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Abstract: After the preparation of inorganic perovskite cesium lead iodide quantum dots (CsPbI3

QD) by ligand-assisted reprecipitation (LARP), CsPbI3 QD was added to the organic perovskite
methylamine lead triiodide (CH3NH3PbI3; MAPbI3) to successfully form composite perovskite
film. To obtain better perovskite quantum dot (PQD) crystal characteristics, this research used
different annealing temperatures to discuss the crystallinity changes of perovskite quantum dots
(PQD). Through X-ray diffraction (XRD) analysis, it was found that the preferred peak (110) of
MAPbI3 had maximum peak intensity when the annealing temperature increased to 120 ◦C. Based
on the measurement results of PQD’s Ultraviolet-Visible spectrum, it was shown that the maximum
absorption area was obtained at the wavelength of 350 nm~750 nm at the annealing temperature
120 ◦C. From the scanning electron microscope (SEM) measurement, it was found that the grain
size was the largest at the annealing temperature 120 ◦C, and the grain size was 60.2 nm. The best
crystallization characteristics of PQD were obtained at the annealing temperature 120 ◦C.

Keywords: perovskite; annealing; quantum dots; ligand-assisted reprecipitation; thermal stability

1. Introduction

Lead halide perovskite materials have attracted much attention in the past few years [1–3]
because of their unique properties, such as low cost, the application of luminescent materials
and their application in the field of optoelectronics [3,4]. Among the perovskite materials,
methylamine lead triiodide (CH3NH3PbI3; MAPbI3) is suitable for solar cell absorber
layers due to its wider excitation spectrum, better absorption capacity and higher carrier
mobility [5–7]. However, there are also some shortages for MAPbI3. For example, MAPbI3
cannot be stored in the air for a long time because of its hygroscopicity of methylammonium
(MA) cations and poor thermal stability [8]. This result will affect the efficiency of organic
perovskite solar cells. Because of the above deficiencies, some literature has reported that
the moisture/thermal stability and the optical properties of perovskite MAPbI3 films would
be greatly improved by doping inorganic quantum dots [9–11]. For example, J.H Han et al.
doped plumbous sulfide (PbS) quantum dots (QDs) into MAPbI3 film to enhance the
photoelectric conversion efficiency of perovskite solar cell [12]. The treatment of thermal
annealing is often used to remove the residual precursor solvent [13]. Besides, A. Natik
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et al. found that the grain size and energy band gap change with the annealing time [14].
At present, the synthesis of QDs is based on various methods, including hot injection,
ligand-assisted reprecipitation (LARP), ultrasonication and solvothermal synthesis. In our
work, CsPbI3, the inorganic perovskite quantum dot (PQD), was prepared by the LARP
because its reaction product is a colloidal dispersion which is easy to expand by spin
coating. Besides, the method is simple, with high processing rate and low temperature, so
it is widely used for preparing quantum dots [15]. However, the annealing temperature
and time are the key factors affecting the crystallization, performance and morphology
of the PQD film [16]. By adding CsPbI3 PQD into the MAPbI3 solution and controlling
the annealing temperature, it can enhance the stability of the perovskite structure. In this
article, a detailed study for the formation ratio of organic-inorganic perovskites at the
optimal temperature is also presented.

2. Materials and Methods
2.1. Materials

All materials contain lead (II) iodide (ACROS organic, PbI2, 99.9985%), cesium iodide
(Alfa Aesar, Lancashire, UK, CsI, 99.9%), oleyl amine (ACROS organic, Geel, Belgium,
C18H35NH2, 90%), toluene ((J.T. Baker, Phillipsburg, NJ, USA, 99.8%), hexane (DUK-
SAN PURE CHEMICALS, Ansan, Korea, 97%), methylammonium iodide (UniRegion
Bio-Tech, Hsinchu, Taiwan, CH3NH3I, 99%), dimethyl sulfoxide (DMSO, J.T. Baker, 99.5%,
(CH3)2SO, 99%), gamma-butyrolactone (GBL, CHONEYE PURE CHEMICALS, Taipei,
Taiwan, C4H6O2, 99.9%) and dimethylformamide (DMF, J.T. Baker, Phillipsburg, NJ, USA,
C3H7NO, 99.5%).

