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Abstract: Ultra-high performance concrete (UHPC) has a potential cracking risk due to its large
autogenous shrinkage. The use of an expansive agent is an effective approach to reduce autogenous
shrinkage of UHPC. However, different kinds of expansive agents show different expansive efficiency
in UHPC. To study the cause for the difference in expansive efficiency, this study selected three
expansive agents, namely highly reactive MgO-based, medium reactive MgO-based, and CaO-based
expansive agents, and carried out the following experiments: autogenous shrinkage, hydration
heat, hydration process of expansive agent under different relative humidity (RH), and micrographs.
The results showed that the CaO-based expansive agent has high hydration activity at RH of more
than 44.0%, while the hydration activity of two kinds of MgO-based expansive agents, especially a
medium reactive MgO-based expansive agent, decreases significantly when RH drops below 80%.
Meanwhile, the CaO-based expansive agent had higher expansive efficiency in UHPC than the MgO-
based expansive agent. This study suggested that the CaO-based expansive agent is more suitable for
compensating autogenous shrinkage of UHPC due to its low humidity sensitivity compared to the
MgO-based expansive agent.

Keywords: ultra-high performance concrete; autogenous shrinkage; hydration; CaO-based expansive
agent; MgO-based expansive agent

1. Introduction

Ultra-high performance concrete (UHPC) is a kind of cement-based composite with
excellent properties such as ultra-high compressive strength (≥120 MPa) and extremely low
porosity [1–3]. However, UHPC has large early age shrinkage, especially autogenous shrink-
age, due to factors such as extremely low water to binder ratio (w/b, typically ≤ 0.20),
incorporation of ultra-fine powder, and almost no coarse aggregate [2,3]. Due to the ex-
tremely low w/b of UHPC, the mixing water is insufficient for the hydration of cementitious
materials. The increase of capillary tension in pores due to the decrease of internal relative
humidity (RH) is the main driving force that results in autogenous shrinkage of UHPC.
Recently, studies have shown that autogenous shrinkage of UHPC can reach approximately
1000 µε [4,5]. When this large shrinkage is constrained, cracks may occur and lead to
negative impacts on the durability and safety of UHPC structures [6].

Much work so far has focused on mitigation of autogenous shrinkage of UHPC [7].
Several approaches have been developed, such as incorporation of Supplementary Cemen-
titious Materials [8], the use of shrinkage reducing and expansive agents [9–12], internal
curing by a superabsorbent polymer [13,14], and increase of particle size and volume ratio
of aggregates [15–17]. Furthermore, recent studies have shown that the application of
nanomaterials can effectively reduce the autogenous shrinkage, and improve the rheol-
ogy and hydration properties of UHPC [18–20]. Using expansive agents to compensate
shrinkage of concrete is an effective approach in concrete engineering. Three types of
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expansive agents, namely sulphoaluminate type, CaO-based, and MgO-based expansive
agents, are widely used. However, previous studies have suggested that a sulphoalumi-
nate type agent is not suitable for UHPC due to its high water requirement in hydration
process and unstable expansion product [7,21]. At present, MgO-based and CaO-based
expansive agents have been intensively investigated by researchers and have been proved
to reduce the autogenous shrinkage of UHPC effectively. Li et al. [11] studied the effects
of different reactive MgO-based expansive agents on the autogenous shrinkage of UHPC,
and suggested that the addition of 6% highly reactive MgO-based expansive agent could
effectively compensate the shrinkage of UHPC. The studies of Shen et al. [10] showed that
the addition of a calcium-sulfoaluminates-CaO-based expansive agent could mitigate the
shrinkage of UHPC, but the efficiency was not high. The hydration products of MgO-based
and CaO-based expansive agents are mainly Mg(OH)2 and Ca(OH)2, respectively. The
volume increase of the expansive agent in the hydration process is the main mechanism for
shrinkage compensation of concrete. Most of the studies have focused on the hydration
degree, micrographs of hydration products, and temperature sensitivity of the expansive
agents [10,11,22,23]. It should be noted that internal RH of UHPC decreases fast and can
reach a lower RH compared with ordinary and high-strength concrete [24,25]. Conse-
quently, internal RH of UHPC is an important factor affecting the hydration and expansive
efficiency of the expansive agents. However, there are few reports about this factor.

