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Abstract: A novel Bi (III) coordination compound, [Bi(HQ)(Cl)4]n ((Q = pyridine-4-carbaldehyde
thiosemicarbazone), was prepared in this research using a sonochemical technique. SEM, infrared
spectroscopy (IR), XRD, and single-crystal X-ray analysis were utilized to analyze the Bi(III) coor-
dination compound. The structure determined using single-crystal X-ray crystallography indicates
that the coordination compound is a 1D polymer in solid state and that the coordination number of
bismuth (III) ions is six, (BiSCl5), with one S donor from the organic ligand and five Cl donors from
anions. It is equipped with a hemidirectional coordination sphere. It is interesting that the ligand has
been protonated in the course of the reaction with a Cl- ion balancing the charge. This compound’s
supramolecular properties are directed and regulated by weak directional intermolecular interactions.
Through π–π stacking interactions, the chains interact with one another, forming a 3D framework.
Thermolysis of the compound at 170 ◦C with oleic acid resulted in the formation of pure phase
nanosized Bi (III) oxide. SEM technique was used to examine the morphology and size of the bismuth
(III) oxide product produced.

Keywords: crystallography; ultrasonic irradiation; Bi(III) compound; crystal structure

1. Introduction

Coordination polymers, a class of solid-state materials characterized by an endless
framework structure, are formed when metal ions and organic ligands self-assemble [1,2].
They continue to garner research interest due to their appealing shapes and many prospec-
tive applications in catalysis [3], magnetism [4], luminescence [5], drug delivery [6], gas
separation [7], absorption [8], etc. It is self-evident that some architectures confer unique
characteristics on materials, which are critical for their use [9,10]. However, developing
and manufacturing new functional coordination polymers continue to be challenging at
the moment.

The coordination sphere distortions in Tl(I), Pb(II), and Bi(III) compounds are of inter-
est because they may be caused by the existence of a lone pair [11,12]. Bi(III) frameworks
have garnered considerable attention due to their large ion radius, flexible coordination
number, and the possibility of a stereochemically active lone pair of 6s2 outer electrons. The
stereochemical activity of valence shell electron lone pairs in polymeric and supramolec-
ular substances could be intriguing, since a sudden accumulation of multiple bridging
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ligands could result in the disappearance of gaps, resulting in a less frequent holodirected
configuration [13–16]. On the other hand, such as Tl(I) and Pb(II), the coordination sphere
of Bi(III) is interesting (Scheme 1).

Crystals 2022, 12, x FOR PEER REVIEW 2 of 13 
 

Crystals 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/crystals 
 

and supramolecular substances could be intriguing, since a sudden accumulation of 
multiple bridging ligands could result in the disappearance of gaps, resulting in a less 
frequent holodirected configuration [13–16]. On the other hand, such as Tl(I) and Pb(II), 
the coordination sphere of Bi(III) is interesting (Scheme 1). 

Sonochemistry is a field of study wherein molecules undergo reactions when ex-
posed to high-intensity ultrasound (20 kHz–10 MHz) [17]. Ultrasound causes physical or 
chemical alterations throughout cavitation, a process that involves the creation, devel-
opment, and immediate collapsing of bubbles in fluids. Cavitation could produce warm 
spots with temperatures of approximately 5000 °C, pressures of approximately 500 atm, 
and a life span of a few microseconds [18]. The high temperatures may accelerate chemi-
cal processes, but they can also stimulate the creation of nanoscale structures, most no-
tably via the immediate production of many crystallization nuclei. This method has been 
extensively used to synthesize nanoscale structures of a variety of chemicals, and recent-
ly, many nanoscale materials have been produced with this method [19]. 

We are primarily interested in the design and synthesis of coordination polymers in 
this study. We recently published a study on the nanoscale production of different met-
al–organic coordination polymers [20–22]. The coordination characteristics of Bi(III) are 
investigated using a pyridine-4-carbaldehyde thiosemicarbazone ligand (Scheme 2). 
Then, we describe a sonochemical technique for producing nanostructures of the coor-
dination compound and its use in the synthesis of nanoscaled Bi(III) oxide particles. 

 
Scheme 1. Bismuth 6s2 pair stereochemical impact (a ligand’s D donor atom). 

 
Scheme 2. Pyridine-4-carbaldehyde thiosemicarbazide ligand. 

