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Abstract: Recently, the need has arisen to enhance the piezoelectric properties and temperature stability
of (Na,K)NbO3 system ceramics. The (0.965)(Li0.03(Na0.5K0.5)0.97)(Nb1−xSbx)O3−0.035(Bi0.5Na0.5)0.9

(Sr)0.1ZrO3 ceramics were newly manufactured using the sintering aids of CuO, B2O3, and ZnO as a
function of antimony substitution, and the their crystal structure and electrical characteristics were
analyzed. The grain size was apparently refined as the amount of antimony increased. The dielectric
constant was enhanced and Curie temperature was decreased due to the content of the antimony
substitution. The x = 0.07 sample sintered at 1060 ◦C presented the best electrical characteristics,
which were bulk density = 4.488 g/cm3, piezoelectric constant d33 = 330 pC/N, electromechanical
coupling factor kp = 0.427, mechanical coupling factor Qm = 61, and dielectric constant εr = 2521. We
believe that the x = 0.07 sample is the best material for piezoelectric speakers.

Keywords: crystal structure; electrical characteristics; d33; antimony; Curie temperature

1. Introduction

In recent years, lead zirconate titanate ceramics have been extensively utilized in appli-
cation devices such as piezoelectric actuator, ultrasonic motors, piezoelectric transformer,
and ultrasonic cutters [1–5]. In particular, various multi-structured piezoelectric ceramics
were investigated for the application of piezoelectric speaker capable of being used in
smart phone speaker. It is well known that (Bi0.5Na0.5)ZrO3 addition could simultaneously
increase TR-O(Rhombohedral-Orthorhombic transition temperature) and decrease TO-T
(Orthorhombic-tetragonal transition temperature) of KNN ((K,Na)NbO3) system ceramics.
Accordingly, a rhombohedral-tetragonal (R-T) coexistence phase can appear. Because
this R-T phase transition may act similarly to the classical morphotropic phase boundary
(MPB) observed in PZT ceramics, the higher d33 may be expected [6–13]. Therefore, in
compositionally modified KNN ceramics, increased dielectric and piezoelectric proper-
ties can be obtained by forming the R-T Polymorphic phase transition (PPT) near room
temperature. It is well-known that the MPB region with tetragonal and rhombohedral
structure can enhance the piezoelectricity of the PZT ceramics, owing to the involvement
of the more polarization states [14]. Accordingly, piezoelectric devices have mainly utilized
the ceramics close to the tetragonal and rhombohedral phase boundary.

The predominant KNN system ceramics substituted with (Ba,Na)ZrO3 were devel-
oped due to the coexistence of tetragonal and rhombohedral phases [15].

The KNN system ceramics have sintered at a high sintering temperature of more than
1100 ◦C. Accordingly, the ceramics can induce compositional fluctuation owing to rapid
volatilization of alkali elements at above 1100 ◦C [16]. Moreover, cheap Ag rich-Pd inner
electrode in the multilayer structured ceramics should be used for price competitiveness.
CuO, B2O3, and ZnO can also be utilized as the sintering aids in order to decrease the
sintering temperature of the KNN ceramics. A low temperature sintering process for the
ceramics can be achieved using the liquid phase formation owing to their lower melting
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point. Antimony (Sb) substituted with the KNN system can also decrease TO-T and increase
TR-O [17,18]. The increase of piezoelectric ceramic strain (S) according to the electric
field (E) can enhance the sound pressure level of the piezoelectric speaker (S = d33E).
Accordingly, with the aim of enhancing the piezoelectric constant d33, physical properties,
and temperature stability of (Na,K)NbO3 ceramics, (0.965)(Li0.03(Na0.5K0.5)0.97)

(Nb1−xSbx)O3−0.035(Bi0.5Na0.5)0.9(Sr)0.1ZrO3 ceramics were newly manufactured us-
ing the sintering aids of CuO, B2O3, and ZnO as a function of antimony substitution. Here,
we have selected the x = 0.04–0.08 composition ceramics to focus on the composition of R-T
MPB regions, and their crystal structure and electrical characteristics were investigated for
piezoelectric speaker applications.

