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Abstract: This work discusses the development of an analysis routine for evaluating the nanopar-
ticle distribution in nanocomposite thin films. YBa2Cu3O7−δ (YBCO) nanocomposite films were
synthesized via a chemical solution deposition approach starting from colloidal YBCO solutions with
preformed nanoparticles. The distribution of the nanoparticles and interlayer diffusion are evaluated
with X-ray photoelectron spectroscopy (XPS) depth profiling and compared with cross-sectional
transmission electron microscopy (TEM) images. It is shown that the combination of both techniques
deliver valuable information on the film properties as nanoparticle distribution, film thickness and
interlayer diffusion.

Keywords: XPS; TEM; depth profiling; distribution; nanoparticles; chemical solution deposition

1. Introduction

Alongside the incorporation of self-assembled or preformed metal oxide nanoparticles
of less than 10 nm in diameter as artificial pinning centers came the need for evaluation of
the nanoparticle distribution in the superconducting REBa2Cu3O7−δ (REBCO, RE = rare
earth) nanocomposite films [1–3]. In this work, the cost-effective chemical solution de-
position technique starting from colloidal YBa2Cu3O7−δ (YBCO) solutions was used to
fabricate YBCO nanocomposite films. In this so-called ex situ approach, colloidally stable
nanoparticles were synthesized and incorporated in a YBCO precursor solution, providing
more control over the final nanoparticles properties (e.g., size and distribution) in the YBCO
matrix [4–6]. To date, some attempts have been made in the fabrication of superconducting
nanocomposite films using preformed nanoparticles as artificial pinning centers in the
trifluoracetic-based YBCO method [4,5,7,8]. The success of this method has been limited
because the nanoparticles are either pushed to the YBCO surface or accumulated at the
substrate interface. The latter hampers the epitaxial growth of YBCO, leading to poor
superconducting properties [5]. It is important that the nanoparticles are homogeneously
distributed throughout the superconducting nanocomposite film to maximize the ability to
pin the vortices [3].

Nanoparticle distribution can be studied via cross-sectional view transmission elec-
tron microscopy (TEM), as it provides topographical, morphological, compositional and
crystalline information in 2D on small sample areas, but TEM lamella requires a tedious
sample preparation and is also time consuming [5,9–11]. The same remarks hold for the
3D electron tomography, which was used to study the location of nanoparticles in Inconel
718 superalloys [12] or silicon nanoparticles embedded in SiO2 using plasmon tomogra-
phy [13]. The small sample size and extensive sample preparation were surmounted in
the study of metal nanoparticles using secondary-ion mass spectroscopy (SIMS) depth
profiling by Peeters et al. [14]. Priebe et al. [15] even extended towards 3D information
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using time-of-flight SIMS on a custom-made metal-metal composite and Rijckaert et al. [16]
also used SIMS to determine the impact of the stabilization ligands on the distribution of
metal ions in the YBCO matrix after the deposition and pyrolysis of the precursor. SIMS
has the advantage of a high element sensitivity, which is very useful for dopant profiles in
semiconductors, and depth resolution at the interfaces of multilayers [17]. However, a dis-
advantage is the high dependence of the yield on the matrix composition and structure [18],
therefore the range of combinations between the nanoparticles and matrices is restricted.

In this work, the nanoparticle distribution is evaluated via X-ray photoelectron spec-
troscopy (XPS). XPS is a surface-sensitive technique that has been used in the past to study
nanoparticles, i.e., to determine the nature of their surface [19], study interactions with
their direct surroundings as ionic liquids [20], or to determine whether they are either
encapsulated by a shell or located on the external surface of samples [21,22]. If surface
analysis is combined with intermittent sputtering steps, a depth profile can be obtained.
This technique has been used extensively for studying thin films [18,22,23]. In previ-
ous research, we evaluated the buffer capacity of thin films [24] and surface cleaning
methods [25]. Gilbert et al. [26] used XPS combined with sputtering steps for element
distribution evaluation rendering information on the distribution of Li ions in layered
block polymer parallel films. In addition to being applicable to a wide range of elements or
combinations of elements and/or materials, including metals, ceramics and polymers, XPS
provides quantitative and chemical bonding information, although one needs to be aware
of preferential sputtering and reduction by X-rays. Previous work already demonstrated
the use of XPS depth profiling in the analysis of ZrO2added YBCO [5] and HfO2-added
GdBa2Cu3O7−δ [27] nanocomposite films. Recently, Santoni et al. [28] showed that the
Zr/Y ratio is a reliable parameter to evaluate zirconium distribution in YBCO matrix.