2. Experiment 
2.1. Materials 

All solvents and reagents used were readily available commercially and were used 
without additional purification. The IR spectrum was acquired using KBr disks in 400–
4000 cm−1 band on a Bruker Vector 22 FTIR spectrometer. Melting points were deter-
mined using Electrothermal 9100 equipment and are shown in their unaltered state. The 
ultrasonic generation was performed in a SONICA-2200 EP ultrasonic bath (frequency of 
40 kHz). XPRD experiments were carried out utilizing a Panalytical X’pert diffractome-

Scheme 1. Bismuth 6s2 pair stereochemical impact (a ligand’s D donor atom).

Sonochemistry is a field of study wherein molecules undergo reactions when exposed
to high-intensity ultrasound (20 kHz–10 MHz) [17]. Ultrasound causes physical or chemical
alterations throughout cavitation, a process that involves the creation, development, and
immediate collapsing of bubbles in fluids. Cavitation could produce warm spots with
temperatures of approximately 5000 ◦C, pressures of approximately 500 atm, and a life span
of a few microseconds [18]. The high temperatures may accelerate chemical processes, but
they can also stimulate the creation of nanoscale structures, most notably via the immediate
production of many crystallization nuclei. This method has been extensively used to
synthesize nanoscale structures of a variety of chemicals, and recently, many nanoscale
materials have been produced with this method [19].

We are primarily interested in the design and synthesis of coordination polymers
in this study. We recently published a study on the nanoscale production of different
metal–organic coordination polymers [20–22]. The coordination characteristics of Bi(III) are
investigated using a pyridine-4-carbaldehyde thiosemicarbazone ligand (Scheme 2). Then,
we describe a sonochemical technique for producing nanostructures of the coordination
compound and its use in the synthesis of nanoscaled Bi(III) oxide particles.
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2. Experiment
2.1. Materials

All solvents and reagents used were readily available commercially and were used
without additional purification. The IR spectrum was acquired using KBr disks in
400–4000 cm−1 band on a Bruker Vector 22 FTIR spectrometer. Melting points were deter-
mined using Electrothermal 9100 equipment and are shown in their unaltered state. The
ultrasonic generation was performed in a SONICA-2200 EP ultrasonic bath (frequency of
40 kHz). XPRD experiments were carried out utilizing a Panalytical X’pert diffractometer
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using monochromatized Cukα radiation. Mercury 2.4 was used to generate modeled XPRD
powder shapes based on single-crystal information [23].

The Scherrer method was used to determine the crystallographic diameters of chosen
samples. Following coating of Au, samples morphology was examined utilizing a scan-
ning electron microscope (Hitachi, Japan). Data of diffraction for a single crystal of the
synthesized coordination polymer were obtained at 298 K using a Bruker D8 VENTURE
diffractometer, combined with a Photon II CCD detector and Cu Kα radiation. APEX 3 was
used to collect the data, refine cell parameters, and reduce data [24].

We solved the structure using direct processes with SHELXS and anisotropically
adjusted all F2 data utilizing a complete matrix weighted least-squares technique with
w = 1/[σ2(Fo)2 + (0.035P)2] weight, where p = (Fo

2 + 2Fc
2)/3. Mercury 2.4 was used to create

molecular displays. Table 1 contains the crystallographic data and arranging modification
for the produced coordination polymer, whereas Table 2 contains the specified lengths and
angles of the bond. The details about crystal structure of [Bi(HQ)(Cl)4]n is provided in
Supplementary Materials.

Table 1. Coordination compounds crystallographic data and structural refinements.

Chemical Formula C7H9BiCl4N4S

Mr 532.02
Crystal system, space group Monoclinic, P21/c

Temperature (K) 298(2)
a, b, c (Å) 11.3205 (4), 7.4736 (3), 17.8244 (6)

β(◦) 97.9430(10)◦

V(Å3) 1493.56(9)
Z 4

Crystal size (mm3) 0.200 × 0.100 × 0.030
Theta range for data collection 3.943 to 72.090◦

Max. and min. transmission 0.7535, 0.2404
Rint 0.0574

Absorption coefficient mm−1 30.948
R,wR2 [I > 2σ(I)] 0.0838, 0.2181
R, wR2 (all data) 0.0856, 0.2247
No. of reflections 8804
No. of parameters 155
No. of restraints 0

Absorption correction Multi-scan (Bruker SADABS)
∆›max, ∆›min (e Å−3) 5.003, −4.488

Goodness-of-fit on F2 1.060

Table 2. Selected lengths and angles of bond for [Bi(HQ)(Cl)4]n.

