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I. Synthesis of ionic liquids 

1-Butyl-3-methylimidazolium chloride (BMIM Cl) 
A mixture of 1-methylimidazole (41 g, 0.5 mol), n-butyl chloride (50.9, 0.55 mol) and 

acetonitrile (200 ml) was placed in a sealed vial and heated with stirring for 48 h at 80 oC. 
The reaction mixture was concentrated by rotary evaporation and the product was dried 
in a vacuum for 6 h at 80 oC. The yield was 87 g (99%). 

1-Butyl-3-methylimidazolium triflate (BMIM OTf) 
A mixture of 1-butyl-3-methylimidazolium chloride (43.67 g, 0.25 mol) and potas-

sium triflate (49.4 g, 0.2625 mol) with 200 ml of acetonitrile was stirred for 24 h at room 
temperature. The reaction mixture was filtered and concentrated by rotary evaporation. 
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The crude ionic liquid was dried in a vacuum over 2 h at 80 oC and dissolved in CH2Cl2 
(400 ml). The obtained solution was extracted with small portions of water (10 ml) until 
negative reaction with silver nitrate. Dichloromethane was distilled off and the product 
was dried in a vacuum for 6 h at 80 oC. The yield was 65 g (90%). 

NMR 1H, δH (300 MHz, DMSO-d6): 9.10 (1H, s, Im-2), 7.76 (1H, s, Im-4,5), 7.67(1H, s, 
Im-4,5), 4.16 (2H, t, NCH2CH2CH2CH3), 3.85 (3H, s, NCH3), 1.76 (2H, quint, 
NCH2CH2CH2CH3), 1.26 (2H, sext, NCH2CH2CH2CH3), 0.88 (3H, t, NCH2CH2CH2CH3). 

1-Octyl-3-methylimidazolium chloride (OMIM Cl) 
A mixture of 1-methylimidazole (41 g, 0.5 mol), n-octyl chloride (78.05 g, 0.55 mol) 

and acetonitrile (200 ml) was placed in a sealed vial and heated with stirring for 48 h at 
80oC. The reaction mixture was concentrated by rotary evaporation and the product was 
dried in a vacuum for 6 h at 80 oC. The yield was 115.3 g (99%).  
1-Octyl-3-methylimidazolium chloride (OMIM OTf) 

A mixture of 1-octyl-3-methylimidazolium chloride (57.7 g, 0.25 mol) and potassium 
triflate (49.4 g, 0.2625 mol) with 200 ml of acetonitrile was stirred for 24 h at room temper-
ature. The reaction mixture was filtered and concentrated by rotary evaporation. The 
crude ionic liquid was dried in a vacuum over 2 h at 80 oC and dissolved in CH2Cl2 (400 
ml). The obtained solution was extracted with small portions of water (10 ml) until nega-
tive reaction with silver nitrate. Dichloromethane was distilled off and the product was 
dried in a vacuum for 6 h at 80 oC. The yield was 80 g (93%). 

NMR 1H, δH (300 MHz, DMSO-d6): 9.09 (1H, s, Im-2), 7.76 (1H, s, Im-4,5), 7.69 (1H, s, 
Im-4,5), 4.15 (2H, t, NCH2CH2CH2CH3), 3.85 (3H, s, NCH3), 1.76 (2H, quint, NCH2CH2), 
1.25 (10H, m, CH2), 0.86 (3H, t, CH2CH3). 

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM Tf2N) 
1-Ethyl-3-methylidimazolium chloride (14.2 g, 0.1 mol) was dissolved in distilled wa-

ter (20 ml) and mixed with a solution of lithium bis(trifluoromethylsulfonyl)imide (28.7 g, 
0.1 mol) in 20 ml of distilled water and 100 ml of CH2Cl2 in a separatory funnel. After 
shaking the organic layer was separated and washed with small portions of water (10 ml) 
until negative reaction with silver nitrate. Dichloromethane was distilled off and the prod-
uct was dried in a vacuum for 6 h at 80oC. The yield was 35 g (89%). 

NMR 1H, δH (300 MHz, DMSO-d6): 8.84 (1H, s, Im-2), 7.28-7.29 (2H, s, Im-4,5), 4.27 
(2H, q, NCH2CH3), 3.97 (3H, s, NCH3), 1.58 (3H, t, CH2CH3). 
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II. Heating rates of ILs in the MW field 
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Figure S1. Heating rates of BMIM OTf (1) and water : DMF = 1 : 1 (2) solvent systems in the MW 
field (2/45 GHz, 200 W). 

