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Abstract: Refractory high-entropy alloys (RHEAs) exhibit outstanding softening resistance and
thermal stability at elevated temperatures. Unfortunately, poor ductility at room temperature has
remained the critical issue for their processability and practical application. In this study, an original-
type fabrication method of RHEA was proposed, using multi-walled carbon nanotubes (MWCNTs) to
enhance the alloy prepared via laser melting deposition (LMD) technology. The processing optimiza-
tion, microstructure evolution and mechanical properties were systematically investigated for LMD
processing of CNTs/CoCrMoNbTi0.4 RHEA. The results have shown that CNTs/CoCrMoNbTi0.4

RHEA have a polycrystalline structure (BCC, HCP, and TiC). As the optimal LMD-processing pa-
rameters of laser linear energy density of 3.6 J/mm were applied, owing to the formation of high
densification and an ultrafine microstructure, the fully dense LMD-processed alloy exhibited high
microhardness of 1015 HV0.5, fracture strength of 2110.5 MPa, and fracture strain of 2.39%. The solid
solution strengthening and load transfer are considered as the main strengthening mechanisms occur-
ring simultaneously during compressive tests at room temperature, leading to excellent mechanical
properties of LMD-processed CNTs/CoCrMoNbTi0.4 RHEA, which explores the potential application
of RHEAs.

Keywords: carbon nanotubes (CNTs); refractory high entropy alloy; laser additive manufacturing;
processing optimization; mechanical properties

1. Introduction

High entropy alloys (HEAs), an emerging generation of metallic alloys, were orig-
inally proposed by Yeh et al. [1] The design concept violates the design of traditional
metallic alloys, which is composed of at least five principles in equal or nearly equal
atomic ratios (wt.%). Refractory high-entropy alloys (RHEAs) [2,3], as a subclass of
HEAs, consisting of high-melting-point elements (W, Mo, Nb, Hf and Ta) and additions
of Cr, Co, Ti or Si elements, etc., have a superior microstructure and mechanical prop-
erties [4–6]. RHEAs could have broadened application prospects in aerospace, nuclear
industry, weapons and other important industrial fields, which have been attracting
much attention among researchers. For example, Senkov et al. [7] investigated that the
WTaMoNb alloy prepared by vacuum arc melting (VAM) technology does not merely
maintain the phase structure and microstructure stability at 1400 ◦C, but has 405 MPa
compressive yield strength, 600 MPa compressive strength and more than 25% com-
pressive deformation at 1600 ◦C. The elevated temperature mechanical properties of the
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WTaMoNb alloy are much better than that of nickel-based superalloys [8]. Wang et al. [9]
confirmed that the methods of mechanical alloying (MA) and spark plasma sintering
(SPS) were used to synthesize the MoNbTaTiV alloy, with fine grains, homogeneous
microstructure and excellent mechanical properties.

However, the fabrication of RHEAs, currently, mainly relies on VAM or SPS, failing
to process RHEAs with a simple procedure and complicated structure in size and shape.
Luckily, laser-melting deposition (LMD) technology is one of the advanced additive
manufacturing technologies developed based on laser melting and rapid prototyping
and has obvious advantages in addressing it [10,11]. Dobbelstein et al. [12] initially
and successfully adopted LMD to produce the TiZrNbHfTa alloy, with a specimen of
equiaxed grain shape and a bcc single phase exhibiting an elevated hardness of 509
HV0.2. However, there are still microcracks, pores and other defects in the RHEAs
prepared by LMD technology, which seriously affect the properties of alloy. Therefore,
effective defect control in the laser-additive manufacturing process of RHEAs is key to
obtaining high performance and large size alloy. At present, the improvement of the
quality of the formed parts mainly focuses on optimization of component design [13–16],
combination with the heat treatment process [17] and introduction of second phase
materials [18–21]. Carbon nanotubes (CNTs) have large specific strength, low density
and a nano effect [22], and have emerged as one of the most promising candidates since
Iijima first discovered them in 1991 [23]. Studies have shown that CNT can effectively
inhibit the diffusion of microcracks and maintain plasticity while improving the strength
of the alloy when rapid laser-forming CNTs reinforced ceramic, amorphous, superalloy
and other composites [24]. Therefore, there is great potential to introduce CNTs as
reinforcement into the preparation of RHEAs.