Bi(1)-Cl(3) 2.542(3) Cl(3)-Bi(1)-Cl(4) 89.73(11)
Bi(1)-Cl(4) 2.620(2) Cl(3)-Bi(1)-Cl(2) 88.27(14)
Bi(1)-Cl(2) 2.714(4) Cl(4)-Bi(1)-Cl(2) 91.25(12)
Bi(1)-Cl(1) 2.769(4) Cl(3)-Bi(1)-Cl(1) 97.02(14)
Bi(1)-S(1) 2.841(3) Cl(4)-Bi(1)-Cl(1) 170.90(12)

Bi(1)-Cl(1)#1 2.861(3) Cl(2)-Bi(1)-Cl(1) 95.03(16)
N(1)-H(1A) 0.86 Cl(3)-Bi(1)-S(1) 89.60(12)

Cl(1)-Bi(1)-S(1) 80.60(15) Cl(4)-Bi(1)-S(1) 93.41(9)
Cl(3)-Bi(1)-Cl(1)#1 173.81(14) Cl(2)-Bi(1)-S(1) 174.87(13)
Cl(4)-Bi(1)-Cl(1)#1 85.71(12) Cl(2)-Bi(1)-Cl(1)#1 87.64(17)
S(1)-Bi(1)-Cl(1)#1 94.85(14) Cl(1)-Bi(1)-Cl(1)#1 87.97(5)
Bi(1)-Cl(1)-Bi(1)#2 147.3(2)

Symmetry transformations used to generate equivalent atoms: #1 −x + 2,y + 1/2, −z + 1/2 #2 −x + 2, y − 1/2,
−z + 1/2.
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2.2. Isolated Single Crystal of [Bi(HQ)(Cl)4]n Synthesis

We obtained single crystals of [Bi(HQ)(Cl)4]n by combining bismuth(III) chloride
(2 mmol) and the Q ligand (2 mmol) in the main arm of a branching tube. CH3OH was
supplied with care to completely fill both arms. After sealing the tube, the arm that contains
the ligands was immersed in a 60 ◦C oil bath; however, the other arm was stored at room
temperature. After seven days of isolating and filtering the crystals inside the cooler arm, it
was washed using acetone and ether and allowed to dry naturally (Figure 1) (yield: 52%).

Crystals 2022, 12, x FOR PEER REVIEW 4 of 13 
 

Crystals 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/crystals 
 

Table 2. Selected lengths and angles of bond for [Bi(HQ)(Cl)4]n. 

Bi(1)-Cl(3) 2.542(3) Cl(3)-Bi(1)-Cl(4) 89.73(11) 
Bi(1)-Cl(4) 2.620(2) Cl(3)-Bi(1)-Cl(2) 88.27(14) 
Bi(1)-Cl(2) 2.714(4) Cl(4)-Bi(1)-Cl(2) 91.25(12) 
Bi(1)-Cl(1) 2.769(4) Cl(3)-Bi(1)-Cl(1) 97.02(14) 
Bi(1)-S(1) 2.841(3) Cl(4)-Bi(1)-Cl(1) 170.90(12) 

Bi(1)-Cl(1)#1 2.861(3) Cl(2)-Bi(1)-Cl(1) 95.03(16) 
N(1)-H(1A) 0.86 Cl(3)-Bi(1)-S(1) 89.60(12) 

Cl(1)-Bi(1)-S(1) 80.60(15) Cl(4)-Bi(1)-S(1) 93.41(9) 
Cl(3)-Bi(1)-Cl(1)#1 173.81(14) Cl(2)-Bi(1)-S(1) 174.87(13) 
Cl(4)-Bi(1)-Cl(1)#1 85.71(12) Cl(2)-Bi(1)-Cl(1)#1 87.64(17) 
S(1)-Bi(1)-Cl(1)#1 94.85(14) Cl(1)-Bi(1)-Cl(1)#1 87.97(5) 
Bi(1)-Cl(1)-Bi(1)#2 147.3(2)   

Symmetry transformations used to generate equivalent atoms: #1 −x + 2,y + 1/2, −z + 1/2 #2 −x + 2, y 
− 1/2, −z + 1/2. 