 

III. Dependence of the yield of the HKUST-1 material on the reaction time under con-
ditions of the MW-assisted synthesis 
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Figure S2. Dependence of the yield of the HKUST-1 material on the reaction time under conditions 
of the MW-assisted synthesis (2.45 GHz, 200 W). Reaction mixture composition: Cu(NO3)2∙3H2O 
(3.63 g, 15 mmol), H3btc (2.1 g, 10 mmol), EMIM Tf2N (5 ml). 
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IV. Elemental analysis data for the synthesized HKUST-1 materials 

 

Table S1. Elemental analysis data for the synthesized HKUST-1 materials. 

Material w(N), % w(F), % 
1solv <0.1 <0.1 
2solv 1.74 1.69 

2solv-after-rinsing <0.1 <0.1 
3solv 0.64 traces 

3solv-after-rinsing <0.1 <0.1 
8solv <0.1 <0.1 
1mw <0.1 <0.1 
4mw <0.1 <0.1 
5mw <0.1 <0.1 
6mw <0.1 <0.1 
7mw <0.1 <0.1 

 

V.  1H NMR Spectra of the IL OMIM OTf before and after synthesis 

 
Figure S3. 1H NMR spectra of the neat IL OMIM OTf (green) and of the same IL recycled after 
synthesis (brown). 
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VI. XRD studies 

 

 
Figure S4. A comparison of experimental XRD patterns of HKUST-1DMF-MW synthesized by MW-
technique in DMF as a single solvent (red) and 1mw (blue) materials. The vertical black bars show 
the calculated peak positions of the cubic HKUST-1 phase. 

 

 
Figure S5. The experimental (black) and calculated by Pawley fitting [1] (red) XRD patterns of the 
3solv sample. The vertical black bars show the calculated peak positions of the cubic HKUST-1 
phase. 
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Figure S6. The experimental (black) and calculated by Pawley fitting [1] (red) XRD patterns of the 
sample 3solv-after-rinsing. The vertical black bars show the calculated peak positions of the cubic 
HKUST-1 phase. 

 

 
Figure S7. The experimental (black) and calculated by Pawley fitting [1] (red) XRD patterns of the 
sample 2solv-after-rinsing. The vertical black bars show the calculated peak positions of the cubic 
HKUST-1 phase. 



Crystals 2022, 12, 279 7 of 17 
 

 

 
Figure S8. Experimental XRD pattern of HKUST-1 material produced using tenfold quantities of 
the reagents by MW-technique in DMF-H2O mixed solvent analogously to the 1mw sample. The 
vertical black bars show the calculated peak positions of the cubic HKUST-1 phase. 

 
Figure S9. XRD patterns of 1mw (red), 3solv-after washing (blue), 8solv (green), and 5mw (black) 
materials soaked in MeOH. The vertical black bars show the calculated peak positions of the cubic 
HKUST-1 phase. 
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Figure S10. XRD patterns of 1mw (red), 3solv-after washing (blue), 8solv (green), and 5mw (black) 
materials soaked in H2O. The vertical black bars show the calculated peak positions of the cubic 
HKUST-1 phase. 

 

VII. SEM images 

  
(a) (b) 

Figure S11. SEM images of the 1mw (a) and 1solv (b) samples [2]. 
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(a) (b) 

 

(c) (d) 

Figure S12. SEM images of the 8solv (a), 2solv-after-rinsing (b) and 3solv-after-rinsing (c) samples. 

  
(a) (b) 

Figure S13. SEM images of the 6mw (a) and 7mw (b) samples. 
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VIII. Thermal stability of the synthesized HKUST-1 materials 

 

 
Figure S14. TG Curves of the 1mw (1), 8solv (2), 5mw (3) and 7mw (4) materials. 

 
IX. DRIFTS study 

The Figure S15 shows DRIFT spectra of the 5mw sample and ionic liquid OMIM OTf 
in a wide range (a) and 1800-750 cm-1 region (b), correspondingly.  
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Figure S15. DRIFT spectra of the 5mw sample and ionic liquid OMIM OTf in a wide range (a) and 
1800-750 cm-1 region (b), correspondingly. 

 
The Figure S16 shows DRIFT spectra of the 7mw sample and ionic liquid EMIM Tf2N 

in a wide range (a) and 1800-750 cm-1 region (b), correspondingly.  
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Figure S16. DRIFT spectra of the 7mw sample and ionic liquid EMIM Tf2N in a wide range (a) and 
1800-750 cm-1 region (b), correspondingly. 