In this work, the manufacturing process of LMD-formed CNT-reinforced RHEA
composites were proposed. This process can effectively improve the poor plasticity
at room temperature and the difficulty in forming large-size and complex structural
parts in the manufacture of RHEAs. There is still not much known on the effect of CNT
additions for the properties of RHEAs at room and elevated temperature. The processing
optimization, microstructure evolution and mechanical properties were systematically
investigated for LMD-processing of CNTs/CoCrMoNbTi0.4 refractory high entropy to es-
tablish a relationship among processing parameters, surface roughness, microstructures
and properties.

2. Materials and Methods

Co, Cr, Mo, Nb and Ti basic elements powder with a purity of 99.9% were used in
this study, with a spherical shape particle and ranging from 45 µm to 150 µm. Table 1
shows the fundamental property of the elements powder. Multi-walled carbon nanotubes
(XFNANO, Nanjing) with a purity of 95%, outer diameter of 10~30 nm and length of
10~30 µm, were one of the raw materials of the component of CNTs/CoCrMoNbTi0.4
nanocomposite powder. MWCNTs were uniformly dispersed into a mixed powder
by ultrasonic vibration and mechanical ball milling to obtain CNTs/CoCrMoNbTi0.4
(0.8 wt.% CNTs and 99.2 wt.% CoCrMoNbTi0.4), representing in Figure 1. The optimal
ball-processing parameters were determined as follows: ball-to-powder of 1:2; rotation
speed of 400 rpm; milling time of 10 h. Among these, after each 2 h, the interval of
30 min was set for the purpose of avoiding damaging the structural integrity of CNTs
due to overheating of the powder.
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Table 1. Structure and properties of RHEA elements.

Elements Co Cr Mo Nb Ti

r/Å 1.25 1.25 1.36 1.43 1.46
Tm/K 1768 2182 2896 2750 1941

ρ0/(g/cm3) 8.84 7.19 10.23 8.58 4.50
VEC 9 6 6 5 4
χ 1.88 1.66 2.16 1.60 1.54

Structure at RT HCP BCC BCC BCC HCP
Structure at Tm FCC BCC BCC BCC BCC
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Figure 1. SEM image showing the morphology of 0.8 wt.% CNTs/CoCrMoNbTi0.4 mixed powder
after ball milling.

A set of the LMD system was used, too, in this study, which consists of a semiconductor
Ro fin FL 040 continuous fiber laser, with focal laser spot diameter of 3 mm, a maximum
power output of 4000 W and a wavelength of 1070 ± 10 nm, and a coaxial powder-feeding
nozzle. Additionally, the working chamber filled with high-purity argon prevents the
molten pool metal from oxidation, during the laser melting deposition process. A series of
preliminary exploratory experiments were conducted to optimize the range of processing
parameters. Based on the outputs of preliminary experiments, the optimized LMD-based
processing parameters were selected as follows: the scanning speed was set at 5 mm/s,
the powder feed rate was fixed at 1.0 g/min and the laser power range was accepted from
1400 W to 2200 W. In order to accurately calculate the laser energy input, the linear energy
density was used in this work, with a unit of J/mm, which can be expressed as follows:

El =
P
V

(1)

where P is the laser power with a unit of W, V is the laser scanning velocity with a unit
of mm/s. Accordingly, five different laser power of 1400 W, 1600 W, 1800 W, 2000 W and
2200 W were chosen, corresponding to the linear energy densities of 2.8 J/mm, 3.2 J/mm,
3.6 J/mm, 4.0 J/mm and 4.4 J/mm.