2.2. Isolated Single Crystal of [Bi(HQ)(Cl)4]n Synthesis 
We obtained single crystals of [Bi(HQ)(Cl)4]n by combining bismuth(III) chloride (2 

mmol) and the Q ligand (2 mmol) in the main arm of a branching tube. CH3OH was 
supplied with care to completely fill both arms. After sealing the tube, the arm that con-
tains the ligands was immersed in a 60 °C oil bath; however, the other arm was stored at 
room temperature. After seven days of isolating and filtering the crystals inside the 
cooler arm, it was washed using acetone and ether and allowed to dry naturally (Figure 
1) (yield: 52%). 

FTIR (KBr) = (632, 801, 1088, 1491, 1605, 1636, 2901, 3441) cm−1. 

 
Figure 1. Branched tube method. 

2.3. Synthesis of the Compound [Bi(HQ)(Cl)4]n in Bulk Form 
We put 0.18 g of synthesized ligand and 0.315 g of bismuth (III) chloride into a 

small bottle, added approximately 20 mL of methanol, and stirred it for at least 60 min 
with a magnet to produce sedimentation. If sediment does not form, it is better to stop 

Figure 1. Branched tube method.

FTIR (KBr) = (632, 801, 1088, 1491, 1605, 1636, 2901, 3441) cm−1.

2.3. Synthesis of the Compound [Bi(HQ)(Cl)4]n in Bulk Form

We put 0.18 g of synthesized ligand and 0.315 g of bismuth (III) chloride into a small
bottle, added approximately 20 mL of methanol, and stirred it for at least 60 min with a
magnet to produce sedimentation. If sediment does not form, it is better to stop the system
as a reflux system (for a minimum of 3h) to allow sediment to develop. Sediment formation
occurred simultaneously in the examined system. The sediment was then screened and the
FTIR spectra were analyzed (Yield: 49%). The following are the major peaks in its infrared
spectrum:

FTIR (KBr) = (630, 878, 1108, 1492, 1594, 2941, 3262, 3422) cm−1.

2.4. Synthesis of the [Bi(HQ)(Cl)4]n Nanostructure

The nanostructure of [Bi(HQ)(Cl)4]n was produced by placing 10 mL of a 0.1 M solution
of bismuth(III) chloride in water in a dense ultrasonic probe and dropwise adding 10 mL of
a solution containing 0.1 M of Q ligand in methanol/water. The precipitates obtained were
screened, washed, and left to dry in the air (yield: 43%).

FTIR (KBr) = (793, 815, 1107, 1493, 1607, 2982, 3228, 3380) cm−1.

3. Results and Discussion

The combination of bismuth(III) chloride with pyridine-4-carbaldehyde thiosemicar-
bazone resulted in the formation of [Bi(HQ)(Cl)4]n, a novel 1-dimensional coordination
molecule. The nanostructure of the chemical was evaluated using the ultrasonic method
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in an aqueous solution. The branched-tube method was used to produce appropriate
single crystals of the prepared chemical for X-ray crystallography. Scheme 3 illustrates two
distinct ways for producing [Bi(HQ)(Cl)4]n materials.
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The FTIR spectrum of the compound is shown in Figure 2 in its nano, bulk, and
crystalline forms. Comparing these spectra reveals their resemblance, with the matching
major peaks overlapping significantly.
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The bands of absorption with variable strengths in a range of 1400–1600 cm−1 in FTIR
spectra of these chemicals are ascribed to the vibrations of the ligand pyridine ring, which
is linked to the C=N and C=C bonds. Peaks associated with imine C=N are observed as
crisp bands in the range of 1600 cm−1 that have moved to shorter waves as a result of
the ligand’s coordination to the metal and the development of a compound with minimal
displacement.

The tensile N-H peaks in the compound’s vibrational spectra are located at 3235 cm−1

and show the existence of the ligand’s N-H group when coupled to the central metal, as
well as the presence of the ligand in the neutral structure during the compound’s synthesis.
For all three compounds, the associated band of the creation of a new C=N bond is not
seen, indicating that the L ligand contributed to the coordination of the metallic ion in the
form of ketones. The C=S group in the compound is detected with a little displacement in
the vicinity of 1700 cm−1, indicating that it is coordinated to the metal.