In this work, the method is applied to study the distribution of SrTiO3 and BaZrO3
nanoparticles in pyrolyzed and crystallized YBCO nanocomposite films. After proper
calibration, XPS depth profiling can be used as a mean for thickness measurements [29].
As the sputter rate of an XPS apparatus can vary substantially and even the sputter rate
in one spectrometer varies over time, it is necessary to obtain the sputter rate of studied
material relative to a known standard. Hence, the sputter rate of nanoparticles added
YBCO before and after the crystallization process is determined relative to Ta2O5. TEM
analysis was introduced in this work to validate the XPS results.

2. Materials and Methods
2.1. Chemical Solution Deposition of the YBCO Nanocomposite Film

The preparation of the colloidal YBCO solutions employed in this work followed the
procedure established by Rijckaert et al. [9]. In summary, the YBCO precursor solution
was prepared by dissolving Y(C3H5O2)3, Ba(CF3CO2)2, and Cu(C3H5O2)2 in methanol
with a Y:Ba:Cu stoichiometric ratio of 1:2:3. SrTiO3 and BaZrO3 nanoparticles were syn-
thesized via the solvothermal microwave-assisted method, as described in the work of
Diez-Sierra et al. [10]. SrTiO3 nanoparticles have a diameter size of 3.7 ± 0.5 nm, while
BaZrO3 nanoparticles have a diameter size of 3.2± 0.5 nm, both measured via transmission
electron microscopy. ZrO2 and HfO2 nanoparticles, used for the determination of sputter
rate, are synthesized according to De Keukeleere et al. [30]. These nanoparticles were
stabilized in a polar solvent (e.g., methanol) and added to the YBCO precursor solution.
Colloidal YBCO solutions containing 15 mol.% SrTiO3 or 10 mol.% BaZrO3 nanoparticles
were spin coated on (100) LaAlO3 (CrysTec GmbH, Berlin, Germany) single-crystal sub-
strates at 2000 rpm for 1 min and pyrolyzed by heating to 400 ◦C with a heating rate of
1–5 K/min in a flowing wet O2 atmosphere (1 L min−1) to remove the organic components.
Subsequently, the as-pyrolyzed films were crystallized at 800 ◦C in a flowing wet 200 ppm
O2 in N2 atmosphere (2 L min−1) (more experimental details are described in the work of
Rijckaert et al. [31]).
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2.2. XPS Depth Profiling

XPS depth profiling was carried out with an S-probe XPS spectrometer (Surface Science
Instruments, VG, Mountain view, CA, USA) with a monochromatic Al source (1486 eV).
An electron gun was set at 3 eV. The argon pressure was controlled with a thermo valve.
An adhesive Cu tape acts as a bridge between the stage and the sample and improves
the electrical contact. An ISO Technical Report [32] summarizes the various means to
determine the sputtered depth and was used as a guideline for the sputtering steps. In
this work, a Ta2O5 reference sample of 1000 nm was used. In the sputter process, an area
of 3 × 5 mm2 was sputtered using an Ar+ ion gun (4 keV). In between sputtering steps, a
spot of 250 × 1000 µm2 was analyzed with a pass energy of 90 eV, step 0.1 eV, to ensure
a high signal-to-noise ratio and a step of 0.1 eV. The total sputter time and number of
cycles were chosen based on the sputter rate, thickness of the thin film and the expected
properties of the film. The composition of the film at different depths in the film was
estimated using Shirley background subtraction and sensitivity factors as available in the
software package CasaXPS (Casa Software Ltd., Teignmouth, UK). Regions for C 1s, Y 3d,
O 1s, La 3d5/2 and Ti 2p3/2 were analyzed for SrTiO3 added YBCO nanocomposite films.
Peaks of Cu, Al, Ba and Sr were only analyzed in a survey measurement on the surface of
the sample (survey spectra are available in the Supplementary Materials). For monitoring
the distribution in BaZrO3-added or ZrO2-added YBCO nanocomposite films, the Zr 3p
peak was chosen for analysis, thus avoiding the overlap between the Ba 4p3/2 and Zr 3d
peaks. For the determination of the sputter rate of HfO2-added YBCO nanocomposite films,
the distribution was studied using the Hf 4d5/2 peak.