2.2. CsPbI3 QDs Fabrication

OAm (90%, 2.4 mL), CsI (99.9%, 0.4 mmol), PbI2 (99.9985%, 0.4 mmol) and DMF (99%,
10 mL) were mixed and stirred continuously for 10 s to prepare a quantum dots precursor
solution, as shown in Figure 1a. The quantum dots precursor solution (1 mL) was added
into stirring toluene (99.8%, 20 mL) for 10 s to obtain a crude quantum dots solution, as
shown in Figure 1b. The resulting crude solution was centrifuged at 11,000 rpm for 15 min
at 10 ◦C. The precipitate was collected and then successively dispersed in hexane. The
above process was repeated several times.
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crude quantum dots (QDs) solution via the ligand-assisted reprecipitation method (LARP) and (c) 

the MAPbI3 solution to be obtained. 

2.3. Synthesis of CH3NH3PbI3 

CH3NH3I (198.75 mg) and PbI2 (576.25 mg) were mixed into the sample bottle; then 

DMSO (0.5 mL) and GBL (0.5 mL) were mixed into the mixture powder. The solution was 

stirred at 300 rpm for 24 h, as shown in Figure 1c. 

2.4. Fabrication of Thin Films 

Figure 1. Schematic diagram of the PQD preparation for (a) the precursor solution to obtain (b) the
crude quantum dots (QDs) solution via the ligand-assisted reprecipitation method (LARP) and (c) the
MAPbI3 solution to be obtained.

2.3. Synthesis of CH3NH3PbI3

CH3NH3I (198.75 mg) and PbI2 (576.25 mg) were mixed into the sample bottle; then
DMSO (0.5 mL) and GBL (0.5 mL) were mixed into the mixture powder. The solution was
stirred at 300 rpm for 24 h, as shown in Figure 1c.

2.4. Fabrication of Thin Films

CH3NH3I (50 µL) and CsPbI3 (1 mg) were mixed and then spin-coated on a glass
substrate in two steps, at 1000 rpm for 10 s and 5000 rpm for 20 s, respectively. The main
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purpose of 1000 rpm for 10 s was to make the film thickness uniform. By using high-speed
rotation at 5000 rpm for 20 s, the purpose was to make the film thickness more uniform.
Toluene was dropped on the spinning film at 15 s during the second step. Hereafter, the
sample was heated at 80 ◦C for 15 min to form a film.

2.5. Rapid Thermal Annealing (RTA) Process

Finally, the annealing method of the samples was performed by rapid thermal anneal-
ing (RTA) with different temperatures (100–160 ◦C) in ambient air for 10 min.

2.6. Characteristic Measurements

The absorption spectrum of the thin films was measured by ultraviolet/visible (UV/vis)
absorption spectroscopy (HITACHI, U-3900, Tokyo, Japan). X-ray diffraction (XRD) data of
films were recorded by the Bruker D8 Discover X-ray diffractometer (Bruker AXS Gmbh,
Karlsruhe, Germany) with grazing incidence X-ray diffraction (XRD). The top-view surface
morphologies of the films were determined by field-emission scanning electron microscopy
(FESEM, JEOL6330 Cryo, Peabody, MA, USA). The peak intensity photoluminescence (PL)
of the thin film was measured by iHR320 (HORIBA, Kyoto, Japan).

3. Results

Figure 2a shows the transmission electron microscope (TEM) image of CsPbI3 QDs.
The size of CsPbI3 QDs is 16 nm, as shown in Figure 2a, and the d-space of CsPbI3 QDs is
0.30 nm, as shown in Figure 2b.
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Figure 2. (a) TEM image of CsPbI3 QD nanocrystals with the diameter of approximately 16 nm.
(b) HR-TEM of image (a) and enlarged image (insert).

