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Abstract: The reaction of the Schiff base ligand o-OH-C6H4-CH=N-C(CH2OH)3, H4L, with Ni(O2CM
e)2·4H2O and lanthanide nitrate salts in a 4:2:1 ratio lead to the formation of the trinuclear com-
plexes [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = Dy (1), Ho (2), and Y (3)) which crystallize in the non-
centrosymmetric space group Pna21. The complex cation consists of the three metal ions in an almost
linear arrangement. The {Ni2Ln} moieties are bridged through two deprotonated Ophenolato groups
from two different ligands. Each terminal NiII ion is bound to two ligands through their Ophenolato,
the Nimino atoms and one of the protonated Oalkoxo groups in a distorted octahedral. The central lan-
thanide ion is coordinated to four Ophenolato oxygen from the four ligands, and four Ocarboxylato atoms
from two acetates which are bound in the bidentate chelate mode, and the coordination polyhedron
is biaugmented trigonal prism, which probably results in a non-centrosymmetric arrangement of the
complexes in the lattice. The magnetic properties of 1–3 were studied and showed that 1 exhibits
field induced slow magnetic relaxation.

Keywords: heterotrinuclear complexes; nickel; lanthanides; Schiff base; magnetic properties;
crystal structure

1. Introduction

The study of multifunctional materials, with new or combined properties, is a very
active area in material science, as new materials are expected to have a big impact on
new technologies that possibly could be the driving force for economic growth in the near
future [1]. In multifunctional materials, two or more physical properties are combined
on the same entity or different entities or subunits of the material, and one could be
used to monitor the other by external or internal stimuli [2]. In this respect, molecular
materials could play a vital role, as their diverse properties/functions can be tailored by
chemical design and synthesis, following a bottom-up approach and by using principles of
coordination chemistry, i.e., the appropriate metal or metals coordinated with the proper
ligands. The field of multifunctional Single Molecule Magnets (SMMs) is growing rapidly
as it is proved by the pioneering works that have resulted on the synthesis of complexes
that combine the SMM behavior with conductivity [3], ferroelectricity [4], dielectricity [5],
luminescence [6] and chirality [5,7]. Many examples of pure transition metal or lanthanide
complexes exist, which exhibit, in addition to the SMM properties, an extra property that
classify them as multifunctional materials [3,6,8].

After the observation of the ferromagnetic coupling of CuII with GdIII in two mixed
metal complexes, a route was opened and the 3d/4f mixed metal complexes prepared
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afterwards have provided excellent examples with SMM properties [9–11]. Mixed 3d/4f
metal complexes present a strong magnetocaloric effect [12] or luminescence properties [13].
In addition, enantiopure mixed metal complexes combine the SMM properties with fer-
roelectricity [14] or, in the case of the Zn/Dy [15] complex, it presents additionally lu-
minescence properties. The last examples indicate that the introduction of chirality in a
magnetic system is a probable route to multifunctionality as in the case of transition metal
complexes [2]. As the trinuclear mixed 3d/4f metal systems have provided interesting
examples with SMM properties [16,17], recently we have focused our research on the
NiII-LnIII-NiII system [18,19]. In these series of compounds, there are examples which
present also SMM properties [20–23] or the magnetocaloric effect [24]. The crystal structure
study of the series of [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = Sm, Eu, Gd, Tb)] complexes [19]
indicate that all the compounds are isomorphous and they crystallize in the centrosym-
metric orthorhombic space group Pnnn and the study of their magnetic properties study
indicate that the LnIII = Gd complex presents magnetocaloric behavior. Based on the liter-
ature survey for the linear NiII-LnIII-NiII system presented in [18], there are cases where
the complexes are chiral and, as they crystallize in centrosymmetric space groups, both
enantiomers exist in the structure [25,26].

In this study we present the synthesis, crystallographic characterization and magnetic
properties of three complexes [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = Dy (1), Ho (2), and Y (3))
which were synthesized following the same synthetic paths as previously described [19],
but all three complexes crystallize in the non-centrosymmetric Pna21 space group which
belongs to the mm2 point group (following the standard notation). This point group, along
with the axial and the m point groups, belong to the seven point groups which lie in the
section where interesting electrical or optical properties could coexist. Thus, either the size
of lanthanide(III) ion or intermolecular interactions probably result in the crystallization of
these complexes to a space group which belongs to the appropriate point group, for the
studied material to have multifunctional properties. The crystal structure characteristics of
the three complexes are also discussed within this context.

2. Materials and Methods

All manipulations were performed under aerobic conditions using materials as received
(Aldrich Co., London, UK). All chemicals and solvents were of reagent grade. The ligand
OH-C6H4-CH=NC(CH2OH)3, H4L was synthesized as described previously [27]. Elemental
analysis for carbon, hydrogen, and nitrogen was performed on a PerkinElmer (Waltham, MA,
USA) 2400/II automatic analyzer. Infrared spectra were recorded as KBr pellets in the range
4000–400 cm−1 on a Bruker Equinox 55/S FT-IR spectrophotometer. Variable-temperature
magnetic susceptibility measurements were carried out on polycrystalline samples of 1, 2
and 3 by using a Quantum Design PPMS 9T and a SQUID magnetometer (Quantum Design
MPMS 5.5). Diamagnetic corrections were estimated from Pascal’s constants.