Before the experiment, the TC4 substrate removed the oxide layer with sandpaper and
cleaned it with anhydrous ethanol. After the LMD process, all specimens were cut from the
TC4 substrate via wire electro discharge machining (EDM) for the following microstructure
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and performance tests; then, those were ground to 5000 and polished according to standard
procedures. The structural integrity of MWCNTs was conducted by a Renishaw in Via
Reflex Raman spectroscopy, with a laser wavelength of 532 nm. The microstructure and
phase composition of the alloy samples were characterized via a D8 ADVANCE DAVINCI
X-ray diffractometer (XRD) with Cu Kα radiation at 40 kV and 40 mA. The scan mode
was continuous and the scan speed was set at 0.1◦/s with 2θ range from 20◦ to 100◦. The
structure and morphology of the molten pool of specimens were detected through a LEICA
1750 M optical microscope (OM) and FEI Quanta FEG 250 scanning electron microscopes
(SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) for examining the
chemical elements distribution of specimens.

The microhardness test was carried out on a RDHVS-100Z Vickers hardness tester
using an applied load of 500 g and a dwell time of 15 s, along the building direction of spec-
imens. Nine measurements were obtained from each specimen, and its average value was
regarded as the experimental hardness value. The compression test according to the stan-
dard procedures was performed on the Zwick/Roell Z100 equipped with an extensometer.
The cylindrical specimens were 3 mm in diameter and 6 mm in height at room temperature
(25 ◦C), with an initial strain rate of 10−3 s−1. The fracture surface of the compressive
samples was examined using an SEM operated in the secondary electron mode.

3. Results and Discussion
3.1. Densification Behavior and Phase Analysis

Using the density of pure elements (Table 1) and alloy composition, one can use the
mixture rule to estimate the density of alloy of the same composition. According to the
theoretical density of the alloys, it can be calculated by the formula [25]:

ρother =
∑ ciAi

∑ ciAi
ρi

(2)

Here, ci, Ai and ρi are the atomic fraction, atomic weight and density of elements of i,
respectively. After calculating, the ρother value is 8.62 g/cm3. Besides, the actual density
of the formed parts prepared though LMD based on the Archimedes drainage method,
and the relative density of alloys, can be obtained by the ratio of actual density to relative
density; the calculation results are shown in the Table 2. It can be seen from Table 2 that
the energy density of the laser has a great influence on the relative density of the alloys.
Because of the relatively low of the laser energy density and the not sufficiently melted
powder, the alloys remain in a solid–liquid two-phase coexistence state, and the surface
tension and viscosity of the liquid phase increase, resulting in the liquid not being able to
flow smoothly. Thus, it is agglomerated into spherical particles and form pores, reducing
the relative density of the alloy samples. However, when the laser energy density is too
large, the surface temperature of the material is too high due to the excessive energy of the
laser irradiation to the powder surface, and the burning loss and gasification of some low
melting point elements occur, which reduces the compactness of the formed parts.

Table 2. Density of LMD-processed specimens at different processing parameters.

Laser Energy Density, J/mm Actual Density, g/cm3 Relative Density, %

2.8 7.81 90.60
3.2 8.06 93.50
3.6 8.28 96.06
4.0 8.18 94.90
4.4 7.84 90.95
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Typical XRD patterns of LMD-fabricated specimens at various processing parameters
are depicted in Figure 2. The diffraction peaks from three phases, body-centered cubic
(BCC), hexagonal close-packed structure (HCP) and third phase, are presented in all
specimens. Although laser energy density cannot change the main phase composition, it
causes local phase transformation, and the change of phase structure have an influence on
the forming performance. As shown in Figure 2, the intensity of the diffraction peak at
near 2θ = 46.1◦ dramatically decreased when the applied laser energy density increased
to 3.6 J/mm. According to Bragg’s law, the lattice parameters of the BCC phase and HCP
phase are 314.7 pm and 250.3 pm, respectively. However, there is a slight deviation between
the diffraction peaks of carbide and standard diffraction peaks of TiC and NbC in the XRD
pattern. Based on the PDF card (No. 32-1383 and No. 38-1364), TiC and NbC carbides
have BCC structures and belong to the Fm-3m space group, so solid solutions of TiC and
NbC could be obtained. The calculation of the lattice constant of carbide in the alloy by
linear extrapolation is based on the XRD pattern (a = 430.7 pm). Therefore, it could be
preliminarily inferred that the third phase may be a carbide with chemical formula (Ti,
Nb) C. The mixing enthalpy of Nb atoms, Ti atoms and C atoms calculated via Miedema
model was −109 KJ/mol [26], which indicates that Ti atoms and C atoms have the strongest
binding ability and are easy to form compounds. Thus, combined with the results of SEM,
it is assumed that TiC was the third phase.
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Figure 2. XRD patterns of LMD-fabricated specimens at various processing parameters.