2.3. Microstructural Characterization

Cross-sectional lamella were obtained by an in situ lift-out procedure on an FEI
(Hillsboro, OR, USA) Nova 600 Nanolab Dual Beam Focused Ion Beam (FIB) Scanning Elec-
tron Microscope (SEM). High-resolution and scanning transmission electron microscopy
(HRTEM and STEM) images were taken using a Cs-corrected JEOL (Tokyo, Japan) JEM-
2200FS operated at 200 kV with a high-angle annular dark field (HAADF) or bright-field
(BF) detector. The composition of the nanocomposite film was determined via energy
dispersive X-ray (EDX) spectroscopy in HAADF-STEM mode.

3. Results and Discussion
3.1. Depth Profiling

Figure 1 shows the depth profile of a pyrolyzed (400 ◦C) YBCO film with 15 mol.%
SrTiO3 nanoparticles on an LaAlO3 single-crystal substrate. Based on the peak areas
observed in the regions of C 1s, La 3d5/2, Ti 2p3/2 and Y 3d, the depth profile with
relative atom compositions was generated. For clarity of the figure, the data for O 1s have
been omitted.

The profile obtained in sputter depth profiling is determined by the real concentration
profile, as the interface effects of surface roughness and diffusion are at play. Additionally,
there is a broadening of experimental depth profiling due to sputter-induced atomic mixing,
the information depth of photoelectrons and potential preferential sputtering. Mixing and
information depth change with the concentration, and thus change gradually upon the
approach of the interface. In the simplest model, there is a Gaussian decay and the actual
interface between the film and substrate should be defined at the inflection of the Gaussian
decay of the element concentration. Another commonly used approach to determine the
interface is to consider the time until one of the components of the thin film decreases until
reaching 50% of the value in the bulk of the film [29]. Yet, in these multicomponent systems,
subject to diffusion and suffering from varying carbon concentrations both influencing
observed relative concentrations, this is a less straightforward choice. Thus, in Figure 2, the
concentration of La at a given depth z in the sample, La(z), is compared to its maximum
observed concentration in the LaAlO3 substrate, La(0), which is reached after 30,000 s of
sputtering. The derivative of this normalized concentration profile is used to determine the
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interface between the YBCO film and the substrate, and is thus estimated to be reached
after 24,000 s of sputtering. The profile of the decay in the yttrium concentration confirms
this estimation.
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The first signs of lanthanum appears in the spectrum after 9000 s of sputtering
(Figure 1) or approximately at 300 nm depth starting from the surface. The yttrium concen-
tration gives the impression that it reduces with sputtering, however this observation is
vastly determined by the lanthanum diffusion in the thin film.

The spectrum at the surface before sputtering shows a high concentration of carbon
due to the surface contamination. This carbon concentration is rapidly decreasing, but does
not completely disappear. One could argue that this can be explained by the redeposition of
carbon as the result of desorption from the walls of the vacuum chamber and potential back-
streaming contamination from pumps. However, C 1s peak area is measured immediately
after each sputter step and takes only 3 min. The redeposition of a detectable carbon signal
in the equipment takes an extended redeposition and measuring time. It is apparent that,
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within the pyrolysis step, the carbon was not completely removed from the SrTiO3-added
YBCO nanocomposite film.