2.1. Compound Preparations

2.1.1 [Ni2Dy(H3L)4(O2CMe)2](NO3)·3MeOH·H2O (1·3MeOH·H2O). Solid Dy(NO3)3
·5H2O (0.25 mmol, 0.1096 g) was added under stirring to a yellow solution of H4L
(1.00 mmol, 0.2252 g) in MeOH (20 mL). The solution was refluxed for three hours un-
til solid Ni(O2CMe)2·4H2O (0.50 mmol, 0.1244 g) was added and continue refluxing for
two more hours. The final green solution was layered with a mixture of Et2O/n-hexane
(1:1 v/v) to afford light green X-ray quality single crystals after approximately two weeks.
The material was filtered off and dried in vacuo. Yield: 0.058 g, ~17% based on DyIII.
C48H62N5O23Ni2Dy (1) (fw = 1356.96) requires C, 42.49; H, 4.61; N, 5.16%. Found: C,
42.40; H, 4.59; N, 5.14%. FT-IR (KBr pellets, cm−1): 3416 (br), 2980 (w), 2935 (w), 2886 (w),
1600 (vs), 1556 (vs), 1524 (m), 1475 (vs), 1446 (vs), 1408 (m), 1384 (vs), 1349 (m), 1320 (s),
1283 (vs), 1253 (m), 1200 (s), 1166 (m), 1149 (s), 1140 (s), 1053 (vs), 1040 (vs), 977 (m), 946 (s),
922 (m), 891 (s), 864 (m), 816 (s), 775 (m), 761 (vs), 744 (s), 680 (s), 636 (s), 580 (m), 524 (m),
457 (s).



Crystals 2022, 12, 95 3 of 15

2.1.2 [Ni2Ho(H3L)4(O2CMe)2](NO3)·2EtOH·3H2O (2·2EtOH·3H2O). Solid Ho(NO3)3
·5H2O (0.25 mmol, 0.1103 g) was added under stirring to a yellow solution of H4L
(1.00 mmol, 0.2252 g) in EtOH (20 mL). The solution was refluxed for three hours until solid
Ni(O2CMe)2·4H2O (0.50 mmol, 0.1244 g) was added and refluxing was then continued for
two more hours. The final green solution was layered with a mixture of Et2O/n-hexane
(1:1 v/v) to afford light green X-ray quality single crystals after approximately two weeks.
The material was filtered off and dried in vacuo. Yield: 0.071 g, ~21% based on HoIII.
C48H62N5O23Ni2Ho (2) (fw = 1359.39) requires C, 42.41; H, 4.60; N, 5.15%. Found: C, 42.32;
H, 4.58; N, 5.13%. FT-IR (KBr pellets, cm−1): 3443 (br), 2919 (m), 2846 (m), 1602 (s), 1556 (s),
1473 (s), 1444 (s), 1384 (vs), 1353 (sh), 1320 (w), 1284 (s), 1251 (m), 1199 (m), 1150 (m), 1124
(m), 1048 (s), 942 (m), 890 (m), 855 (w), 810 (m), 768 (m), 741 (w), 730 (w), 717 (w), 684 (w),
670 (w), 632 (w), 612 (w), 586 (w), 544 (w), 481 (w), 453 (w).

2.1.3 [Ni2Y(H3L)4(O2CMe)2](NO3)·3MeOH·H2O (3·3MeOH·H2O). Solid Y(NO3)3
·5H2O (0.25 mmol, 0.0912 g) was added under stirring to a yellow solution of H4L
(0.50 mmol, 0.1126 g) and NaO2CMe·3H2O (0.50 mmol, 0.0680 g) in MeOH (20 mL). The so-
lution was refluxed for three hours until solid Ni(O2CMe)2·4H2O (0.25 mmol, 0.0622 g) was
added and refluxing was then continued for two more hours. The final green solution was
layered with a mixture of Et2O/n-hexane (1:1 v/v) to afford light green X-ray quality single
crystals after approximately two weeks. The material was filtered off and dried in vacuo.
Yield: 0.048 g, ~18% based on YIII. C48H62N5O23Ni2Y (3) (fw = 1283.37) requires C, 44.92;
H, 4.87; N, 5.46%. Found: C, 44.83; H, 4.85; N, 5.44%. FT-IR (KBr pellets, cm−1): 3443 (br),
2940 (w), 2855 (w), 1599 (vs), 1556 (vs), 1474 (vs), 1446 (s), 1384 (vs), 1341 (m), 1317 (m),
1285 (vs), 1253 (m), 1201 (s), 1150 (s), 1125 (m), 1045 (vs), 943 (m), 889 (s), 859 (m), 809 (s),
774 (vs), 740 (m), 687 (m), 634 (m), 611 (m), 583 (m), 546 (w), 523 (w), 478 (w), 453 (m).