To analyze the PQD film morphology after annealing at different temperatures, scan-
ning electron microscope (SEM) was used to measure each sample to obtain top-view
images, and the results are shown in Figure 3a–e. Figure 3a shows the PQD film without
annealing. Then, grain clusters were obviously discovered. It can be observed that the
morphology of PQD film annealed at 100 ◦C was similar to the pristine PQD film, as shown
in Figure 3b. Under this temperature, even though there was crystallization on the surface,
the compactness of the film is poor. As the annealing temperature continuously increased
to 120 ◦C, it can be observed that the compactness of the film increases and the grains
are evenly distributed, as shown in Figure 3c. This was because the annealing treatment
caused accumulation of the atoms in the crystal lattice, and the atoms can be rearranged
and recrystallized owing to the disappearance of the vacancy. In Figure 3d, the grain size of
the PQD film began to decrease and the vacancy between grains was more obvious when
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the annealing temperature increased to 140 ◦C. As the annealing temperature continuously
increased to 160 ◦C, the change of the surface on PQD film was even more severe. In other
words, PQD film was degraded if the annealing temperature was above 120 ◦C. Besides,
the morphology of the acicular crystal was observed and the vacancy between the grains
was larger because of the decrement of the grain size, as shown in Figure 3e.
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Figure 3. SEM images (top view) of (a) pristine PQD film and annealed PQD thin films at different
temperatures with scale size of 1 µm: (b) 100 ◦C, (c) 120 ◦C, (d) 140 ◦C, (e) 160 ◦C.
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In Figure 4, the grain content of the PQD film formed by MAPbI3 and CsPbI3 under
different annealing temperatures (100–160 ◦C) was analyzed by XRD. It can be observed
that the content of the main peak was similar between pure MAPbI3 and PQD films without
annealing, as shown in Figure 4a,b. The main peaks were, respectively, at 2θ = 14◦ and
2θ = 28◦ where the intensity of peak was weak. As the annealing temperature of PQD film
increases to 100 ◦C, it can be observed that the intensity of both PQD (110) and MAPbI3 (220)
was increased. At the annealing temperature of 120 ◦C for PQD film, the intensity of both
PQD (110) and MAPbI3 (220) was increased even more. At the peak location of 12.7◦, it was
discovered that a small peak belonging to PbI2 (001) was also increased gradually. When
the annealing temperature of PQD film continuously increased to 140 ◦C, the intensity of
PQD (110) and MAPbI3 (220) was decreased because the PQD film began to degrade. With
the annealing temperature of PQD film continuously increasing to 160 ◦C, both PQD (110)
and MAPbI3 (220) nearly disappear. Besides, the intensity of PbI2 (001) was increased at
annealing temperature above 120 ◦C. This is because PQD film was reduced into PbI2 due
to over temperature. According to the literature, a small amount of PbI2 played a pivotal
role in terms of the efficiency of the perovskite solar cells [17].
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Figure 4. XRD patterns of PQD films treated at different annealing temperatures: (a) MAPbI3, (b) PQD
film without annealing treatment, (c–f) PQD films annealing temperatures at 100–160 ◦C.

According to the literature, PQD (110) was primarily composed of CsPbI3 (100) and
MAPbI3 (110) [18,19]. Therefore, peak fitting imitating software (Origin85) was used to
estimate the change in area of CsPbI3 (100) (2θ = 14.1◦) and MAPbI3 (110) (2θ = 14.15◦) under
different annealing temperatures. Figure 5a–c indicated that as the annealing temperature
increased, the area of MAPbI3 (110) gradually increased and that of CsPbI3 (100) gradually
decreased. The minimum full width at half maximum (FWHM) values of CsPbI3 (100)
and MAPbI3 (110) were, respectively, 0.11◦ and 0.08◦ at annealing temperature 120 ◦C.
This meant that there was a favorable condition to form PQD (110) at 120 ◦C. As the
annealing temperature was up to 160 ◦C, it was discovered that the area of MAPbI3 (110)
was decreasing (FWHM = 0.09) and that the area of CsPbI3 (100) was gradually increasing
(FWHM = 0.14). The FWHM value of both materials was gradually increasing, as shown in
Figure 5d,e.
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Because the sunlight was resulting in generating more carriers, the grain size is
larger and the efficiency of perovskite absorbing was higher [20]. Therefore, the grain
size at different annealing temperatures was calculated from XRD results and Scherrer
Equation (1) [21].

D =
kλ

β cos θ
(Scherrer equation) (1)

where k refers to the shape factor, the value of which was approximately 0.9. D refers to
the grain size (nm). λ refers to the wavelength of the X-ray. β refers to the FWHM value of
the diffraction peak. θ refers to the diffraction angle. Calculation results indicated that the
grain size of PQD film was sequentially (1) 33.7 nm, (2) 54.6 nm, (3) 60.2 nm, (4) 55.6 nm
and (5) 54.9 nm for (1) the untreated film, (2) under the annealing temperature of 100 ◦C,
(3) under that of 120 ◦C, (4) under that of 140 ◦C and (5) under that of 160 ◦C. Then, when
the annealing temperature was at 120 ◦C, the maximum average grain size was 60.2 nm,
the phenomenon of which was consistent with the result, as shown in Figure 5c.