2. Experiments

In these experiments, the following composition samples were fabricated according to
the following traditional manufacturing method [19];

(0.965)(Li0.03(Na0.5K0.5)0.97)(Nb1−xSbx)O3−0.035(Bi0.5Na0.5)0.9(Sr)0.1ZrO3
+ sintering aids (0.1 wt% B2O3 + 0.2 wt% ZnO + 0.2 wt% CuO)

(from x = 0.04 to 0.08)

All raw materials, including K2CO3, Li2CO3, Na2CO3, Sb2O5, SrCO3, Bi2O3, and
ZrO2, were ball-milled for 24 h, and the powders were dried and calcined at 850 ◦C for 6 h.
After performing calcining, CuO, B2O3, and ZnO as the sintering aids were added, and
then, a PVA as binder was added to the dried powders. The powders including the binder
were formed by a pressure of 17 MPa using a mold with a diameter of 17 mm, and then
the ceramics formed were sintered at 1060 ◦C for 10 h. The density was measured using
the Archimedes method. For the purpose of measuring the electrical characteristics, all
samples lapped to thickness (= 1.0 mm) were electro-deposited using Ag paste. In order
to measure the piezoelectric and dielectric characteristics, the specimens were polished
to 1 mm thickness and then electrodeposited with Ag paste. Poling of the samples was
carried out at 120 ◦C in a silicon oil bath by applying DC fields of 3 kV/mm for 30 min.
To investigate the dielectric properties, capacitance was measured at 1 kHz (standard
frequency) using an LCR meter (ANDO AG-4034) (Rancho Cordova, CA, USA) and the
dielectric constant of the non-poled sample was calculated. Piezoelectric constants were
obtained using a d33 meter (APC-90-2030, 46 Heckman Gap Road, Mill Hall, PA 17751,
USA). To investigate the piezoelectric properties, the resonant and anti-resonant frequencies
were measured using an Impedance Analyzer (Agilent 4294A, 1150 Raymond Avenue SW
Renton, WA, USA) according to IRE standard, and then the electromechanical coupling
factor kp and mechanical quality factor Qm were calculated [20].

To determine the crystal structure of the specimen, the X-ray diffraction meter (XRD:
Rigaku, D/MAX-2500H) was irradiated at a diffraction angle 2θ between 20◦ and 80◦ by a
powder method using a CuKα line having a wavelength of λ = 1.5406 Å. The microstructure
of the specimen was observed at 3000 magnification with the aids of a scanning electron
microscope (SEM: Model Hitachi, S-2400) [17,18].

3. Results and Discussion

The microstructure of samples with antimony are shown in Figure 1. The surface
grain size of the samples were significantly reduced with the increase of the antimony. This
is explained by the fact that the Sb5+ ion can reduce the average grain size with the increase
of antimony [19,20]. As shown in Figure 2, the grain size was refined as the amount of Sb5+

further increased from 5.2 µm (x = 0.04) to 2.3 µm (x = 0.08) [20]. According to the decrease
of grain size, densification of the crystal microstructure was also performed. Sintering aids
CuO, B2O3, and ZnO may promote the chemical reaction of ceramic particles owing to a
liquid phase formation and then can enhance the ceramic densification.
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Figure 2. Grain size of samples with the amount of antimony.

The X-ray diffraction (XRD) pattern with the antimony of samples fired at 1060 ◦C
for 10 h are shown in Figure 3. All off the samples exhibit pure perovskite phase, and no
secondary phases were investigated. The ceramic samples from x = 0.04 to x = 0.07 possess
coexistence of a rombohedral-tetragonal (R-T) shape, which is indicated by the tetragonal
(002) and (200), along with the rhombohedral (200) peak, as shown in Figure 3b. Here, the
intensity of the tetragonal (002) peak was slowly weakened, and the rhombohedral (200)
peak evidently appeared in association with the increase in antimony substitution. When
x = 0.07, the piezoelectricity of the samples was greatly enhanced due to the increase of the
coexistence ratio of a rombohedral-tetragonal (R-T) shape.

When the antimony x = 0.08, the rhombohedral (200) peak was appeared to be large
while the tetragonal (002) peak was weakened.