 
The Figure S17 shows the comparison of DRIFT spectra recorded for the 5mw, 7mw 

and 8solv materials. 
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Figure S17. DRIFT spectra of 5mw (black), 7mw (red) and 8solv (green) samples. 
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Figures S18 and S19 compare the spectra of these samples in two frequency ranges in 

which absorption bands appear. 
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Figure S18. DRIFT spectra of 5mw (black), 7mw (red) and 8solv (green) samples in the frequency 
range of 3800-2400 cm-1. 
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Figure S19. DRIFT spectra of 5mw (black), 7mw (red) and 8solv (green) samples in the frequency 
range of 1800-750 cm-1. 
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There are broad intensive bands at 3800-3000 cm-1 in the spectra of 5mw, 7mw and 
8solv samples (Fig. S18) with maximum at 3444 cm-1. This region corresponds to the 
stretching vibration of OH groups connected by a weak hydrogen bond. At the same time 
the absence of the bands in the spectra around 5200 cm-1 makes it possible to exclude the 
presence of adsorbed water.  

Moreover, there are sharp bands at 3685 cm-1 (5mw sample) and 3671 cm-1 in both 
7mw and 8solv samples that show the presence of isolated OH-groups (Fig. S18). There 
are bands belongs to the C-H bond in aromatic rings in the same region. The bands at 
3095-3059 и 2980 см-1 (Fig. S18) characterize asymmetrical and symmetrical stretching vi-
brations in –СН3 и –СН2 fragments. 

In spectrum of the 5mw sample (Fig. S18), the bands at 1661 cm-1 are present. DRIFT 
spectra of all three samples (5mw, 7mw and 8solv) are similar (Fig. S19). There are bands 
1702, 1661, 1596, 1558, 1464, 1424, 1403, 1281, 1238, 1112, 936 and 826 cm-1. These bands 
characterize the HKUST-1 framework vibrations. In the region between 1700 and 1300 cm-

1 there are band of the carboxylate ligands.  The bands at 1661 и 1596 cm-1 and at 1464 
and 1403 cm-1 characterize asymmetrical and symmetrical stretching vibrations carbox-
ylate groups in carboxylic acids.  

 

X. Adsorption experiments 

. 

Figure S20. The schematic diagram of the adsorption setup. 1. Manometer. 2. Gas line connector. 3. 
Adsorption cell. 4. Heater. 5. Glass fabric filter. 6. Sample. 7. Glass-metal connector (Kovar). 8. Ro-
tary pump. 9. Vacuum meter (Pirani gauge). 10. Three-stage oil diffusion pump. 11. Trap with liquid 
nitrogen (Dewar flask). 

 
Adsorption isotherms were measured at 298 K. The schematic diagram of the adsorp-

tion setup is shown in Fig. S9. The high-pressure part of the setup is made from stainless 
steel, and the vacuum part is made of glass. The system volume of the unit is 20.66 cm3, 
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the adsorption cell volume is 9.635 cm3. The adsorption cell has a gasket-free stainless steel 
cone-cone seal connector ensuring constancy of the cell volume in each experiment. Before 
measurements, the samples were evacuated at 140oC at a residual pressure <3∙10-4 Torr. 
The pressure in the adsorption circuit was measured with a DM5002M digital manometer 
(Manotom, Russia), 1–40 atm gauge pressure range, 0.1% f.s. precision). The sample vol-
ume was determined by helium pycnometry. The adsorption equilibrium was attained in 
2-3 h. The total error determined in blank experiments (empty reactor) with the same 
number of measurement points was less than 0.1 mmol for ethane and 0.05 mmol for me-
thane (at 30 atm). 

 

Empirical equations of state for methane and ethane 
The gas densities of methane and ethane were calculated by numerically solving the 

high precision equation of states (1) taken from [3, 4]. The calculated gas densities at each 
pressure were used to determine the adsorption values at an equilibrium pressure. 𝑝𝑉𝑅𝑇 = 1 + ෍ ෍ 𝑏௜௝ ቀ 𝜌𝜌௖௥.ቁ௜

ቀ 𝑇𝑇௖௥.ቁ௝௝ୀ଴௜ୀଵ       (1) 

where p – gas pressure (Pa), V – volume (m3), R – gas constant (J/(kg K)), T – current 
temperature (K), Tcr. – critical temperature (K), ρcr. – critical density (kg/m3), bij – empirical 
parameters. 