Figure 3 is the Raman spectra of the original MWCNTs and the thin-walled parts at
different processing parameters. The D peak at the Raman shift of 1350 cm−1 is a disordered
structure peak, which is excited by the structural defects in the C-C single bond. The G
peak at the Raman shift of 1580 cm−1 represents the ordered structure of CNTs. The ratio of
D peak to G peak intensity Id/Ig is usually used as a criterion to characterize the structural
order of CNTs [27]. Compared with the Id/Ig of the original MWCNTs of 0.88, the Id/Ig of
the thin-walled parts is increased to 1.26 at the linear energy density of 3.6 J/mm, which
indicates that the structural defects of MWCNTs in thin-walled parts had an increasing
trend to be induced at the high energy laser beam. Besides, there are peaks of TiC presented
at 510 cm−1 and 672 cm−1 in LMD-fabricated specimens. This phenomenon implies that
the high temperature molten pool environment formed in the LMD process intensifies the
diffusion movement of atoms and promotes the in-situ reaction between the outer wall of
MWCNTs and the matrix of CoCrMoNbTi0.4 RHEA.



Crystals 2022, 12, 1678 6 of 13Crystals 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. (a,b) Raman spectra of thin-walled forming parts at different processing parameters. 

3.2. Surface Morphology  
The preparation of alloy by laser melting deposition technology is a process of 

layer−by−layer accumulation and rapid solidification of metal powder under the action of 
a high-energy laser beam, and the surface roughness reflects the forming quality of the 
alloy sample surface. The surface roughness of the alloy sample will affect the overlapping 
effect between the layers of the formed part, affecting the density of the alloy. Therefore, 
it is particularly necessary to consider the surface roughness of the alloy when studying 
the forming quality of the alloy sample. Figure 4 presents the surface morphology of all 
samples. Among them, Figure 4(a1–e1) uncover the two-dimensional surface profiles ob-
tained from the green lines, and Figure 4(a2–e2) disclose the three-dimensional surface 
profile of all specimens. The line roughness value was obtained along the scanning direc-
tion. After further processing of the experimental data, it was found that the surface qual-
ity of the thin-walled forming parts prepared with different linear energy density is dif-
ferent. By enforcing a lower laser energy density (2.8 J/mm and 3.2 J/mm), many unmelted 
powders appear on the surface of the alloys, with a rough surface. The two-dimensional 
surface profile fluctuates between −100 μm and 100 μm, while the surface roughness value 
is 29.68 μm and 22.27 μm (Figure 4(a1, a2)). The main reason is that the melting point of 
each component of the RHEA is high, resulting in a large number of unmelted powders 
in the alloy specimens due to the low laser energy density, which greatly reduces the 
forming quality of thin-walled forming parts. As the laser energy density is increased to 
3.6 J/mm, only a few unmelted powder particles are observed on the surface of the alloy, 
and the surface is smoothly combined with clear melt tracks (Figure 4(c2)). The surface 
roughness value is reduced even more to 17.26 μm, which meets the surface quality re-
quirements of the LMD-formed specimens (Figure 4(c1)). Unfortunately, as the laser en-
ergy density is increased to 4.0 J/mm and 4.4 J/mm, the surface quality of the alloy begins 
to deteriorate again, with an irregular molten pool surge and splashed powder adhered 
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3.2. Surface Morphology