The density of the samples with the antimony are shown in Figure 4. With the increased
antimony content, the density of samples was slowly enhanced due to the densification
of the crystal microstructure up to x = 0.07. In the composition ceramics above x = 0.07,
the density was decreased due to over substitution to the KNN system. This was also
because of the liquid phase firing effects of sintering aids (CuO melting point; 1020 ◦C,
B2O3 melting point; 460 ◦C).

The kP with the antimony are shown in Figure 5, and also the Qm of the samples
with the antimony are shown in Figure 6. The kp increased with increasing antimony,
when antimony was increased up to x = 0.07 (that is, kp = 42.7%), and the kp decreased
with further increase above x = 0.07. The results can also illustrated the fact that the
densification of the samples decreases due to the over addition of antimony, and that Qm
slowly reduced with increasing antimony content. When the content of antimony was
x = 0.04, the maximum of Qm = 80 was obtained. This perhaps indicates that the Sb5+ ion
can enter into the B-sites of Zr4+ except for Nb5+ due to the softener effect leading to a
decrease in Qm with increasing antimony content.
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The dielectric constant εr and piezoelectric constant d33 of samples with the antimony
are shown in Figures 7 and 8, respectively. The dielectric constant εr of samples with the
antimony increased linearly. After poling the samples as a 3 kV/mm electric field (E), the
d33 was measured. The d33 was increased with the content of antimony up to x = 0.07 and
then reduced above x = 0.07. In general, in order to increase the sound pressure level of
the piezoelectric speaker, the highest d33 is required because the strain (S) is in proportion
to the electric field (E). The ceramics with x = 0.07 possessed the best piezoelectricity
(d33 = 330 pC/N, εr = 2521) for piezoelectric speaker application. These values were shown
to be higher than d33 = 241 pC/N and εr = 1705 in our recently published paper [21,22].
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The antimony content can enhance the sinterability of the samples together with the
liquid phase formation of CuO and B2O3, resulting in enhancement of d33 and εr. The d33
of x = 0.07 specimen with electric field shown in Figure 9.
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As the electric field (E) increased, the piezoelectric constant d33 increased.
When the electric field (E) was 3 kV/mm, the maximum d33 = 330 pC/N was ob-

tained. Thereafter, the piezoelectric constant d33 was decreased due to a micro-cracking
phenomenon under over electric field (E) of the specimen.
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The dielectric constant temperature dependence of the samples with the antimony are
shown in Figure 10. Primary phase transition temperature TR-T slowly increased and also
the Curie temperature Tc gradually decreased according to the increase in antimony.
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Physical properties of the samples with the amount of antimony are summarized in
Table 1.

Table 1. Electrical properties of samples with the amount of antimony.

Sintering
Temperature (◦C) X Density (g/cm3) kp Dielectric Constant d33(pC/N) Qm Tc (◦C)

1060

0.04 4.309 0.236 1520 133 80 280

0.05 4.425 0.412 1863 272 72 250

0.06 4.481 0.425 2119 293 59 225

0.07 4.488 0.427 2521 330 61 195

0.08 4.453 0.395 2889 315 59 170

4. Conclusions

In this experiment, the modified (Na,K,Li)NbO3–(Bi,Ba)ZrO3 ceramics were manufac-
tured using CuO, B2O3, and ZnO as the sintering aids as a function of antimony substitution.

Their crystal structure and electrical characteristics were analyzed as follows:

1. The grain size was refined as the amount of antimony increased.
2. Dielectric constant was enhanced and Curie temperature was decreased due to the

content of antimony substitution.
3. With the x = 0.08 specimen, the rhombohedral (200) peak appeared. When the amount

of antimony was between x = 0.04 and x = 0.07, the coexistence of the tetragonal and
rhombohedral phase apparently appeared.
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4. The x = 0.07 sample sintered at 1060 ◦C presented the best electrical characteristics:
bulk density = 4.488 g/cm3, d33 = 330pC/N, kp = 0.427, Qm = 61, and εr = 2521. We
believe that the x = 0.07 sample is the best material for piezoelectric speakers.
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