2.2. Single Crystal X-ray Crystallography

Crystals of 1·3MeOH·H2O (0.15 × 0.37 × 0.52 mm), 2·2EtOH·3H2O (0.06 × 0.09 ×
0.26 mm) and 3·3MeOH·H2O (0.09 × 0.14 × 0.29 mm) were taken from the mother liquor
and immediately cooled to −113 ◦C. Diffraction measurements were made on a Rigaku
R-AXIS SPIDER Image Plate diffractometer using graphite monochromated Cu Kα radi-
ation. Data collection (ω-scans) and processing (cell refinement, data reduction and em-
pirical/numerical absorption correction) were performed using the CrystalClear program
package [28]. The structures were solved by direct methods using SHELXS v.2013/1 and
refined by full-matrix least-squares techniques on F2 with SHELXL ver2014/6 [29,30]. The ab-
solute structure of 1–3, which crystallizes in the non-centrosymmetric space group, was
determined by refined as 2-component inversion twin using TWIN and BASF instructions,
with Flack parameter x, equals to 0.016(4), 0.554(8) and 0.12(2), respectively. Important crys-
tallographic and refinement data are listed in Table 1. Further experimental crystallographic
details for 1·3MeOH·H2O: 2θmax = 130◦; reflections collected/unique/used, 75,433/10,191
[Rint = 0.0672]/10,191; 793 parameters refined; (∆/σ)max = 0.001; (∆ρ)max/(∆ρ)min = 1.298/
−1.191 e/Å3; R1/wR2 (for all data), 0.0474/0.1269. Further experimental crystallographic
details for 2·2EtOH·3H2O: 2θmax = 130◦; reflections collected/unique/used, 65,395/9926
[Rint = 0.0267]/9926; 812 parameters refined; (∆/σ)max = 0.003; (∆ρ)max/(∆ρ)min = 0.753/
−0.426 e/Å3; R1/wR2 (for all data), 0.0337/0.0808. Further experimental crystallographic
details for 3·3MeOH·H2O: 2θmax = 130◦; reflections collected/unique/used, 56,144/10,094
[Rint = 0.0430]/10,094; 736 parameters refined; (∆/σ)max = 0.003; (∆ρ)max/(∆ρ)min = 1.626/
−1.195 e/Å3; R1/wR2 (for all data), 0.0659/0.1731. Hydrogen atoms were introduced
at calculated positions as riding on bonded atoms. All non-hydrogen atoms were re-
fined anisotropically. Plots of the structure were drawn using the Diamond 3 program
package [31].
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Table 1. Crystallographic data (see Appendix A) for 1·3MeOH·H2O, 2·2EtOH·3H2O and 3·3MeOH·H2O.

1·3MeOH·H2O 2·2EtOH·3H2O 3·3MeOH·H2O

Formula C48H62DyN5Ni2O23·3(CH4O)·(H2O) C48H62HoN5Ni2O23·2(C2H6O)·3(H2O) C48H62N5Ni2O23Y·3(CH4O)·(H2O)
F.w. 1471.08 1505.56 1397.49

Space group Pna21 Pna21 Pna21
a (Å) 26.4216(5) 26.4211(5) 26.4052(5)
b (Å) 10.1714(2) 10.1651(2) 10.1074(2)
c (Å) 22.9439(4) 22.8249(4) 22.8177(4)

V (Å3) 6166.1(2) 6130.2(2) 6089.8(2)
Z 4 4 4

T (◦C) −113 −113 −113
Radiation Cu Kα 1.54178 Cu Kα 1.54178 Cu Kα 1.54178

ρcalcd, g cm−3 1.585 1.631 1.524
µ, mm−1 7.845 3.806 2.728

Reflections
with I > 2σ(I) 9688 9548 9392

R1
a 0.0457 0.0319 0.0611

wR2
a 0.1251 0.0793 0.1651

a w = 1⁄[σ2(Fo
2) + (αP)2 + bP] and P = (max Fo

2,0) + 2Fc
2)/3, a = 0.0786, b = 4.6125 (1); a = 0.0428, b = 6.5995 (2);

a = 0.1023, b = 14.2398 (3), R1 = Σ(|Fo| − |Fc|)/Σ(|Fo|) and wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2.

3. Results
3.1. Synthesis and IR Spectroscopic Characterization

Previously we have reported the trinuclear complexes [Ni2Ln(H3L)4(O2CMe)2](NO3)
(LnIII = Sm, Eu, Gd, Tb), which were isolated by the 4:2:1 H4L/Ni(O2CMe)2·4H2O/Ln(NO3)3
·6H2O molar ratio reaction in EtOH [19]. The crystal structure of the {Ni2Tb} complex revealed
that the TbIII ion is linked to each of the NiII ions via two Ophenolato atoms of the (H3L)−

ligands and contains a strictly linear NiII-TbIII-NiII moiety. An extensive network of hydrogen
bonds, due to the presence of protonated alkoxide groups of the ligands, gave rise to the
lattice structure of the complex which consists of two 3D interpenetrating supramolecular
diamond-like lattices. The magnetic study of the {Ni2Gd} complex revealed ferromagnetic
coupling between the metal ions leading to ground state of total spin S = 11/2, whereas
antiferromagnetic coupling was found for the remaining three complexes. To study the
influence of the lanthanide to the nature of the magnetic exchange between the metal ions we
have performed analogous reactions with LnIII = Dy, Ho and the diamagnetic YIII ion.