The preparation of alloy by laser melting deposition technology is a process of
layer−by−layer accumulation and rapid solidification of metal powder under the ac-
tion of a high-energy laser beam, and the surface roughness reflects the forming quality
of the alloy sample surface. The surface roughness of the alloy sample will affect the
overlapping effect between the layers of the formed part, affecting the density of the alloy.
Therefore, it is particularly necessary to consider the surface roughness of the alloy when
studying the forming quality of the alloy sample. Figure 4 presents the surface morphology
of all samples. Among them, Figure 4(a1–e1) uncover the two-dimensional surface profiles
obtained from the green lines, and Figure 4(a2–e2) disclose the three-dimensional surface
profile of all specimens. The line roughness value was obtained along the scanning direc-
tion. After further processing of the experimental data, it was found that the surface quality
of the thin-walled forming parts prepared with different linear energy density is different.
By enforcing a lower laser energy density (2.8 J/mm and 3.2 J/mm), many unmelted
powders appear on the surface of the alloys, with a rough surface. The two-dimensional
surface profile fluctuates between −100 µm and 100 µm, while the surface roughness value
is 29.68 µm and 22.27 µm (Figure 4(a1,a2)). The main reason is that the melting point of
each component of the RHEA is high, resulting in a large number of unmelted powders in
the alloy specimens due to the low laser energy density, which greatly reduces the forming
quality of thin-walled forming parts. As the laser energy density is increased to 3.6 J/mm,
only a few unmelted powder particles are observed on the surface of the alloy, and the
surface is smoothly combined with clear melt tracks (Figure 4(c2)). The surface roughness
value is reduced even more to 17.26 µm, which meets the surface quality requirements of
the LMD-formed specimens (Figure 4(c1)). Unfortunately, as the laser energy density is
increased to 4.0 J/mm and 4.4 J/mm, the surface quality of the alloy begins to deteriorate
again, with an irregular molten pool surge and splashed powder adhered to the surface of
the alloy. Consequently, the surface roughness value amounts to 20.27 µm and 34.31 µm
(Figure 4(d1,e1)).
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Figure 5 is the macroscopic morphology of thin−walled parts after LMD-forming
with 0.8 wt.% CNTs at different processing parameters. There are a large number of cracks,
unmelted powders and holes in the specimens (Figure 5a,b) and the samples gradually show
cracks again (Figure 5d,e). Luckily, the specimen at 3.6 J/mm has an excellent appearance,
smooth surface and no obvious cracks and holes on the cross section (Figure 5c). When
the laser power is too high, the micro-cracks appear mainly because the CNTs structure
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is seriously damaged with the action of the high−energy laser beam, which becomes the
crack source inside the thin-walled forming parts. In the rapid cooling process, the cracks
are finally formed.
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3.3. Microstructure

In order to explore the metallographic microstructure of LMD-forming CoCrMoNbTi0.4
RHEA at different laser processing parameters, the metallographic microstructure was
detected by OM to obtain the porosity of thin-walled parts. Figure 6 is the surface mi-
crostructure of thin-walled parts at different laser linear energy density. It is shown that
the densification behavior of thin-walled parts is best when the laser energy density is
3.6 J/mm. This is mainly because the interaction time between the high-energy laser beam
and powder becomes longer, with the increase of the laser energy density. It means that
the powder can absorb more energy in a unit time. The temperature in the molten pool
increases, and the powder is melted to form more liquid phases. The viscosity of the
liquid phase gradually decreases, and the fluidity gradually increases. The liquid phase is
fully spread, and finally, a morphology of almost no defects is formed, showing excellent
metallurgical bonding. Therefore, the density of the thin-walled forming parts is improved.
However, the laser energy density continues to increase, the temperature in the molten
pool is too high, and some metal elements evaporate to produce bubbles. The bubbles in
the molten pool are solidified without discharge, and finally, the holes are formed, which
reduces the density of the thin-walled parts. Based on the microscopic morphology of the
alloy samples observed by the electron microscope in the previous experiment, and the
cross-section morphology of the alloy samples observed by the laser confocal microscope is
measured. It can be seen that when the laser energy density is 3.6 J/mm, the surface quality
of LMD-forming CoCrMoNbTi0.4 RHEA is relatively excellent, so the alloy samples at this
processing parameter were selected for microstructure morphology analysis.