The N-N group is detected in the 1052 cm−1 region, and this adsorption band is moved
to lower wavenumbers in the spectra of all three compounds than in the ligand spectrum,
indicating that the nitrogen atom of azomethine is not coordinated to the metallic ion.
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The findings of the study reveal that when ligand tautomerization occurs, the ligand
takes part in the forming of compounds in enol form, and the absorption band of N-N is
removed, C-N and N-N are shifted to high numbers, and a new C=N bond is formed in the
wavenumber 1400–1600 cm−1. Furthermore, the existence of the N-N band in the spectra of
compounds shows that the ligand is not tautomerized in the solid form and that the ligand
is in coordination with the metallic ion in the ketonic form. As can be observed, there is
an excellent match in all regions between the nanomaterial, crystal, and manufactured
bulk [11].

The produced nanoscale coordination polymer’s surface morphology was studied
using SEM. SEM analysis demonstrates that the produced nanoparticles are of varying
sizes and shapes (Figure 3).
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The generated XPRD pattern of [Bi(HQ)(Cl)4]n is shown in Figure 4 in contrast to an
experimental XRD pattern of a nanostructure. Acceptable matches by minor changes in 2θ
were observed between the experimental and simulated XPRD patterns. It demonstrates
that the production of nanoparticles through sonochemistry is equivalent to that produced
via crystallography. The extension of the peaks shows that the particles are nanoscale in
size.

In Figure 5, X-ray diffraction analysis reveals that the produced coordination product
in solid is a 1D coordination polymer with the ligand monodentately linked to the bismuth
metal through the S atom. This compound has a Z value of 4 and is formed in a monoclinic
crystal lattice. It is a member of the space group P21/c.

The unit cell is shown in Figure 6. The structural units are connected through symmet-
ric components such as screw axes of 21, glide planes, and symmetry centers. The screw
axes 21 are parallel to axis b, and the two glide planes are perpendicular to axis b, as shown
in Figure 7. The symmetry centers at the middle of a unit cell serve as a link between these
units.
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Figure 5. The crystal form of the coordination compound [Bi(HQ)(Cl)4]n (Symmetry Code: #2 −x + 2,
y + 1/2; #3 x, −y + 1/2, z + 1/2; #4 x − 1, −y + 1/2, z + 1/2; #5 −x + 1, y + 1/2, −z + 1/2; #6 −x + 2,
y − 1/2, −z + 0.5).
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Figure 7. Symmetric elements of the [Bi(HQ)(Cl)4]n crystal shown along the axis C (green axes: screw
axes 21 and purple planes: glides planes; the dotted lines between some of the Cl1 and Bi1 represent
the relative longer distance, 2.861(3) Å, and weaker interaction between them).

A kind of bismuth with an asymmetric coordination sphere is found in this structure.
Every bismuth central metal in this combination is connected to a sulfur atom of Q ligands
and five chlorine atoms, two of which are linked to other units that repeat and three of
which are free. As a result of the BiSCl5 pattern, bismuth has a coordination number of six.
Communication between structural units in the produced coordination polymer occurs
through a single Bi-Cl bond that is in the bridge mode, resulting in the creation of the
polymeric structure.

The molecule lacks a symmetry center, and the bismuth–chlorine bonds are not iden-
tical in length. Additionally, the angles around the core metal atom are not identical in
the coordination cortex; the angles formed by the ligand and the central metal are accord-
ing to what is shown in Table 2. The HQ Ligand is covalently linked to the core metal
through the S of thiosemicarbazide and functions as a monodentate ligand in the polymer
shape. In solid form, this chemical is a 1D coordination compound. Figure 8 illustrates
the compound’s polymeric structure. This is comparable with other bismuth coordination
compounds reported in the literature [22,25,26]. As a reported structure in reference [22],
the coordination sphere of Bi(III) with seven coordination numbers was reported to be
hemidirected with an asymmetrical shape.
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relative longer distance, 2.861(3) Å, and weaker interaction between them).

It is interesting that the ligand has been protonated in the course of the reaction and
that a Cl ion balances the charge. The pyridine nitrogen N1 was protonated during the
reaction to balance the charges. This leads to a lower theoretical yield since the Cl atom is
provided by one of the starting materials (BiCl3).