The trinuclear complexes 1 and 2 were prepared by the stoichiometric reaction of
two equivalents of Ni(O2CMe)2·4H2O with one equivalent of Ln(NO3)3·5H2O (1: DyIII;
2: HoIII) and four equivalents of H4L in MeOH (1) or EtOH (2), respectively. The 1:1:2
Ni(O2CMe)2·4H2O/Y(NO3)3·5H2O/H4L molar ratio reaction in MeOH in the presence of
two equivalents of NaO2CMe·3H2O afforded the trinuclear complex 3. Precipitation of
single-crystals of 1–3 was achieved by layering of the reaction solution with mixture of
Et2O/n-hexane. If compounds 1–3 are the only products of the reaction, their formation
can be described by the following equation:

2Ni(O 2 CMe)2 · 4H2O + Ln(NO 3)3 · 5H2O + 4H4L ROH→

[Ni 2Ln(H 3 L)4(O 2 CMe)2](NO 3) + 2HNO3+2HO2CMe + 13H2O
1− 3

(1)

The excess of acetates in the reaction solution which afforded single crystals of 3 did
not increased the deprotonation state of the ligand or the identity of the product. Moreover,
complex 3 was the only product of the reaction which was isolated under the specific
crystallization conditions.

The IR spectra of the three complexes exhibit broad bands at 3416 and 3443 cm−1

attributed to the ν(OH) vibrations due to the presence of protonated alkoxide groups of the
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ligands. The band at ~1600 cm−1 is attributed to the ν(C=N) vibration. The shifting of this
band to a lower frequency with respect to that of the free ligand (~1635 cm−1) in the spectra
of 1–3 suggests coordination of the metal ions through the imino nitrogen. The ν(C-O)
stretching frequency of the phenolic oxygen of the ligand is seen at 1395 cm−1 and shifts
to a lower frequency in the spectra of all complexes, in the range of 1313–1320 cm−1,
indicating coordination to the metal ions [32]. The strong bands at ~1555 and ~1444 cm−1

are attributed to the νas(CO2) and νs(CO2) stretching vibrations of the bidentate chelate
acetato ligands. The difference ∆ = νas(CO2)− νs(CO2) is 110–112 cm−1 and is in agreement
with the low difference values found in rare earth acetates with chelating coordination
mode [33–35]. The strong band at 1384 cm−1 in the spectra 1–3 is attributed to the presence
of the ν3(E′) [νd(NO)] mode of the uncoordinated D3h ionic nitrates [36].

3.2. Description of the Structures

Compounds [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = DyIII (1), HoIII (2), YIII (3)) are iso-
morphous and crystallize in the non-centrosymmetric orthorhombic space group Pna21.
The asymmetric unit cell contains one trinuclear cation, one nitrate counteranion and solvate
molecules; the latter will not be discussed further. The Ni2Ln moiety is almost linear with
Ni···Ln···Ni angles 174.6 (1: DyIII), 173.8 (2: HoIII) and 174.5◦ (3: YIII). The interatomic dis-
tances Ni···Ln are Dy(1)···Ni(1) = 3.421(1) Å, Dy(1)···Ni(2) = 3.441(1) Å, Ho(1)···Ni(1) = 3.403(1)
Å, Ho(1)···Ni(2) = 3.436(1) Å, Y(1)···Ni(1) = 3.405(2) Å, and Y(1)···Ni(2) = 3.433(2) Å. The cen-
tral LnIII is bridged to each of the terminal NiII ions through two deprotonated Ophenolato

atoms from two different ligands (Figure 1a, Table 2). The NiII ions are coordinated to
two ligands through their Ophenolato, the Nimino nitrogen and one of the protonated Oalkoxo

groups in distorted octahedral geometry. The LnIII ion is coordinated to four Ophenolato
atoms from the four ligands, and four Ocarboxylato atoms from two acetates which are
bound in the bidentate chelate mode. Continuous Shape Measures by using the program
SHAPE [37] show that the best-fit polyhedron around the LnIII ion is the biaugmented
trigonal prism, BTPR-8, (Figure 1b) with CShM = 2.89088 (1), 2.82693 (2) and 2.83263 (3).
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trigonal prism around the LnIII ion.
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Table 2. Selected bond distances (Å) in 1·3MeOH·H2O, 2·2EtOH·3H2O and 3·3MeOH·H2O.

1·3MeOH·H2O 2·2EtOH·3H2O 3·3MeOH·H2O

Ln(1)-O(11) 2.312(4) 2.293(3) 2.298(6)
Ln(1)-O(31) 2.306(5) 2.300(4) 2.297(6)
Ln(1)-O(21) 2.354(5) 2.347(3) 2.341(6)
Ln(1)-O(1) 2.355(5) 2.330(4) 2.341(6)

Ln(1)-O(41) 2.429(5) 2.421(4) 2.419(6)
Ln(1)-O(44) 2.435(5) 2.416(3) 2.425(6)
Ln(1)-O(43) 2.454(5) 2.446(4) 2.443(6)
Ln(1)-O(42) 2.468(5) 2.443(4) 2.446(6)
Ni(1)-N(1) 2.033(6) 2.023(4) 2.038(8)