This study focuses on the humidity sensitivity of the hydration of expansive agent (i.e.,
hydration activity under different RH levels) to study mechanisms for expansive efficiency
of expansive agent in UHPC. Three kind of expansive agents of highly reactive MgO-based,
medium reactive MgO-based and CaO-based expansive agents were selected in this study.
It should be noted that the three kinds of expansive agents, especially medium reactive
MgO-based and CaO-based expansive agents, are widely used in concrete engineering
in China [19,26,27]. This research will provide an effective method for the selection of
expansive agent in preparation of UHPC.

2. Materials and Methods
2.1. Materials

Portland cement (52.5 grade) and silica fume were used in this study. Their chemical
compositions are shown in Table 1. River sand with apparent density of 2640 kg/m3

and fineness modulus of 2.60 was used as fine aggregate. Basalt crushed stone with
apparent density of 2800 kg/m3 and particle size of 5–10 mm was used as coarse aggregate.
Magnesite produced in Haicheng, Liaoning Province, is used as raw material for preparing
MgO-based expansive agent. Magnesite was first crushed into fine particles less than
2 mm. Then, magnesite powder is calcined in electric furnace at 750–850 ◦C for 1 h to
prepare highly reactive MgO-based expansive agent (H-MEA), and calcined at 950–1050 ◦C
for 1 h to prepare medium reactive MgO-based expansive agent (M-MEA). CaO-based
expansive agent (CA) was prepared by grinding expansive clinker to an average particle
size of 45 ± 5 µm. The clinker is provided by Jiangsu Sobute New Material Co., Ltd. (see
Figure 1). The chemical composition of CaO-based and MgO-based expansive agents are
shown in Table 1.

Table 1. Chemical compositions of the materials (%).

CaO MgO Fe2O3 Al2O3 SiO2 SO3 Loss

Cement 64.21 1.55 3.94 4.29 19.89 3.25 2.31
Silica fume 0.56 2.10 0.75 0.06 93.55 / 2.98

H-MEA 1.78 94.8 0.93 0.18 0.52 / 1.76
M-MEA 1.86 95.8 1.02 0.17 0.54 / 0.57

CA 81.9 1.5 0.23 3.33 1.18 10.40 1.35
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Figure 1. Clinker of CaO-based expansive agent.

The mix proportions of UHPC studied are shown in Table 2. All concrete mixtures
have a 0.17 w/b, which is widely used in concrete engineering. UHPC is mixed with coarse
aggregate to reduce its autogenous shrinkage. The dosage of MgO-based expansive agent is
4% and 6% of the mass of cementitious material, while the dosage of CaO-based expansive
agent is 1%, 2% and 3%. A commercial powder polycarboxylate-based superplasticizer was
used for all mixtures. The dosage of the superplasticizer is 1.1% of the mass of cementitious
materials. It should be noted that fiber is not considered in UHPC mix proportion, in order
to avoid the influence of fiber on autogenous shrinkage.

Table 2. Mix proportions of UHPC (kg/m3).

Water Cement Silica
Fume

Fine
Aggregate

Coarse
Aggregate H-MEA M-MEA CA Superplasticizer

Control 201 1125 59 592 480 / / / 13
H-MEA-4% 201 1080 57 592 480 47 / / 13
H-MEA-6% 201 1057 56 592 480 71 / / 13
M-MEA-4% 201 1080 57 592 480 / 47 / 13
M-MEA-6% 201 1057 56 592 480 / 71 / 13

CA-1% 201 1114 59 592 480 / / 12 13
CA-2% 201 1102 58 592 480 / / 24 13
CA-3% 201 1091 57 592 480 / / 36 13

2.2. Autogenous Shrinkage

Figure 2 shows the apparatus for measuring autogenous shrinkage of UHPC. Concrete
mixture was first cast into a cylindrical PVC tube (Ø 100 mm × 500 mm) pre-sealed by
epoxy resin at the bottom. Then, the concrete surface was covered with plastic film. When
the concrete loses fluidity, a metal head was embedded in the surface concrete. After that,
the surface of the specimen is covered with paraffin to prevent water evaporation. The
vertical autogenous deformation was measured by a dial gauge at different ages. The test
zero point is the initial setting of concrete, which was determined by penetration resistance
according to ASTM C403 [28]. The ambient temperature of the test was 20.0 ± 1.0 ◦C.

