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Abstract: Dual-layer-offset or multi-layer-offset design of a PET detector can improve spatial res-
olution while maintaining high sensitivity. In this study, three dual-layer-offset LYSO detectors
with three different reflectors (ESR, Toray, and BaSO4) were developed. The top layer consisted of a
17 × 17 array of crystals 1 × 1 × 6.5 mm3 in size and the bottom layer consisted of an 18 × 18 array
of crystals 1 × 1 × 9.5 mm3 in size. Neither light guides nor optical glue were used between the
two layers of crystals. A custom-designed electronics system, composed of a 6 × 6 SiPM array,
two FPC cables, and a custom-designed data processing module, was used to read out signals. An
optimized interaction-decoding algorithm using the center of gravity to determine the position and
threshold of analog signals for timing methods was applied to generate decoding flood histograms.
The detector performances, in terms of peak to valley ratio of the flood histograms and energy
resolutions, were calculated and compared. The dual-layer-offset PET detector constructed with
BaSO4 reflectors performed much better than the other two reflectors in both crystal identification and
energy resolution. The average peak-to-valley ratio and the energy resolution were approximately 7
and 11%, respectively. In addition, the crystals in the bottom layer showed better performance at
crystal identification than those in the top layer. This study can act as a reference providing guidance
in choosing scintillator reflectors for multi-layer dedicated DOI detectors designed for small-animal
PET imaging.

Keywords: high resolution; PET detector; dual-layer-offset; reflectors

1. Introduction

Positron emission tomography (PET) is a molecular imaging modality that uses a
radioactive tracer to locate and measure changes in metabolic processes for biomedical
and diagnostic research [1–5]. The fundamental mechanism of PET is the detection of the
gamma photon pairs produced by positron annihilation. Image reconstruction techniques
can then be used to obtain the distribution of radiotracers. Single-crystal scintillators, such
as lutetium-yttrium oxyorthosilicate (LYSO), bismuth germanate (BGO), and gadolinium
aluminum gallium garnet (GAGG) have been studied and found to be advantageous over
other materials for PET applications [6]. LYSO is widely used in state-of-the-art PET and
PET detectors for its high light yield and short decay time.

There is a trade-off between the key elements of sensitivity and spatial resolution in
PET systems. Moses developed the following empirical formula to evaluate the influence
of related parameters on the spatial resolution of a PET detector [7]:
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where d is the crystal width, R is the diameter of the system, s is the positron range, b is
the error factor, and µ is a multiplicative factor obtained from the reconstruction method.
Decreasing the cross-section of the crystal is one direct and valid method to improve spatial
resolution. Long crystals with small cross-sections are required for high spatial resolution
and high sensitivity [8]. However, long crystals can lead to mislocation of light response
lines (LOR) and parallax effects, which deteriorate image quality. Choghadi et al. proposed
a calculation algorithm of the radial resolution at the given point within the field of view,
which can be calculated as following:

τ ≈

√
(

d
2
)

2
+

w2 − d2

D2 r2 (2)

where w is the depth of interaction (DOI) resolution, d is the detector pitch, D is the ring
diameter, and r is the radial distance from the center of the ring [9]. Note that the recon-
struction, individual coupling, and readout were assumed to be perfect, and the positron
range and angular nonlinearity were ignored. Developing such high-resolution detectors
with DOI capability is of great interest for both preclinical and clinical PET applications.

Significant efforts have been invested in recent decades to develop a PET detector
with DOI capability. On the one hand, dual-ended readout detector designs can achieve
promising coincidence of time resolution (CTR) and DOI resolution [9–11]. For instance,
Kang et al. optimized the surface processing and reflector design and achieved a sub-200 ps
CTR and sub-3 mm DOI resolution [10]. Kuang et al. developed an MRI-compatible detector
with all crystals resolved and the detectors achieving a DOI resolution of 1.96 mm and an
energy resolution of 18.9% [11]. The drawback of these dual-ended readout detectors is that
they are too costly to be commercialized because of the enormous number of photodetectors
and other readout circuits required. The typical applications of dual-layer DOI detection
modules are the GE Healthcare eXplore VISTA PET scanner and Shimadzu Clairvivo
small animal PET [12,13]. On the other hand, creative single-ended readout detector
designs have also been proposed, including phoswich detectors, dual-layer-offset and multi-
layer-offset detectors, and several methods of light sharing [14,15]. Phoswich detectors
are commonly used for a wide range of applications, academic as well as industrial,
including medical, security, nuclear, etc. [16–23]. For example, a phoswich detector using
a two-layer crystal of LYSO and BGO was developed to reject the cross-layer Compton
scatter events and improve the identification fraction [24]. A pulse shape discrimination
technique utilized the ECAT high-resolution research tomography (HRRT) [25]. There are
two main strategies for DOI measurement using a light-sharing method: (1) Designing
light-sharing windows with reflectors of different shapes, sizes and materials such that the
light distributions can be manipulated to encode DOI information [26,27]. Zhang et al. have
proposed a depth-encoding PET detector using four crystals to one SiPM that could obtain
approximately 3 mm DOI resolution and sub-200 ps coincidence timing resolution [28].
(2) Arranging a light guide at the top of the crystal arrays to guide the optical photons to
specific photodetectors and thus decode the DOI. LaBella et al. designed and fabricated
a novel prismatoid light-guide array that realized a DOI resolution of 2.5 mm and an
energy resolution of 9% [29,30]. Continuous crystals are also used in small animal PET
scanners [31]. For example, Balcerzyk et al. coupled crystals to a finely segmented array
of photomultipliers to extract DOI data, while also greatly increasing the system cost and
complexity [31].