Ni(1)-N(11) 2.048(7) 2.044(4) 2.041(8)
Ni(1)-O(11) 2.056(5) 2.049(4) 2.050(7)
Ni(1)-O(1) 2.053(5) 2.053(4) 2.045(6)
Ni(1)-O(2) 2.079(6) 2.075(4) 2.076(7)
Ni(1)-O(12) 2.085(6) 2.090(4) 2.116(7)
Ni(2)-N(31) 2.037(7) 2.050(4) 2.038(8)
Ni(2)-N(21) 2.035(6) 2.037(4) 2.024(8)
Ni(2)-O(21) 2.057(5) 2.053(4) 2.055(6)
Ni(2)-O(31) 2.062(5) 2.063(4) 2.062(7)
Ni(2)-O(32) 2.082(5) 2.076(4) 2.069(7)
Ni(2)-O(22) 2.091(6) 2.091(4) 2.086(8)

The arrangement of ligands around the metal center’s creates a ∆-∆-∆ configuration
for the complex at (x, y, z) position (left image at Figure 2) and a Λ-Λ-Λ one for its mirror
image (0.5 − x, −0.5 + y, 0.5 + z position, right image, Figure 2). The complexes studied
in the present study are isostructural with the complex of {Ni2Tb} studied previously [19],
as is revealed in Figure S1. Although, the CShM parameter differs slightly for the two
polyhedrons around TbIII in {Ni2Tb} and DyIII in 1 (Table S1, Figure S2), the movement of
O(1) and O(21) (Figure 1a) atoms toward the center of the trigonal prism faces, transforms
a square antiprism polyhedron ({Ni2Tb} case) to a biaugmented trigonal prism one (Dy, Ho
and Y in the present study).

Crystals 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

Table 2. Selected bond distances (Å) in 1∙3MeOH∙H2O, 2∙2EtOH∙3H2O and 3∙3MeOH∙H2O. 

 1∙3MeOH∙H2O 2∙2EtOH∙3H2O 3∙3MeOH∙H2O 
Ln(1)-O(11) 2.312(4) 2.293(3) 2.298(6) 
Ln(1)-O(31) 2.306(5) 2.300(4) 2.297(6) 
Ln(1)-O(21) 2.354(5) 2.347(3) 2.341(6) 
Ln(1)-O(1) 2.355(5) 2.330(4) 2.341(6) 
Ln(1)-O(41) 2.429(5) 2.421(4) 2.419(6) 
Ln(1)-O(44) 2.435(5) 2.416(3) 2.425(6) 
Ln(1)-O(43) 2.454(5) 2.446(4) 2.443(6) 
Ln(1)-O(42) 2.468(5) 2.443(4) 2.446(6) 
Ni(1)-N(1) 2.033(6) 2.023(4) 2.038(8) 
Ni(1)-N(11) 2.048(7) 2.044(4) 2.041(8) 
Ni(1)-O(11) 2.056(5) 2.049(4) 2.050(7) 
Ni(1)-O(1) 2.053(5) 2.053(4) 2.045(6) 
Ni(1)-O(2) 2.079(6) 2.075(4) 2.076(7) 

Ni(1)-O(12) 2.085(6) 2.090(4) 2.116(7) 
Ni(2)-N(31) 2.037(7) 2.050(4) 2.038(8) 
Ni(2)-N(21) 2.035(6) 2.037(4) 2.024(8) 
Ni(2)-O(21) 2.057(5) 2.053(4) 2.055(6) 
Ni(2)-O(31) 2.062(5) 2.063(4) 2.062(7) 
Ni(2)-O(32) 2.082(5) 2.076(4) 2.069(7) 
Ni(2)-O(22) 2.091(6) 2.091(4) 2.086(8) 

The arrangement of ligands around the metal center’s creates a Δ-Δ-Δ configuration 
for the complex at (x, y, z) position (left image at Figure 2) and a Λ-Λ-Λ one for its mirror 
image (0.5 − x, −0.5 + y, 0.5 + z position, right image, Figure 2). The complexes studied in 
the present study are isostructural with the complex of {Ni2Tb} studied previously [19], as 
is revealed in Figure S1. Although, the CShM parameter differs slightly for the two 
polyhedrons around TbIII in {Ni2Tb} and DyIII in 1 (Table S1, Figure S2), the movement of 
O(1) and O(21) (Figure 1a) atoms toward the center of the trigonal prism faces, transforms 
a square antiprism polyhedron ({Ni2Tb} case) to a biaugmented trigonal prism one (Dy, 
Ho and Y in the present study). 

 
Figure 2. Enantiomeric mirror images in the structure of the complexes 1, 2 and 3. 

In all three structures, different types of hydrogen bonds are observed, i.e., 
intramolecular ones (Table 3) which stabilize the observed configuration of the complexes, 

Figure 2. Enantiomeric mirror images in the structure of the complexes 1, 2 and 3.