2.3. Internal Relative Humidity

Internal RH of UHPC was measured using a humidity sensor (HC2-S, Rotronic,
Bassersdorf, Switzerland) with an accuracy of 0.8% RH. Test methods referred to liter-
ature [13], and the test procedure was as follows: UHPC mixture was first placed in a
sealed plastic bottle. At the age of 10 h, the UHPC sample was crushed into pieces. Then,
2.36–4.74 mm pieces were chosen by sieves and inserted into a metal chamber for RH
measurement. In addition, the metal chamber was placed in a water bath to keep the
temperature of 20 ± 0.1 ◦C.
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Figure 2. Apparatus for autogenous shrinkage measurement.

2.4. Hydration of Expansive Agent under Different RH

As shown in Figure 3, the relative humidity of 93%, 81% and 44% at 20 ◦C is achieved
through three saturated salt solutions of KNO3, (NH4)2SO4, and K2CO3·2H2O, respectively.
Furthermore, the hydration of expansive agent at 60% is studied in a drying room, which
is a standard test environment for measuring the drying shrinkage of concrete in China.
The thickness of expansive agent powder is less than 2 mm. After reaching a certain
age, the expansive agent was immersed in alcohol for 1 h to terminate hydration. After
immersion was concluded, the sample was vacuum dried for 2 h and then dried for 1 d at
105 ◦C. Finally, the weight loss of the sample during 105 ◦C to 1050 ◦C was measured by a
differential scanning calorimetry (SDTQ600, TA Instruments, New Castle, DE, USA). The
hydration degree of the expansive agent was calculated according to Equation (1).

α =
LE·ME
MH ·C

(1)

where α is the hydration degree of CaO or MgO, LE is mass loss of the sample during
105 ◦C to 1050 ◦C, ME is the molar mass of CaO or MgO, MH is the molar mass of H2O, and
C is content of CaO or MgO in expansive agent.
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2.5. Isothermal Calorimetry Measurements

Hydration process of the paste was determined by isothermal calorimeter (TAM Air
Isothermal Calorimeter, TA Instrument). The mixing proportions of pastes were derived
from their corresponding concrete mixtures (Table 2) by subtracting the aggregate fraction.

2.6. Micrographs

Micrographs of the expansive agent before and after hydration were examined by
scanning electron microscope (SEM, FEI).

3. Results and Discussion
3.1. Effect of Expansive Agent on Autogenous Shrinkage of UHPC

Figure 4 shows the autogenous shrinkage UHPC with and without expansive agent.
The results show that 28 d autogenous shrinkage of UHPC without expansive agent
exceeds 600 µε, although the coarse aggregate at a volume ratio of 0.17 is added to the
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UHPC. Meanwhile, the autogenous shrinkage at 1 d and 7 d reaches 46.7% and 84.1%
of 28 d, respectively. This ratio shows that the autogenous shrinkage of UHPC develops
rapidly in the first few days, and the expansion of the expansive agent before 7 d may be
an effective way to reduce the autogenous shrinkage of UHPC.
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Figure 4. Autogenous shrinkage of UHPC with and without expansive agent: (a) highly reactive
MgO-based expansive agent; (b) medium reactive MgO-based expansive agent; and (c) CaO-based
expansive agent.

Figure 4a shows the expansive efficiency of the highly reactive MgO-based expansive
agent. The results show that 4% and 6% highly reactive MgO-based expansive agents
reduce the autogenous shrinkage by 20.5% and 23.2% at 7 d, respectively, and 18.6% and
23.9% at 28 d, respectively. The results further indicate that expansive efficiency of highly
reactive MgO-based expansive agent is very close at 7 d and 28 d. Figure 4b shows that
at 28 d, 6% medium reactive MgO-based expansive agent only reduces the autogenous
shrinkage by about 5.9%, and there is no significant difference in expansive efficiency
between 4% and 6% dosage of medium reactive MgO-based expansive agent.

As shown in Figure 4c, the CaO-based expansive agent shows a higher expansive
efficiency compared with the MgO-based expansive agent. 1%, 2% and 3% CaO-based
expansive agent can reduce the autogenous shrinkage by 16.4%, 45.8% and 70.0%, respec-
tively. In addition, the results show that the CaO-based expansive agent shows an obvious
expansion before 1 d, especially in the UHPC with 3.0% CaO-based expansive agent. It
should be noted that in this study, CaO-based expansive agent shows remarkably expansive
efficiency at a low mass dosage of 1–3%, while in studies of Shen et al. [10], the mass dosage
of CaO-based expansive agent reached 15%. This difference in the dosage may mainly
due to the fact that the CaO-based expansive agent used in this study is grinded from the
clinker, while the commercial CaO-based expansive agent generally add other components.

