at 40 GHz, ξs is found to be 0.51 for constrained
epi-BST-0.5 film on STO; note, high-quality single crystals exhibit a value of ξs = 0.01–0.2,
whereas ξs = 0.2–1.2 for ceramics and thin films [20,85].

5. Summary and Conclusions

Nanocrystalline and epitaxial, (100)-oriented Ba0.5Sr0.5TiO3 (BST-0.5) thin films (600 nm)
were deposited on single crystal MgO, STO, and LAO substrates at an oxygen partial
pressure (pO2) of 80 mTorr and temperature (T) of 720 ◦C using pulsed laser deposition
(PLD). The phase purity and quality of the films were routinely monitored by XRD and
RHEED. The broadband out-of-plane microwave (1–40 GHz) dielectric properties of the
films were measured using coplanar waveguide transmission line (CPW) test structures.

Using literature data, homogeneous and biaxial in-plane strain (ε||) due to thermal
mismatch in the BST-0.5 films on MgO, STO, and LAO substrates were estimated to be:

(a) −0.279% (highly compressive) and predicted to be in the tetragonal/ferroelectric (T(c)
phase,

(b) −0.076% (moderately compressive) and predicted to be in the paraelectric (P), and
(c) +0.076% (moderately tensile) and predicted to be in the paraelectric (P).

Based on these literature reports on theoretically calculated T-ε|| phase diagrams of
and ε||-dependent, out-of-plane dielectric permittivity (ε/

⊥) anomalies in single crystal
and single domain epitaxial BST-0.5 films, the theoretically predicted ε||-dependent but
frequency-independent ε/

⊥ in the nanocrystalline films should be in the order: BST−0.5
MgO ε /

⊥ >
BST−0.5
STO ε /

⊥ > BST−0.5
LAO ε /

⊥. The experimental data at low frequencies show that the predicted
substrate-dependent order of ε/

⊥ holds, but the ε/
⊥ s are highly frequency dependent,

dropping sharply from tens of thousands to ~1000 by 10 GHz. Since most of the data
measured is in the latter part of the relaxation regime, the inflection point for ε/

⊥ is not
visible in our measurements. In the low frequency, we see the homogenous strain effects
as we observe the relative dielectric permittivity higher than 10,000. The sharp decrease
in dielectric permittivity is due to the strong dielectric relaxation effects stemming from
multiple mechanisms, which we cautiously surmise at this time. These dielectric relaxations
are accompanied by peaks in the loss tangent (tanδ) at frequencies of ≥40 GHz, 37 GHz,
and 32 GHz for films on MgO, STO, and LAO, respectively.

Guided by numerous data and explanations in the literature, the contributions to the
low-frequency ε/

⊥ in the films on MgO stems primarily from homogeneous strain, as well
as extrinsic polydomains, namely, non-180◦ domains and perhaps nano-polar regions. The
relative weights and rate of diminishment of these contributions with frequency give rise
to the highly dispersive behavior (i.e., ε/

⊥ ∝ f − n with n = 1.7, below 10 GHz). Although
these contributions are significantly diminished beyond 10 GHz, the detrimental effects
of microstructural defects, where ε/

⊥ ∝ f − n, with n = 1.475 between 10 and 20 GHz and
n = 1.22 between 20 and 40 GHz, are manifested with observed crossover points with
films on STO and LAO. In the 10–40 GHz range, extrinsic inhomogeneous strain, and
spatial strain gradients due to defects and dislocations, stemming from the large lattice
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mismatch and strain energy relief at the deposition temperature, negatively influences the
intrinsic ε/

⊥.
In contrast, the contributions to the dispersive low-frequency ε/

⊥ in films on LAO stems
primarily from reduced homogeneous strain (note, C⊥>C and T⊥<To), as well as nano-polar
regions. Similar, to the films on MgO, these contributions diminish with frequency and
the detrimental extrinsic effects of dislocations (due to the high lattice mismatch at growth
temperature) and charged oxygen vacancy defects (due to thermally-driven tension) on
intrinsic ε/

⊥ are manifested at higher frequencies.
The enhanced contributions to the dispersive low-frequency ε/

⊥ in isostructural films
on STO stems primarily from enhanced homogeneous strain (note, C⊥<C and T⊥>To), as
well as extrinsic residual ferroelectricity and/or nano-polar regions. The maintenance of the
high ε/

⊥ over a wide frequency range (note, 388 at 40 GHz) the higher crystalline quality of
films on STO due to the Stranski–Krastanov growth mode, and low dislocation densities
in BST-0.5 film due to low lattice mismatch with STO at growth temperature. Using the
Vendik and Zubko model, the defect parameter metric, ξs, of 0.51 was estimated at 40 GHz.
From the observed data, the detrimental effects of extrinsic factors to the intrinsic ε/

⊥ at
higher frequencies leads to the following trend: BST−0.5

STO ε /
⊥ > BST−0.5

LAO ε /
⊥ > BST−0.5

MgO ε /
⊥.

Here, uncertainties in the interpretation of the microwave dielectric responses have
arisen due to the conflation of independent (but weighted) frequency-dependent influences
including homogeneous in-plane strain, extrinsic microstructural features such as ferroelas-
tic domains and nano-polar regions, and inhomogeneous strains due to defects. Based on
the current data, the extrinsic contributions to the ε/

⊥ in the low-frequency end approach
50% of the intrinsic contributions, and both the homogeneous strain-mediated and extrinsic
effects are frequency dependent. The influences of inhomogeneous strain on the electronic
and lattice components are manifested at the high-frequency end. Undoubtedly, more work
is warranted to validate the assumptions in this qualitative and preliminary discussion
based on the rich literature reports. However, to leverage strain engineering for practical
applications, quantitative and comprehensive in situ, and ex situ physicochemical and
electrical characterization of thin films from a single source with known (and controlled)
processing history, are necessary to (a) quantify the intrinsic and extrinsic responses and
(b) understand and control their reproducibility and reliability. A low growth rate of the
nanocrystalline epi-BST epilayers on well-characterized substrates of high quality, coupled
with in situ or ex situ oxygen annealing, may be favorable to reduce the influences of
extrinsic factors. These issues and concerns further underscore the need and importance of
understanding the intricate interrelationships between substrate-dependent BST structure
(unit-cell parameters, epitaxial crystalline quality, roughness, grain size, grain orienta-
tion, grain boundary density, defects, and domain size and density), processing (substrate
type, orientation, and quality, and oxygen partial pressure, temperature, deposition rate,
and ex situ annealing), and microwave property (frequency, voltage, and temperature
dependence) of both pseudo-morphic and relaxed BST films by PLD. Eventually, control of
these structure–processing–microwave property interrelationships will lead to enhanced
dielectric properties and tunability of BST over a broadband millimeter-wave frequency,
and the realization of applications such as reconfigurable front ends for 5G communications
technology.
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