In all three structures, different types of hydrogen bonds are observed, i.e., intramolec-
ular ones (Table 3) which stabilize the observed configuration of the complexes, as well as
intermolecular hydrogen bonds which built the supramolecular structure. Each trinuclear
cation acts as 6-connected node and is linked to six neighboring clusters through ten hydro-
gen bonds developed between the protonated pendant alkoxide groups of (H3L)− and form
an overall 3D supramolecular network (Figure 3). Figure S3 compares the packing observed
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in the structure of {Ni2Tb} [19] and 1 where we observe important differences. Although
in both structures the hydrogen bonds are among protonated pendant alkoxide groups of
(H3L)− ligand, in the case of the {Ni2Tb} complex, the axes of the trinuclear complexes are
parallel to each other along all crystallographic directions. In the case of 1, they remain
parallel to each other only along the c axis, whereas along the other directions the axes are
inclined as compared to the central one (Figure S3). Probably the slight differences in the
type of polyhedron around the LnIII atom have caused small differences in the arrangement
of protonated pendant alkoxide groups which play an anchor role, and thus promote a
different arrangement of neighboring complexes, which results in different packing and,
finally, in a different space group. In all studied structures from this family of compounds,
solvents are trapped in the lattice, which interact through intermolecular bonds with the
complexes (Table 3) and thus, in addition to the other physical properties, these compounds
could be useful as host lattices of different solvents.

Table 3. Hydrogen bonds in 1·3MeOH·H2O, 2·2EtOH·3H2O and 3·3MeOH·H2O.

Interaction D···A (Å) H···A (Å) D-H···A (◦) Symmetry Operation

1·3MeOH·H2O

Intramolecular

O(4)-H(4O)···O(42) 2.695 1.879 163.5 x, y, z

O(13)-H(13O)···O(44) 2.672 1.837 172.4 x, y, z

O(22)-H(22O)···O(52) 2.947 2.154 157.2 x, y, z

O(23)-H(23O)···O(43) 2.666 1.921 147.2 x, y, z

O(34)-H(34O)···O(41) 2.670 1891 153.1 x, y, z

Intermolecular among complexes

O(3)-H(3O)···O(33) 2.703 1.911 156.7 0.5 − x, −0.5 + y, −0.5 + z

O(14)-H(14O)···O(34) 2.672 1.836 173.6 0.5 + x, 2.5 − y, z

O(24)···O(14) 2.919 1 − x, 2 − y, 0.5 + z

O(33)-H(33O)···O(13) 2.678 1.715 161.0 −0.5 + x, 2.5 − y, z

Intermolecular among complexes and lattice solvents

O(12)-H(12O)···O(1 m) 2.731 2.242 117.2 0.5 − x, 0.5 + y, −0.5 + z

O(2)-H(2O)···O(1 w) 2.618 1.858 149.7 0.5 − x, 1.5 − y, z

O(32)-H(32O)···O(2 m) 2.627 1.797 169.5 x, 1 + y, z

2·2EtOH·3H2O

Intramolecular

O(4)-H(4O)···O(42) 2.712 1.882 169.6 x, y, z

O(13)-H(13O)···O(44) 2.682 1.849 170.9 x, y, z

O(22)-H(22O)···O(53) 2.855 2.061 157.5 x, y, z

O(23)-H(23O)···O(43) 2.685 1.850 172.0 x, y, z

O(34)-H(34O)···O(41) 2.669 1.837 170.4 x, y, z

Intermolecular among complexes

O(3)-H(3O)···O(33) 2.726 1.895 169.6 0.5 − x, −0.5 + y, −0.5 + z

O(14)-H(14O)···O(34) 2.661 1.823 174.7 0.5 + x, 2.5 − y, z

O(24)-H(24O)···O(14) 2.805 1.979 167.6 1 − x, 2 − -y, 0.5 + z

O(33)-H(33O)···O(13) 2.679 1.841 176.0 −0.5 + x, 2.5 − y, z
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Table 3. Cont.