3.2. Distribution of SrTiO3 Nanoparticles in the Pyrolyzed YBCO Film

Atomic concentrations of the nanoparticles tend to be low, compared to other com-
ponents. In order to evaluate the distribution of the nanoparticles within the film, it is
convenient to make a direct comparison (Figure 3) of the yttrium versus titanium signals:
%Ti/(%Ti + %Y). Due to carbon contamination, the signals taken at the surface of the
sample are far too small to be reliable and were excluded from the figures. On top of the
sample, there is a moderate change in the composition of the titanium versus yttrium, but
then the distribution is homogeneous over a depth of several hundreds of nanometers,
about 7/8 of the total thickness of the film. It is confirmed via the HAADF-STEM analysis
(Figure 4A) of the pyrolyzed 15 mol.% SrTiO3-added YBCO nanocomposite film, where no
agglomerations of SrTiO3 nanoparticles could be observed.
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magnifications. The inset shows fast Fourier transform (FFT) patterns of epitaxial SrTiO3 phase
growing on an LaAlO3 substrate.
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3.3. The Distribution of SrTiO3 Nanoparticles in Crystallized YBCO Films

A thermal treatment at 800 ◦C is necessary to form a YBCO phase. During this process,
the film densifies, resulting in a denser and thus thinner film and decreases in sputter rate
to a comparable extent. As a result, the crystallized YBCO films (380 nm as determined by
HAADF-STEM, Figure 4C) take about the same time to sputter as the thicker pyrolyzed
YBCO film (700 nm, Figure 4A). The evaluation of the depth profile and nanoparticle
distribution were carried out, as described above. The carbon signal almost completely
disappeared from the spectra. The depth profile analysis of a crystallized SrTiO3-added
YBCO nanocomposite film is shown in Figure 5. The top of the derivative of the normalized
lanthanum concentration (Figure 2) is again found at 24,000 s of sputtering, however, in
this case of a crystallized film, the peak of the derivative is not symmetrical and broader,
allocated to diffusion. A first sign of the presence of lanthanum is observed after 6000 s or
approximately 100 nm from the surface. We can conclude that the lanthanum- free part of
the film is reduced to only the upper 25% of the film.
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During the crystallization process, most of SrTiO3 nanoparticles migrate towards the
YBCO surface. In Figure 3, we can observe an increase in the Ti/Y + Ti ratio at the YBCO
surface. This ratio gradually decreases in the bulk of the YBCO film, until only a few
percentages of titanium are registered at the interface reached after 24,000 s. To study
and understand this migration effect, the nanoparticle concentration was substantially
increased to 25 mol.% in the YBCO film. This augments the migration process and is
observed on a continuous decrease in the concentration of the titanium (Figure 6) and
confirms that the addition of SrTiO3 nanoparticles is detrimental for the homogeneous
distribution. In accordance with HAADF-STEM (Figure 4C), the agglomeration of SrTiO3
nanoparticles at the YBCO surface and on the LaAlO3 substrate can be observed. It indicates
that SrTiO3 nanoparticles agglomerated during the crystallization step everywhere, but
often at the YBCO surface. When the SrTiO3 nanoparticles agglomerated at the LaAlO3
substrate, it grows epitaxial, as confirmed via HRTEM and its fast Fourier transform
patterns (Figure 4D). SrTiO3-added YBCO nanocomposite films exhibit the (00`) YBCO
structure and yield fairly good superconducting properties of self-field critical current
densities of 3.5–4 MA/cm2 at 77 K. As SrTiO3 nanoparticles are agglomerated and pushed
to the YBCO surface, no pinning effect is observable when the magnetic field is increased,
which means that SrTiO3 nanoparticles do not act as pinning centers (more details are
available in the Supplementary Materials).
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As SrTiO3 nanoparticles are mostly pushed to the YBCO surface, leading to less
pinning properties, SrTiO3 nanoparticles are replaced with BaZrO3 nanoparticles. It has
been shown in previous work [10] that the introduction of BaZrO3 nanoparticles im-
proved the homogeneity of the nanoparticle distribution in a YBCO matrix. It is also
confirmed in Figure 7A, in which the relative percentage of zirconium compared to yttrium
%Zr/(%Zr + %Y) is shown in a sample with a 10 mol.% BaZrO3-added YBCO film. It is
also confirmed via the cross-sectional BF-STEM image (Figure 7B) that BaZrO3 nanopar-
ticles are homogenously distributed in the YBCO matrix. This homogeneity of BaZrO3
nanoparticles also resulted in an increase in pinning force densities [10]. In comparison
to BaZrO3-added YBCO nanocomposite films, the difference between the nanoparticle
diameter size of BaZrO3 (3.2± 0.4 nm) and SrTiO3 (3.7± 0.5 nm) nanoparticles is negligible
and that SrTiO3 particles are pushed to the YBCO surface during growth, while BaZrO3
nanoparticles are incorporated in the YBCO matrix after the thermal process. Therefore,
this can probably be related to the smaller lattice mismatch between SrTiO3 (3.91 Å) and
LaAlO3 (3.81 Å), compared to the lattice mismatch between BaZrO3 (4.25 Å) and LaAlO3
(3.81 Å). Another possibility is explained in the work of Cayado et al. [4], where a difference
in CeO2 nanoparticles (2 nm vs. 6 nm) appeared to have an effect on the nanoparticle
behavior during the YBCO growth. The small (2 nm) nanoparticles are pushed to the
YBCO surface, whereas the large (6 nm) nanoparticles are incorporated in the YBCO matrix,
leading to the formation of BaCeO3 particles (4.38 Å). The behavior of nanoparticles during
the YBCO growth, i.e., the interaction of nanoparticles at the growth interface, is influenced
by several critical parameters, such as the nanoparticle size and the growth rate. Another
method is to increase the YBCO film growth rate through adjusting the process parameters,
such as the crystallization temperature, heating rate and water pressure.
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3.4. The Estimation of the Relative Sputter Rate