Dual-layer-offset and multi-layer-offset detectors have several advantages over the
aforementioned approaches, including relatively compact readout electronics, precise DOI
measurements, and practical crystal array assembly [8,32–38]. For instance, Ito et al. have
conducted simulation and detector design work focused on four-layer DOI crystals of
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dimensions 1.5 × 1.5 × 7 mm3 with a crystal pitch of 1.565 mm [34,37]. Wei et al. and
Zhang et al. utilized dual-layer-offset detectors for PET system applications [35,36]. The
main characteristics of detectors, especially the energy and spatial resolutions, depend
strongly on the reflectors between crystals. The most common reflectors used in detector
manufacturing are barium sulfate (BaSO4), enhanced specular reflector (ESR), and Toray
film (Toray Industries Inc., Tokyo, Japan) [39–41].

In this study, three dual-layer-offset LYSO detectors with the above-mentioned reflector
materials were fabricated, investigated, and compared, in order to optimize the reflector
configuration. An optimized interaction decoding algorithm using center of gravity (COG)
and the threshold method was applied to generate the flood histograms. The peak-to-
valley ratios of the decoding spot were calculated from the flood histograms to evaluate
the decoding performance. The results indicated that the BaSO4 reflector performed
substantially better than the other two reflectors in both crystal identification and energy
resolution. This paper provides referable guidance for choosing scintillator reflectors for
multi-layer dedicated DOI detectors designed for small-animal PET imaging.

2. Methods
2.1. Crystal Array

Three dual-layer-offset LYSO arrays consisting of 17 × 17 crystals (1 × 1 × 6.5 mm3)
and 18 × 18 crystal (1 × 1 × 9.5 mm3), as shown in Figure 1, were fabricated by Meishan-
boya Material Co., Ltd. All LYSO crystals are mechanically polished and connected with
different internal reflectors. The first type, widely used in PET detectors, is the enhanced
specular reflector (ESR) (3M, St. Paul, MN, USA) with a 98.5% reflectivity. The second
reflector is the Toray lumirror E60 film (Toray Industries Inc., Japan). The third reflector
is a self-made mixture of BaSO4 and optical glue. The surface by which gamma photons
enter, as well as the lateral surfaces, were wrapped with an aluminum foil of 0.05 mm
thickness. To simplify the process of assembly and keep detectors unified, neither light
guides nor optical glue were placed between the two layers, which may require higher
electronic readout capability. A small amount of optical glue (0.01 mm in thickness) was
used between the two layer of crystals for connecting, which is different from reference [42].
The overall dimensions of the three crystal arrays differed slightly due to the different
thicknesses of the reflectors: (19.32 × 19.32 + 20.44 × 0.44) × 16.20 mm3 for the ESR array,
(19.34 × 19.34 + 20.46 × 20.46) × 16.18 mm3 for the Toray array, and (19.28 × 19.28 + 20.40
× 20.40) × 16.16 mm3 for the BaSO4 array.
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Figure 1. (a) A model of the dual-layer-offset crystal array. (b) A diagram of the relationship between
the decoding spots and the crystal layers where the interactions occur. The decoding spots of the top
crystals and the bottom crystals alternate. (c) A picture of the three crystal arrays constructed with
three different reflectors: ESR, Toray, and BaSO4.