Interaction D···A (Å) H···A (Å) D-H···A (◦) Symmetry Operation

Intermolecular among complexes and lattice solvents

O(12)-H(12O)···O(2 e) 2.649 1.835 162.6 0.5 − x, 0.5 + y, −0.5 + z

O(2)-H(2O)···O(1 e) 2.623 1.812 161.7 0.5 + x, 1.5 − y, z

O(32)-H(32O)···O(1 w) 2.657 1.833 166.3 x, 1 + y, z

O(1e)-H(1Oe)···O(2 w) 2.651 1.843 160.9 0.5 − x, 0.5 + y, −0.5 + z

O(2e)-H(2Oe)···O(23) 2.774 1.951 166.2 −0.5 + x, 1.5 − y, z

3·3MeOH·H2O

Intramolecular

O(4)-H(4O)···O(42) 2.685 1.854 170.1 x, y, z

O(13)-H(13O)···O(44) 2.672 1.865 160.8 x, y, z

O(22)-H(22O)···O(52) 2.994 2.199 157.8 x, y, z

O(23)-H(23O)···O(43) 2.686 1.894 156.5 x, y, z

O(34)-H(34O)···O(41) 2.657 1.872 154.8 x, y, z

Intermolecular among complexes

O(3)-H(3O)···O(33) 2.710 1.871 177.1 0.5 − x, −0.5 + y, −0.5 + z

O(14)···O(34) 2.645 0.5 + x, 2.5 − y, z

O(24)···O(14) 2.927 1 − x, 2 − y, 0.5 + z

O(33)-H(33O)···O(13) 2.671 1.926 147.2 −0.5 + x, 2.5 − y, z

Intermolecular among complexes and lattice solvents

O(12)-H(12O)···O(2) 3.060 2.593 116.4 x, y, z

O(2)-H(2O)···O(1 w) 2.568 1.771 157.6 0.5 + x, 1.5 − y, z

O(32)-H(32O)···O(2 m) 2.690 1.865 167.3 x, 1 + y, z

3.3. Magnetic Measurements

The temperature dependence of the magnetic susceptibility in the form of χMT vs. T
under a magnetic field of 1 kOe is shown in Figure 4. The χMT product of complex 1 at
300 K is 16.87 cm3Kmol−1 which compares with the theoretical value of 16.15 cm3Kmol−1

for two non-interacting NiII (S = 1, g = 2.0) and one DyIII (S = 5/2, J = 15/2, g = 4/3) ions.
Upon cooling, the χMT product decreases slowly to the value of 14.54 cm3Kmol−1 at 10 K
and then drops more rapidly to the value of 12.36 cm3Kmol−1 at 2 K (Figure 4). The slight
decrease in the value of the χMT product down to 10 K is probably due to the thermal
depopulation of the dysprosium excited states. The field dependence of the magnetization
at 2 K reaches a value of 9.48 µB at 80 kOe without reaching saturation (Figure 4, inset).

The magnetic relaxation properties of 1 were monitored by ac magnetic susceptibility
measurements. In the absence of an external magnetic field, no out-of-phase signals are
observed down to 2 K when applying frequencies of up to 10 kHz. Slow relaxation is
induced in the presence of small magnetic fields. Good conditions for monitoring the
relaxation properties were obtained for HDC = 1.0 kOe. The plots of the temperature
dependence of χ′ and χ” at an external field of 1.0 kOe for various frequency values,
and of the frequency dependence of χ′ and χ” at an external field of 1.0 kOe for various
temperature ranges, are given in Figures 5 and 6, respectively. The relevant Cole-Cole plots
are shown in Figure 7. The frequency and temperature dependence indicate thermally
assisted relaxation. From the analysis of these plots based on the generalized Debye
model [38], the temperature dependence of the relaxation time in the 2.0–4.5 K temperature
range was obtained. This dependence is shown in Figure 8 by plotting the quantity ln(τ) as
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a function of 1/T. For a thermal activation process obeying the Orbach law, the plots would
follow a linear relationship. Clearly this is not the case, as seen in Figure 8. Deviation
from the Orbach process is often observed in 3d/4f heteronuclear complexes and has been
attributed to the involvement of multiple relaxation mechanisms [39–42]. The temperature
dependence of the relaxation time, τ, for 1 can be fitted with the Equation (2):

1
τ
= AT + BTn +

(
1
τ0

)
exp

(
− U

kBT

)
(2)
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In this equation the first term in the right part of Equation (2) represents the di-
rect process, the second term the Raman mechanism and the third the Orbach mecha-
nism [43]. Consideration of the three mechanisms simultaneously constitutes an over-
parametrization. If we consider the direct and Raman mechanisms, a good fit is obtained
with A = 11.8(2) × 103 K−1s−1, n = 6.4(3) and B = 4(2) K−6.4s−1. For the direct and Orbach
mechanisms, a good fit is obtained with A = 13.0(2) × 103 K−1s−1, a preexponential factor
τ0 = 4(2) × 10−8 s, and a thermal barrier U = 26(2) K.

The temperature dependence of the magnetic susceptibility in the form of χMT vs. T
under a magnetic field of 1 kOe is shown in Figure 9. The χMT product of complex 2 at
300 K is 16.29 cm3Kmol−1, which compares to the theoretical value of 16.06 cm3Kmol−1, for
two non-interacting NiII (S = 1, g = 2.0) ions and one HoIII (S = 2, J = 8, g = 5/4) ion (Figure 9).
The χMT product of 2 decreases slightly upon decreasing of the temperature, reaching the
value of 11.93 cm3Kmol−1 at 20 K, and then drops rapidly to the value of 5.46 cm3Kmol−1

at 2 K. The decrease of the χMT product at low temperatures is mainly governed by the
thermal depopulation of the ground state sublevels that result from spin-orbit coupling of
the HoIII ion and a low symmetry crystal field. The field dependence of the magnetization
for 2 is shown as inset in Figure 9. The magnetization of 2 at 2 K, reaches the value of
9.43 µB at 80 kOe without reaching saturation, which suggests that the ground spin state is
not fully populated because other excited states remain populated to some extent even at 2 K.
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The magnetic relaxation properties of 2 was explored by AC susceptibility measure-
ments. No slow relaxation is observed either in the absence or in the presence of an external
dc magnetic field.