3.2. Internal RH of UHPC

Figure 5 shows the development of internal RH of the UHPC without expansive agent
(Control). At the ages of 3, 7, and 28 d, internal RH of the UHPC is 89.7%, 77.0% and 67.1%,
respectively. The test results are consistent with the results of Loukili et al. [24]. In addition,
the development process of internal RH is similar to that of the autogenous shrinkage. They
all show a rapidly change process in the first few days. Furthermore, the results imply
that the expansive agent should have a high hydration activity in the rapidly decreasing
process of the RH, especially when the RH is below 80%, in order to decrease autogenous
shrinkage of UHPC effectively.
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when the RH decreases to 60%. As shown in Figure 6c, CaO-based expansive agent shows 
a higher hydration activity at 44.0–93.0% RH compared to MgO-based expansive agent 
used in this study. The 28 d hydration degree of CaO-based expansive agent reaches 75.0% 
at 44% RH. In addition, the differences of hydration degree of CaO-based expansive agent 
at 81.0% and 93.0% RH at different ages are less than 15%. 
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3.3. Hydration Degree of Expansive Agent at Different RH

Figure 6 shows the hydration process of highly reactive MgO-based, medium reactive
MgO-based and CaO-based expansive agents at 44–93% RH. The results show that the
hydration degree of the three expansive agents decreased with the decrease of RH at
the same age. However, the three expansive agents show significant differences in the
humidity sensitivity. As shown in Figure 6a, the 28 d hydration degree of highly reactive
MgO-based expansive agent at RH of 60.0%, 81.0%, and 93.0% is 50.9%, 84.1%, and 91.5%,
respectively. The results indicate that highly reactive MgO-based expansive agent has
hydration activity at RH below 80%. Figure 6b shows that at 81.0% RH, the 28 d hydration
degree of medium reactive MgO-based expansive agent is 25.1%, which is 29.8% of that
of highly reactive MgO-based expansive agent at the same age. Meanwhile, when the RH
decreases to 60%, the 28 d hydration degree of medium reactive MgO-based expansive
agent does not exceed 5%. The results indicate that medium reactive MgO-based expansive
agent has a low hydration activity at 80% RH and has a negligible hydration activity when
the RH decreases to 60%. As shown in Figure 6c, CaO-based expansive agent shows a
higher hydration activity at 44.0–93.0% RH compared to MgO-based expansive agent used
in this study. The 28 d hydration degree of CaO-based expansive agent reaches 75.0% at
44% RH. In addition, the differences of hydration degree of CaO-based expansive agent at
81.0% and 93.0% RH at different ages are less than 15%.
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Consequently, in this work, CaO-based expansive agent has the lowest humidity
sensitivity, followed by highly reactive MgO-based expansive agent, and medium reac-
tive MgO-based expansive agent has the highest humidity sensitivity. Furthermore, the
differences of expansive efficiency of the three expansive agents in Figure 4 may be ex-
plained as follows: The expansive efficiency of CaO-based expansive agent increases with
the increase of the dosage, due to its low humidity sensitivity of the hydration. Owing
to a high humidity sensitivity of the hydration, medium reactive MgO-based expansive



Crystals 2022, 12, 195 7 of 10

agent can hardly hydrate with water in UHPC, especially when the RH is below 80%, and
resulting in a negligible difference in expansive efficiency between 4% and 6% dosage.
Furthermore, the effectiveness of highly reactive MgO-based expansive agent in UHPC is
between CaO-based and medium reactive MgO-based expansive agent.