The chemical distribution is rather homogenous, which can be verified from the EDS
maps as shown in Figure 7. It can be seen that the typical dendrite and interdendrite
structure are observed. The EDS mapping results of the alloy specimens shown in Figure 7
show that the white phase in the dendrites is rich in Mo and Nb. This means that the
content of Cr, Co and Ti in the white phase is lower than the nominal composition, the
compositions of the gray particles in the interdendrites are enriched with Co and Cr,
and the black particles in the alloy are TiC composed of the Ti element and C element,
mixed in the industrial-grade CNTs. Therefore, the CNTs/CoCrMoNbTi0.4 alloy shows the
polycrystalline structure.
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When the laser energy density is too low, with less heat input, RHEA powder is not
completely melted owing to its high melting point (Table 1), resulting in crack defects
(Figure 7a). In addition, too low an input heat flow makes it too late for carbon nanotubes
to disperse in the alloy and thus, they agglomerate inside the alloy (Figure 7b). When
subjected to external force, the carbon nanotubes agglomerated in the alloy can easily
become the source of cracks and deteriorate the properties of the alloys. The heat flux input
is not sufficient to uniformly disperse the carbon nanotubes so that the carbon nanotubes
are distributed both between and within the dendrites and are mainly distributed within the
dendrites at an appropriate energy density (Figure 7c). It is known that carbon nanotubes
act as second phase particles in the alloy, which can hinder the growth of grains and
achieve grain refinement. Unfortunately, excessive energy input vaporizes the Ti element
in the alloy to form pores, with the gradual transformation of the BCC phase into the HCP
phase (Figure 7e)—because the hardness of the HCP phase is lower than that of BCC [28],
explaining the change trend of microhardness, as shown in Figure 8a.
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3.4. Properties

With the help of the laser confocal microscope and scanning electron microscope, it
was known that during the preparation of thin-walled forming parts by LMD, the changes
of temperature gradient and cooling rate in the molten pool due to different laser energy
density will change the micro-structure of thin-walled forming parts, and finally, show
different micro-hardness values. Figure 8a depicts the hardness change of CoCrMoNbTi0.4
RHEA prepared by LMD with different laser energy density, and the specific values of the
microhardness of the alloy at various laser line energy densities are shown in Table 3. With
a lower laser energy density (2.8 J/mm and 3.2 J/mm) and higher laser energy density
(4.0 J/mm and 4.4 J/mm), the average micro-hardness of the prepared alloy is low, which
may be due to the existence of micro-cracks, pores and other defects in thin-walled forming
parts. Among these, the specimen at 3.6 J/mm shows the highest average microhardness
of 1015 HV0.5. The main reasons for obtaining high hardness CoCrMoNbTi0.4 RHEA are
as follows. First, the RHEA has the four effects of high entropy alloy (high entropy effect,
hysteresis diffusion effect, cocktail effect, lattice distortion effect) and its high melting
point characteristics. The BCC solid solution structure in the alloy plays a role in solid
solution strengthening. Second, the LMD technology was used to prepare the alloy, and
the rapid cooling in the forming process can achieve the effect of grain refinement, thus
further improving the hardness of the alloy. Third, 0.8 wt.% CNTs with high strength,
high hardness, low expansion coefficient, large specific strength are added to the alloy
preparation process. Four, highly dense alloys, approximately 96.06%, are obtained at
relatively suitable process parameters.
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Table 3. Properties of LMD-processed specimens at different processing parameters.