Figure 6 shows the area ratio of CsPbI3 (100) and MAPbI3 (110) under different
annealing temperatures. It was revealed that the area ratio of CsPbI3 (100) and MAPbI3
(110) was approximately 1:9 at the annealing temperature from 120 ◦C to 140 ◦C. Besides,
the area ratio of CsPbI3 (100) was decreased with the annealing temperature until 140 ◦C.
Then, most of MAPbI3 (110) were degraded into PbI2 at the annealing temperature of 160 ◦C.
Furthermore, the degradation of MAPbI3 was more susceptible to temperature than that of
CsPbI3, so the ratio of CsPbI3 will be higher than that of MAPbI3 at annealing temperature
of 160 ◦C. The maximum absorbance and the condenser film can be obtained by comparison
with optical properties and SEM analysis of PQD film at annealing temperature of 120 ◦C.
Thus, this ratio is favorable for the PQD film.
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Figure 6. Area of PQD films at different annealing temperatures.

According to our previous research, the doping of a small amount of CsPbI3 QDs can
obtain better thermal stability to reduce the density of surface trap states [22], with the result
that perovskite grain size continuously increases and arranges closer. The phenomenon
was consistent with the result, as shown in Figure 3c.

Figure 7a shows the absorption spectrum of the PQD film without annealing and at the
annealing temperature of 100–160 ◦C. By annealing the PQD film, it was revealed that the
absorbance from the whole spectrum range was enhanced, and the maximum absorption
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area occurred at 120 ◦C. When the annealing temperature was further increased to 160 ◦C,
absorbance begins to decrease.
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Figure 7. (a) UV-vis absorption spectra for pristine PQD films at different annealing temperatures.
(b) All the above samples were stored in ambient air for 168 h. (c) Morphology of thin film for all
samples at annealed temperature of 100–160 ◦C and zoom-in image (insert) at annealing temperature
of 160 ◦C.

Then all the above samples were stored in ambient air for 168 h to test stability of the
PQD films, as shown in Figure 7b. It can be found that the PQD films still exhibit typical
perovskite absorption spectrum after 168 h, indicating that doping QD into perovskite can
effectively resist the change of moisture and oxygen. However, at annealing temperature
of 160 ◦C, the appearance of PbI2 peak in absorption spectrum indicated that the surface
of the PQD film was destroyed, with the result that the stability of PQD film became poor
and part of the PQD film was degraded to PbI2. The phenomenon is consistent with the
above results.

The image of the films annealed at temperature of 100–160 ◦C is shown as Figure 7c.
Morphology of thin film for all samples presented the perovskite black phase (named α

phase), but partial area of surface revealed yellow δ phase at annealing temperature of
160 ◦C, as shown in the insert image of Figure 7c.

The PL of the film at different annealing temperatures under consideration is shown
in Figure 8a. It is found that the peak intensity of PL increases with temperature, but it
drops after 120 ◦C, and it is shown that the best crystallinity of PQD will be obtained when
the annealing temperature reaches 120 ◦C.

Figure 8b shows PL measurement for pristine PQD with annealing temperature of
120 ◦C (black line), which was stored in ambient air for 168 h (red line). The difference of
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PL intensity between black line and red line is about 15%, i.e., less variation. Therefore, the
stability of PQD can be enhanced by annealing treatment.
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4. Conclusions

In our result, organic-inorganic doped quantum dot films were prepared to understand
the reaction of perovskite films at different annealing temperatures. From the SEM images,
it was found that thermal annealing treatment can cause the rearrangement of atoms in the
perovskite, resulting in reduction of defects and obtaining a compactness film at 120 ◦C.
In the XRD pattern, it was revealed that the perovskite film will obviously degrade into
PbI2 when the annealing temperature reaches 160 ◦C. This will affect the absorbance of the
film. Through peak fitting imitating software to further understand the ratio of MAPbI3 to
CsPbI3 at different temperatures, it was shown that a small amount of CsPbI3 can cause
grain arrangement growth at 120 ◦C and the grain size was 60.2 nm.
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