3.4. Hydration Heat of the Paste

The hydration heat of the paste is shown in Figure 7. The results show that 7 d
hydration heat of the paste with expansive agent is higher than that of the paste without
expansive agent. The effect of expansive agent on the hydration heat is mainly due to
the higher hydration heat of CaO and MgO in expansive agent than that of cement. The
results indicate that hydration reaction of the three kind of expansive agents occurs in the
first 7 days. The results here can be supported by the results in Figures 5 and 6, which
show that in the first few days, when the Internal RH of UHPC is higher than 80%, the
hydration reaction of the three expansive agents can occur. In addition, the hydration heat
of the paste with CaO-based expansive agent increases significantly with the increase of
the content of CaO-based expansive agent, while the difference of hydration heat between
4% and 6% medium reactive MgO-based expansive agent is very small. Furthermore, it
can be inferred from the results of the hydration heat that CaO-based expansive agent
has the highest hydration activity in UHPC paste, when compared with the two kinds of
MgO-based expansive agents. This inference is consistent with the results of the humidity
sensitivity of the three kinds of expansive agents.
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composed by aggregated magnesia grains [20], which can be clearly observed in Figure 
8b. It should be noted that in highly reactive MgO-based expansive agent, it is difficult to 
observe the magnesia grains due to their small size (see Figure 8a). During hydration and 
expansion process of MgO-based expansive agent, the pores of the particle need to be 
filled by hydration products, and lead to the loss of the expansion efficiency. The porosity 
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Figure 7. Hydration heat of the paste with and without expansive agent: (a) highly reactive MgO-
based expansive agent; (b) medium reactive MgO-based expansive agent; and (c) CaO-based expan-
sive agent.

3.5. Micrographs Analysis

Figure 8 shows SEM photographs of three kinds of expansive agents used in this
study. A single particle of the MgO-based expansive agent is a porous material and is
composed by aggregated magnesia grains [20], which can be clearly observed in Figure 8b.
It should be noted that in highly reactive MgO-based expansive agent, it is difficult to
observe the magnesia grains due to their small size (see Figure 8a). During hydration and
expansion process of MgO-based expansive agent, the pores of the particle need to be
filled by hydration products, and lead to the loss of the expansion efficiency. The porosity
of the MgO-based expansive agent may partly explain why the expansion efficiency of
6% highly reactive MgO-based expansive agent is much lower than that of the 3% CaO-
based expansive agent, although at 60–93% RH, the differences of the hydration degree
between highly reactive MgO-based and CaO-based expansive agent are less than 40% at
different ages.
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Figure 9 shows the photograph of the particle of highly reactive MgO-based at 60% RH.
It can be deduced that hydration product-Mg(OH)2 forms in the particle of highly reactive
MgO-based expansive agent from its rougher surface compared to Figure 6a, although the
hydration products of MgO-based expansive agent can be hardly identified by the SEM
photograph duo to very small size of the magnesia grains. Unlike MgO-based expansive
agent, the hydration of CaO-based expansive agent can be easily observed in photos. When
comparing Figures 1 and 10a, it can be observed that the surface shell of clinker of the
CaO-based expansive agent is broken due to expansive hydration products at 60% RH.
Furthermore, Figure 10b shows that the formation of sheet hydration products, which is a
typical feature of Ca(OH)2. Consequently, the micrographs further confirm that CaO-based
and highly reactive MgO-based expansive agents, especially the CaO-based expansive
agent, have the hydration activity at RH of above 60%. Furthermore, the results suggest
that CaO-based expansive agent is a more effective method to compensate autogenous
shrinkage of UHPC than MgO-based expansive agent.
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4. Conclusions

In this study, highly reactive MgO-based, medium reactive MgO-based and CaO-
based expansive agents were used to compensate the autogenous shrinkage of UHPC. The
effectiveness of three kinds of expansive agents was investigated through the experimental
studies of hydration properties of the expansive agents. The following conclusions can
be drawn:

The internal RH of UHPC decreases very quickly, especially in the first few days. The
RH can reduce to below 80% at 7 d and below 70% at 28 d. Under this condition of rapid
reduction of the RH, the CaO-based expansive agent has the highest expansive efficiency
compared to the two kinds of MgO-based expansive agents.

The CaO-based expansive agent has a high hydration activity at the RH of more than
44%. The hydration activity of the two kinds of MgO-based expansive agents decreased
significantly with the decrease of the RH. Furthermore, the 28 d hydration degree of
medium reactive MgO-based expansive agent does not exceed 5% when the RH decreases
to 60%.

The results indicate that the differences in the expansion efficiency of the three kinds
of expansion agents are closely related to their humidity sensitivity, that is, the expansion
agent with low humidity sensitivity has high expansion efficiency.
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