Laser Energy Density,
J/mm

Microhardness,
HV0.5

Fracture Stress,
MPa

Fracture Strain,
%

2.8 942 1930.60 1.85
3.2 976 1907.99 2.25
3.6 1015 2110.50 2.39
4.0 999 1930.20 2.63
4.4 944 1496.28 2.02

In order to further analyze the mechanical properties of the alloy, the room temperature
compression properties of CoCrMoNbTi0.4 RHEA prepared by LMD were tested. Figure 8b
is the engineering stress–strain curve of alloy with room temperature compression and
the specific values of room temperature compression properties of the alloy at different
laser energy densities are shown in Table 3. It can be clearly seen that CNTs-enhanced
RHEA prepared by LMD exhibits compressive strength and plasticity. Among these, the
specimen at 3.6 J/mm shows the highest compressive strength of 2110.50 MPa and ductility
of 2.39%, which is superior to alloy processed via VAM (compressive strength of 800 MPa
and ductility of 0.6%) [29]. Although the specimen at 4.0 J/mm showed the highest ductility
of 2.63%, the compressive strength decreased to 1930.20 MPa, owing to low relative density
(Table 2). The compression properties of the alloy are mainly due to the BCC solid solution
structure and the micro-structure of fine grains. This was the same as the micro-hardness
change of thin-walled forming parts with different power.

In order to further analyze the deformation mechanism of LMD-forming CoCrMoNbTi0.4
RHEA, the cross-section morphology of the alloy samples after the compression test was
analyzed. Figure 9 shows the fracture morphology of the alloy with static compression. The
fracture of the alloy specimens was usually accompanied by a relatively large burst of noise.
It may be that the alloy specimens absorb a large amount of energy during compression,
while the sliding system does not start or stop, resulting in the energy not being able to be
released inside the alloy specimens. The final energy was released in the break moment,
causing a strong vibration of the air and great noise. With low magnification (Figure 9a),
cracks, stepped strips and tiny particles were easy to observe, which present the typical
river-like patterns. Besides, with high magnification (Figure 9b), obvious micro-cracks
and small particles attached to the cross section were observed. The crack extends around,
the main crack propagation bifurcation was the secondary crack, and the secondary crack
further extends the bifurcation, and finally, the alloy breaks. This indicates that the fracture
mode of the alloy was brittle fracture. Many tiny planes (called cleavage planes) can be
observed on the fracture surface of alloy samples. Besides, it was found that there was
a tearing edge with flake distribution on the cleavage step, which was a typical feature
of cleavage fracture. Therefore, the fracture mechanism of the alloy was obvious brittle-
cleavage fracture.
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4. Conclusions

In this study, laser melting deposition technology had been applied to the fabrication
of CNTs/CoCrMoNbTi0.4 alloy. The surface morphology, microstructure and mechanical
properties of informed parts at various process parameters of LMD was thoroughly investi-
gated. Based on the experimental results and analysis, the main conclusions that could be
drawn were the following:

(1) Laser energy density is a dominant factor in determining the LMD densification
level. Large irregular pores disappear and the densification rate increases with an increase
in the laser energy density. A laser energy density of 3.6 J/mm is optimized to yield a fully
dense CNTs/CoCrMoNbTi0.4 alloy.

(2) Both the high densification level and significant grain refinement due to CNTs
mainly distributed within the dendrites contributed to the high microhardness (1015 HV0.5)
of LMD-processed CNTs/CoCrMoNbTi0.4 alloy. Two strengthening mechanisms of solid
solution strengthening and load transfer occur simultaneously during deformation, leading
to a considerably high fracture strength of 2110.50 MPa and fracture strain of 2.39% for the
LMD-processed CNTs/CoCrMoNbTi0.4 alloy.

(3) The elements of the LMD samples are more homogeneously distributed than the
VAM samples. This phenomenon can be attributed to the small molten size and rapid
cooling rate in the LMD process, which results in a significant solute-trapping effect and
thus avoids component segregation. Considering the potential ability to fabricate the
CNTs/CoCrMoNbTi0.4 alloy with optimized microstructures and properties, the LMD
technique is attractive for the manufacturing of components of the CNTs/CoCrMoNbTi0.4
alloy, which will contribute to the development of high temperature structural components
in the field of aerospace.
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