2.2. Detector Measurements

The readout electronics are composed of a 6 × 6 Silicon Photomultipliers (SiPM) array,
two FPC cables, and a custom-designed data processing module (Figure 2). The SiPM has a
3 × 3 mm2 active area and contains 5601 microcells, each covering an area of 35 × 35 µm2

(MicroFJ-30035-TSV, SensL). The bias voltage is set to 29.5 V. The ratio of the crystal size to
the SiPM size is approximately 1:3. The interval between the two SiPMs was 0.2 mm. The
overall size of the SiPM array was 19.96 × 19.96 mm2. The SiPM array is connected to the
data processing module via the FPC cables and a hub board. The core chip of the electronic
module is a Cyclone 10 FPGA from Altera, which reads out all 36 channels of signals and
transmits the data to a host PC. The details of the readout electronics are described in
reference [43]. The readout electronics showed excellent accuracy, linearity, repeatability,
and uniformity; the energy spectra were not corrected for the saturation of the SiPMs.
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Figure 2. Pictures of (a) the custom-designed electronic system and (b) the SiPM array.

The crystal arrays were coupled to the SiPM array by air to a form a detector, with
four layers of Teflon tape wrapped around it. The detectors were irradiated by a 22Na point
source located 5 cm above the top end of the crystal arrays. The radiation dose and the
diameter of active area were 753 kBq and 0.25 mm, respectively. The data acquisition time
was 250 s. The temperature was set constant at 25 ◦C during the experiments.

2.3. Data Analysis

The flood histogram is the most intuitive method to evaluate the decoding performance
of a detector. First, an energy window of [425 keV, 625 keV] was applied to all detected
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events in order to reject the Compton events. The interaction was then calculated using the
COG method: {

x = 256
6 ∗ (

Er,1+2∗Er,2+3∗Er,3+4∗Er,4+5∗Er,5+6∗Er,6
Etotal

− 1)

y = 256
6 ∗ (

Ec,1+2∗Ec,2+3∗Ec,3+4∗Ec,4+5∗Ec,5+6∗Ec,6
Etotal

− 1)
(3)

where x and y are coordinates on the flood map (256 × 256 pixels), Er,n and Ec,n are the
energy signals read out by the nth row and nth column of SiPMs, respectively, and Etotal is
the sum of the energy. A preliminary flood histogram was generated by tabulating the x
and y coordinates.

The electronic noise induced by the readout circuits deterioration affects the decoding
performance. A simple suppression method was utilized. The energy signals read from the
36 SiPMs were subtracted by the preset threshold. The resultant negative signals were then
set to zero:

Sout,i =

{
Sin,i − Nth i f Sin,i > Nth

0 i f Sin,i ≤ Nth
(4)

where Sin,i is the energy signal read from the ith SiPM and Nth is the preset threshold. Flood
histograms calculated using threshold values ranging from 1% to 3.5% were assessed to
determine the best threshold value [44].

To quantitatively assess the performance of detector decoding, the profiles of the
central column and row of the decoding spots for both the top layer and bottom layer
crystals were selected for calculation of the peak-to-valley ratios. The calculation is shown
in Figure 3. For each layer, the two adjacent valleys of peaks were averaged and the
averaged peak-to-valley ratios were calculated.
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The top layer was decoded to form a 17 × 17 decoding array and the bottom for an 18 × 18 
array. The DOI can be decoded according to the locations of the x, y coordinates. Then 
crystal energy spectra for individual crystals of both layers were extracted from the event 
data using the crystal LUT. The photopeak amplitudes of the energy spectra were Gauss-
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Figure 3. An illustration of the peak-to-valley ratio calculations. (a) A typical flood histogram. (b) An
illustration of the calculation. The profiles of the central column and row of the spots in both the top
layer and bottom layer crystals were selected for calculation of the peak-to-valley ratios.

After determining the optimal thresholds, a crystal look-up table (LUT) was generated
from the flood histogram. Each decoding spot corresponds to a segmented crystal. The top
layer was decoded to form a 17 × 17 decoding array and the bottom for an 18 × 18 array.
The DOI can be decoded according to the locations of the x, y coordinates. Then crystal
energy spectra for individual crystals of both layers were extracted from the event data
using the crystal LUT. The photopeak amplitudes of the energy spectra were Gaussian fitted
to calculate the energy resolution. Finally, the energy spectrum and the 2D mapping of the
energy resolutions of the individual crystals in the top and bottom layers were generated,
respectively. The average and the standard deviation (STD) value of energy resolution were
calculated.
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3. Results
3.1. Decoding Results
3.1.1. Flood Histograms of ESR Reflectors

The flood histograms calculated from the experimental data of the dual-layer-offset
crystal array constructed with ESR reflectors are shown in Figure 4a–f. The thresholds
were set from 1% to 3.5% of the photopeak with a step of 0.5%. When the threshold was
low (1% and 1.5%), the flood histograms were fuzzy, and the crystal spots could not be
distinguished. When the threshold was high (above 2%), a small number of the crystal
spots could be resolved. However, the decoding spots of the five crystals that were coupled
with the central area of each SiPM were very intense and caused deterioration of the flood
histograms. Overall, the ESR array showed poor decoding performance.
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Because the crystals cannot be distinguished in the crystal array constructed with ESR
reflectors, the decoding spots of the crystals in the top and the bottom layers mixed. Thus,
the profiles could not be precisely drawn and the peak-to-valley ratios were not calculated
for the ESR reflectors.