The temperature dependence of the magnetic susceptibility in the form of χMT vs. T
and 1/χM vs. T under a magnetic field of 1 kOe is shown in Figure 10. For T > 80 K the
1/χM vs. T data exhibits a linear behavior that could be fitted assuming the Curie Weiss
law (1/χM = (T − θ/C). From the fit, a value of C = 2.18 cm3Kmol−1 is determined. This
value compares to two NiII ions (S = 1) with g > 2.0 and a diamagnetic YIII ion. The χMT
product remains practically constant down to ~80 K and below this temperature slowly
increases reaching a broad maximum value of ~2.21 cm3Kmol−1 at 10–15 K. This increase
suggests weak intramolecular ferromagnetic interactions between the NiII ions. At lower
temperatures, χMT decreases rapidly reaching a value of 1.58 cm3Kmol−1 at 2 K (Figure 10).
The drop of the χMT product at low temperatures is consistent with the single ion magnetic
anisotropy (zero field splitting, zfs) of the NiII ions and/or intermolecular antiferromagnetic
interactions between the molecules. Field dependent magnetization measurements at 2.2 K
were performed up to 50 kOe for 3 and are shown as inset in Figure 10. The magnetization
increases in low magnetic fields and reaches a final value of 3.24 µB for 3 at 50 kOe, without
reaching saturation. The simultaneous fit of the χMT vs. T and M vs. H data was obtained
using the spin Hamiltonian:

H = −2JSNi1SNi2 + 2DS2
Ni (3)

where J is the exchange coupling constant and D is the axial term of the zfs interaction.
The obtained parameters, using the program PHI [44], are J = +0.36 cm−1, D = +5.13 cm−1

with g = 2.08 (solid lines in Figure 10). Weak magnetic interactions between distanced Ni(II)
ions have been observed also in Ni2Ln triads [20,23] for Ln = La. In particular in the case of
ref. [23] the interactions were found to be weak ferromagnetically and the parameters are
very close to those observed in the present work.
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As in the case of 2, no slow relaxation is observed for 3, either in the absence or in the
presence of an external dc magnetic field.

4. Concluding Comments

We have extended the series of trinuclear complexes [Ni2Ln(H3L)4(O2CMe)2](NO3)
(LnIII = Sm, Eu, Gd, Tb) previously reported [19], by using LnIII = Dy, Ho and the dia-
magnetic ion YIII. The trinuclear complexes [Ni2Ln(H3L)4(O2CMe)2](NO3) (LnIII = Dy (1),
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Ho (2), Y (3)), which contain the monoanion of the tetradentate Schiff base ligand H4L =
o-C6H4-CH=NC(CH2OH)3, consist of almost linear trinuclear cations {Ni2Ln} and nitrate
anions. The molecular structures of 1–3 are isostructural to those of the complexes in [19]
considering the coordination environment of the metal ions, but differ in the coordina-
tion geometry around the lanthanide ion and the pattern of intermolecular interactions.
These differences may affect the crystallization of both types of complexes in different
space groups, namely complexes in [19] crystallize in the centrosymmetric orthorhombic
space group Pnnn, whilst 1–3 crystallize in the non-centrosymmetric orthorhombic space
group Pna21. The latter belongs to one of the seven point groups which is synonymous
to multifunctionality, as it could combine the magnetic properties with different other
physical properties, which are compatible with non-centrosymmetry. It is interesting to
note the fact that the studied complexes present chiral configurations without using chiral
ligands, however both enantiomers coexist due to the presence of mirror plane symmetry.
The magnetic study of 1 by ac susceptibility measurements revealed frequency and tem-
perature dependent out-of-phase signals under HDC = 1.0 kOe. The relaxation properties
for 1 are governed by the direct and Orbach processes, or the direct and Raman processes.
The magnetic behavior of 2 at low temperatures is governed by the thermal depopulation
of the ground state sublevels due to the spin-orbit coupling of the HoIII ion and a low sym-
metry crystal field. The magnetic properties of 3, which contains the diamagnetic YIII ion,
revealed ferromagnetic coupling between the NiII ions and zfs effects. The absence of slow
magnetic relaxation effects in 2 and 3, as well as in the previously reported isostructural
trinuclear clusters [19], suggests that the unique relaxation behavior of 1 is inherent to the
DyIII ion in the specific crystal field environment.

Further work is under way in an attempt to successfully isolate enantiopure crystals
by following different synthetic paths or by choosing the appropriate ligands.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12010095/s1, Figure S1: Overlay diagrams of {Ni2Tb} (red,
ref. [19]) and 1 (blue, present work); Figure S2: Square antiprism polyhedron of {Ni2Tb} (left image,
ref. [19]) and biaugmented trigonal prism for 1 (right); Figure S3: (a) Packing of complexes in the
structure of {Ni2Tb} [19] and (b) in the structure of 1; Table S1: CShM parameters for the polyhedrons
around the lanthanide ion in {Ni2Tb} and 1–3.
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Appendix A

CCDC 2128930–2128932 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on 1 December 2021).
Overlay diagrams of complex {Ni2Tb} reported in [19] and complex 1 showing the structural
similarity of both cationic complexes which crystallize in different space groups (Figure S1).
Figures of the different coordination polyhedral around the lanthanide ion in complexes
{Ni2Tb} [19] and 1 (Figure S2). Figure showing the different patterns of intermolecular
packing structures between complexes {Ni2Tb} [19] and 1 (Figure S3). Table listing the
CShM parameters for the polyhedrons around the lanthanide ions in {Ni2Tb} [19] and 1–3
(Table S1).
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