The accuracy of the calculations was thoroughly checked using the density data ta-
bles for each gas from the same works [3, 4]. 

The following parameters were used for each gas: 
Ethane [3] – R = 276.507 J/(kg K), Tcr. = 305.33 K, ρcr. = 204.457 kg/m3 

b[i, j] coefficients for ethane: 

b[1,0]=0.6523112;b[1,1]=-1.420959;b[1,2]=-0.8281694;b[1,3]=0.9628378; 
b[1,4]=-0.4873274;b[1,5]=-0.1120178;b[1,6]=0.04053669;b[1,7]=0.006643199; 
b[2,0]=-0.17173;b[2,1]=1.342033;b[2,2]=-0.5419403;b[2,3]=-0.3585280; 
b[2,4]=0.3413308;b[2,5]=-0.1419773;b[2,6]=-0.083274; 
b[3,0]=0.1816776;b[3,1]=-1.159004;b[3,2]=0.06856036; 
b[3,3]=0.4834712;b[3,4]=0.3294358;b[3,5]=0.2712144; 
b[4,0]=0.07302986;b[4,1]=0.6713792;b[4,2]=-0.4315169; 
b[4,3]=-0.1305074;b[4,4]=-0.2605725;b[4,5]=-0.01298954; 
b[5,0]=-0.03324578;b[5,1]=0.08053416;b[5,2]=0.07465193; 
b[5,3]=0.05459819;b[5,4]=-0.03786991; 
b[6,0]=-0.1392303;b[6,1]=-0.02013963;b[6,2]=-0.09262326; 
b[6,3]=-0.03878733;b[6,4]=0.01381212; 
b[7,0]=0.1066015;b[7,1]=-0.02039723;b[7,2]=0.05628173;b[7,3]=0.007784005; 
b[8,0]=-0.02233251;b[8,1]=0.02384036;b[8,2]=0.002426002;b[8,3]=-0.00341402; 
b[9,0]=-0.01016497;b[9,1]=-0.01018997;b[9,2]=0.002835872; 
b[10,0]=0.004957046;b[10,1]=-0.001722518; 
 
Methane [4] – R = 518.271 J/(kg K), Tcr. = 190.77 K, ρcr. = 163.5 kg/m3 
b[i,j] coefficients for methane: 
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b[1,0]=0.5365574;b[1,1]=-1.671289; b[1,2]=1.704335; b[1,3]=-4.003982; 
b[1,4]=3.491415; b[1,5]=-1.332024; b[1,6]=0.05440249; b[1,7]=0.05211075; 
b[2,0]=0.07187518; b[2,1]=0.5481658; b[2,2]=-1.932578; b[2,3]=4.295984; 
b[2,4]=-3.969273; b[2,5]=1.944849; b[2,6]=-0.5923964; 
b[3,0]=0.04802716; b[3,1]=0.1443345; b[3,2]=-1.249822; b[3,3]=1.618220; 
b[3,4]=-1.690813; b[3,5]=1.154217; b[3,6]=0.09352795; 
b[4,0]=0.02431204; b[4,1]=0.3478417; b[4,2]=0.03587548; 
b[4,3]=0.2945131;b[4,4]=0.01565847; b[4,5]=-0.4257759; 
b[5,0]=-0.1779964;b[5,1]=-0.02754465; b[5,2]=-0.5843797; 
b[5,3]=0.2273617; b[5,4]=-0.07393567; b[5,5]=0.01461452; 
b[6,0]=0.1650834; b[6,1]=0.1337959; b[6,2]=0.1158357; 
b[6,3]=-0.1025381; b[6,4]=0.07468426; b[7,0]=-0.08863694; 
b[7,1]=-0.06837762; b[7,2]= 0.05915308; b[7,3]=0.00298552; 
b[8,0]=0.03030236; b[8,1]=-0.001014545; b[8,2]=-0.01847890; 
b[8,3]=-0.003250667; b[9,0]=-0.006183691; b[9,1]=0.006643026; 
b[9,2]=0.0009014904; b[9,3]=-0.0008454372; 
b[10,0]=0.000610039; b[10,1]=-0.001371245; b[10,2]=0.0006833971. 
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Figure S21. Methane adsorption isotherms for all obtained samples at 298 K. 
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Figure S22. Ethane adsorption isotherms for all obtained samples at 298 K. 
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