3.1.2. Flood Histograms of Toray Reflectors

The flood histograms calculated from the experimental data of the dual-layer-offset
crystal array constructed with Toray reflectors are shown in Figure 5a–f. The thresholds
were set from 1% to 3.5% of the photopeak with a step of 0.5%. The central 16 × 16 array of
crystal spots can be distinguished unambiguously, particularly for the thresholds of 1.5%
to 3% of the photopeak. However, due to edge effects, the crystal spots on the perimeter
were too intense to be resolved.
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To evaluate the decoding performance quantitively, the peak-to-valley ratios of the
central column and the central row of the top and bottom layers were calculated. First,
the crystals on the top layer and the bottom layer were classified according to the position
of decoding spots, as shown in Figure 6a. Then, the relationships between the average
peak-to-valley ratios and the thresholds are calculated, as shown in Figure 6b. The bottom
crystals showed better discrimination than the top crystals. As the threshold increased from
1% to 2% of the photopeak, the average peak-to-valley ratio of the top crystals increased
from 2.48 to 3.56 and the average ratio of the bottom layer increased from 3.43 to 4.73. When
the threshold was set higher than 2%, the peak-to-valley ratio remained almost constant
for both layers. Based on our previous experience [44], the optimal threshold was 2%,
because higher thresholds cause distortion of the signal and decoding specks. The average
peak-to-valley ratios at a threshold value of 2% for top and bottom crystals were 3.56 and
4.73, respectively.
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3.1.3. Flood Histograms of BaSO4 Reflectors

The flood histograms calculated from the experimental data of the dual-layer-offset
crystal array constructed with BaSO4 reflectors are shown in Figure 7a–f. As the threshold
value ranged from 1% to 3.5% of the photopeak, the flood histogram showed subtle
differences, mainly located on the periphery. Nevertheless, almost all of the crystal spots,
both the 17 × 17 crystal array in the top layer and the 18 × 18 crystal array in the bottom
layer, are bright enough to be unambiguously distinguished, even those on the periphery.
Overall, the flood histograms of BaSO4 array are the best of all the arrays evaluated.
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An analysis of the peak-to-valley ratios of the central column and the central row of
the top and bottom layers was conducted for the BaSO4 array. The crystals on the top and
bottom layers were classified and the relation between the average peak-to-valley ratios
and the threshold values were calculated, as shown in Figure 8a,b. As with the Toray array,
the bottom crystals were more easily distinguished than the top crystals. As the threshold
value was increased from 1% to 2.5% of the photopeak, the average peak-to-valley ratio of
the top layer of crystals increased from 5.53 to 6.18 and the average ratio of the bottom layer
increased from 6.85 to 7.50. The maximum peak-to-valley ratios for the top and bottom
crystals were 6.18 and 7.50, respectively, at a threshold of 2.5% of the photopeak. The
peak-to-valley ratios were approximately twice as high as those of the Toray array. It can
therefore be concluded that the BaSO4 reflectors have an enormous advantage over Toray
reflectors in energy resolution when assembling crystal arrays.
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3.2. Energy Resolution
3.2.1. Energy Resolution of ESR Reflectors

The energy spectrum of the crystal array constructed with ESR reflectors is shown in
Figure 9. The energy resolution is 19.18%. Note that because the flood histogram of ESR
array cannot be resolved, the individual energy resolution cannot be calculated.
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3.2.2. Energy Resolution of Toray Reflectors

Based on the flood histograms in Section 3.1.2, the central 13 × 13 crystal array of
the top crystal layer and the central 14 × 14 array of the bottom crystal layer were easily
distinguished. This allowed the energy resolutions of the crystal strips of the dual-layer-
offset crystal array constructed with Toray reflectors to be calculated, as shown in Figure 10;
a 2D mapping and a histogram of the energy resolutions of the individual 169 crystals of the
top layer and the 196 crystals of the bottom layer, respectively, were generated. The average
value and SD of the energy resolution of top and bottom crystals were 19.76% ± 1.95%, and
20.52% ± 2.13%, respectively. The energy performance of the top layer was approximately
equal to that of the bottom layer.
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3.2.3. Energy Resolutions of BaSO4 Reflectors