In coordination polymers, in addition to coordination covalent strong bonds that cause
the polymer to expand in a 1D step, weak interactions such as hydrogen and aromatic
interactions cause self-accumulation of 1D chains and transform the structure into a 3D
supermolecule via intermolecular interactions.

Without considering weak interactions, the composition has the structure of a 1D
coordination polymer. By examining weak interactions, it is possible to detect the existence
of seven hydrogen bonds in this structure, which transforms into a three-dimensional
structure shown in Figure 9. Additionally, Table 3 shows H bonds.
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Table 3. The crystal structure of [Bi(HQ)(Cl)4]n reveals a number of noncovalent interactions.

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N1—H1A···Cl2 i 0.86 2.25 3.103 (5) 170.2
N3—H3A···Cl2 ii 0.86 2.36 3.205 (5) 169.5
N4—H4A···Cl3 iii 0.86 2.61 3.247 (5) 131.9
N4—H4A···Cl4 iv 0.86 2.95 2.452 (5) 119.1

N4—H4B···Cl4 0.86 2.34 3.195 (5) 170.0
C5—H5A···Cl3 v 0.93 2.91 3.661 (5) 138.9
C6—H6A···Cl4 ii 0.93 2.89 3.720 (5) 149.8

Symmetry code(s): (i) x−1, −y + 1/2, z + 1/2; (ii) x, −y + 1/2, z + 1/2; (iii) −x + 1, y + 1/2, −z + 1/2; (iv) −x + 1, y
− 1/2, −z + 1/2; (v) −x + 1, −y, −z + 1.

Bi2O3 nanorods were produced via thermolysis of 1 at 170 ◦C with oleic acid as a
surfactant. The powder XRD patterns (Figure 10) match the standard pattern of the Bi2O3
tetragonal structure (JCPDS card file No. 76-1730), which confirms the formation of bismuth
oxide. The average size of the particles was estimated by the Scherrer formula as 24 nm.
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Figure 10. PXRD pattern of Bi2O3 nanorods prepared by thermolysis of compound 1 at 170 ◦C.

Moreover, SEM images of the residue obtained from the thermolysis of 1 at 180 ◦C
using oleic acid as the surfactant show that the Bi2O3 oxide NPs have a rod shape whose
diameter is around 40–60 nm (Figure 11), comparable with reported in the literature [27–29].

Figure 12 displays the XPS spectra of Bi2O3 nano oxide. Two asymmetric peaks
centered at 158.7 eV and 163.9 eV are due to the transitions of 4f7/2 and 4f5/2, respectively,
and are attributed to Bi3+ ions in Bi2O3, crystal, which indicates that Bi3+ exists in the
product in the form of bismuth oxide which is close to the reported values for crystalline
Bi2O3 [30,31]. The O1 s spectrum for Bi2O3 indicates a peak at 531.1 eV, which is close to
the value of 530.9 eV reported in the literature [32].
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4. Conclusions

In this study, a new bismuth (II) coordination polymer [Bi(HQ)(Cl)4]n nanostructure
was produced using ultrasonic, and its crystal structure was examined. The novel coordi-
nation compound was structurally characterized using spectrophotometry, single-crystal
crystallography, and SEM. In solid state, the compound’s structure resulted in a 1D coor-
dination polymer. The coordination number of Bi (III) ions was found to be six by using
one sulfur atom from the organic ligand and five Cl atoms from anions. It is interesting
that the ligand was protonated in the course of the reaction and that a Cl ion balanced the
charge. The complete system exhibited a 3D structure due to numerous weak interactions.
Moreover, the calcination of compound 1 by thermolysis of 1 at 170 ◦C using oleic acid
occurred as the surfactant yielded uniform Bi2O3 nanorods.
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Supplementary Materials: Crystallographic data for the structure reported in this paper have been
deposited with The Cambridge Crystallographic Data Centre as supplementary publication CCDC-
2108919 for [Bi(HQ)(Cl)4]n (1). Copies of the data can be obtained by request from the CCDC,
12 Union Road, Cambridge CB2 1EZ, UK. Fax: +44 1223 336033, e-mail: deposit@ccdc.cam.ac.uk.
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