Based on the flood histograms in Section 3.1.3, the central 13 × 13 crystal array of
the top layer and the central 14 × 14 array of the bottom layer were easily distinguished.
This allowed the energy resolutions of the crystal strips of the dual-layer-offset crystal
array constructed with BaSO4 reflectors to be calculated, as shown in Figure 11. A 2D
mapping and histogram of the energy resolutions of the individual 169 crystals of the top
layer and the 196 crystals of the bottom layer, respectively, were generated. The average
and the SD of the energy resolutions of the top and bottom crystals were 11.07% ± 1.01%,
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and 11.46% ± 1.35%, respectively. As in the Toray array, the energy performance of the
top layer was approximately equal to that of the bottom layer. The BaSO4 reflectors have
an enormous advantage over the Toray reflectors in energy resolution when assembling
crystal arrays.
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3.3. Coincidence Time Resolution

A high-performance test system with good timing resolution was used in this study [6].
The time resolutions of the three dual-layer-offset arrays with different reflectors were
tested and the results are shown in Figure 12. The CTRs for BaSO4, Toray film, and ESR
reflectors are 386.08 ps, 402.34 ps, and 423.56 ps, respectively.
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4. Discussion and Conclusions

Three dual-layer-offset LYSO detectors with different reflectors (ESR, Toray, and BaSO4)
were developed for a high-resolution PET system. The top layer consisted of a 17 × 17 array
of crystals 1 × 1 × 6.5 mm3 in size and the bottom layer consisted of an 18 × 18 array of
crystals 1 × 1 × 9.5 mm3 in size. Because the bottom layer has a lower stop efficiency, the
bottom crystal was designed to be longer than the top layer. An optimized interaction-
decoding algorithm using the COG and threshold methods was applied to generate flood
histograms. The peak-to-valley ratios of the decoding spots and the energy resolution of
each individual crystal were calculated to evaluate the detector performance.

The electronic noise from the SiPMs can severely deteriorate the crystal flood his-
tograms when the COG method is used to decode the interaction. One noise-suppression
method was utilized in this study: the 36 channels of energy signals were subtracted by
a preset threshold, and the negative signals set to zero. The decoding performance is
significantly improved while the energy spectra before and after the noise suppression
exhibit negligible differences. The array constructed with ESR reflectors could not be clearly
resolved even with a wide range of threshold values, while the other two arrays were
unambiguously distinguished. The optimal threshold values for the arrays constructed
with Toray and BaSO4 reflectors are 2% and 2.5% of the photopeak, respectively. The peak-
to-valley ratios obtained from the BaSO4 reflectors were approximately twice as high as the
results from the Toray reflectors. It can therefore be concluded that the BaSO4 reflectors
have an enormous advantage over Toray reflectors in energy resolution when assembling
crystal arrays. In addition, the crystals of the top layer had lower peak-to-valley ratios than
those of bottom layer in both arrays.

Individual elements in the flood map of the detector with ESR reflectors could not be
identified clearly. Photon spreading across the SiPMs is especially important for specular
reflectors such as the ESR where the light spread is limited, compared to diffused reflectors
such as BaSO4. In our study, neither light guides nor optical glue were used between the
two layers of crystals and no light guide was used between the crystal arrays and SiPM
board. Therefore, the positioning of the ESR reflector array was poor. BaSO4 is slightly
transparent to light and, thus, the spread range of scintillating photons is wide in the crystal
array with BaSO4 reflectors.

The energy resolutions of the central 13 × 13 crystal array of the top layer and the
central 14 × 14 array of the bottom layer were calculated. The average and the STD of the
energy resolutions of the top and bottom crystals for the Toray array were 19.76% ± 1.95%
and 20.52% ± 2.13%, respectively, while for the BaSO4 array they were 11.07% ± 1.01% and
11.46% ± 1.35%, respectively. The energy performance of the Toray array was markedly
inferior to that of the BaSO4 array. In addition, although the bottom crystals were directly
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coupled to the SiPMs, the energy resolutions of the top crystals were slightly better. This
is because half of the scintillating photons generated from the interactions that occur in
the bottom layer radiate upward and enter the top layer, which greatly lengthens the
photon path.

In summary, the dual-layer-offset PET detector constructed with BaSO4 reflectors
performed much better than the other two reflectors in crystal identification and energy
resolution. The average peak-to-valley ratio and the energy resolution were approximately
7 and 11%, respectively. This study provides guidance for choosing scintillator reflectors
for multi-layer dedicated DOI detectors designed for small-animal PET imaging.
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