The sputter rates of metal oxides can vary over a factor of two [29] and the sputter rate
of the spectrometer can vary over a factor of eight over a broad time span, including techni-
cal difficulties. In order to plan the lengthy measurements, it was extremely useful to have
a knowledge of the relative sputter rate of the pyrolyzed and crystallized nanocomposite
films compared to a Ta2O5 reference sample, used for calibration. With this knowledge, the
thickness of unknown films can be estimated.

The thickness of several YBCO nanocomposite films, containing either SrTiO3, BaZrO3,
HfO2, or ZrO2 nanoparticles, was measured using cross-sectional TEM images. To cal-
culate the sputter rate, this thickness was compared with the time needed to reach the
YBCO/LaAlO3 interface in the XPS experiment, based on the evolution of the concentration
profile of yttrium. Depth profiles of 7.5 mol.% HfO2- and 10 mol.% ZrO2-added YBCO
nanocomposite films are shown in the Supplementary Materials. Each sputter rate was
then compared to the sputter rate of the Ta2O5 reference sample, which was measured on a
regular basis to compensate for periodical changes.

For crystalized YBCO nanocomposites, a relative sputter rate between 0.035 nm/s and
0.11 nm/s was calculated. When comparing these values to the sputter rate of Ta2O5 at
that moment in time, for the equipment used, the relative sputter rate was found to be
0.79 nm YBCO/ nm Ta2O5 with a standard deviation of 0.15 nm/nm Ta2O5. (Figure 8). For
pyrolyzed films, the sputter rate showed a larger variation, as did the synthesis procedure.
An average value of 2.08± 0.63 nm YBCO/nm Ta2O5 for samples pyrolyzed between 300 ◦C
and 400 ◦C was determined. No relation between the type of nanoparticle composition
and the sputter rate, and only a weak correlation between nanoparticle concentration and
sputter rate could be observed.
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4. Conclusions

Cross-sectional view electron microscopy of the nanocomposite films can present the
possibility to measure the correct film thickness and also the information on the homo-
geneity of nanoparticles and its size in YBCO films after thermal process (pyrolysis and
crystallization). However, TEM analysis offers a small sample area (10 µm2) measurement
and the FIB preparation to create TEM lamella is very tricky and time consuming.

In this work, we demonstrated that XPS depth profiling is a quantitative analysis to
measure an area of 0.25 mm2. This method presents a reliable delineation of the nanopar-
ticle distribution in the YBCO matrix and that the film thickness can be estimated after
calibration. Here, BaZrO3, ZrO2 and HfO2 nanoparticles are embedded into the YBCO
matrix due to its higher lattice mismatch, while SrTiO3 nanoparticles with a lower lattice
mismatch are pushed to the YBCO surface. This work not only shows that the nanopar-
ticle size should be in the range of the critical nanoparticle size to avoid the pushing or
accumulation effect, but also that the lattice mismatch of nanoparticles should be higher
to be incorporated in the YBCO matrix. XPS in combination with TEM is a useful method
to obtain an in-depth analysis of nanoparticle distribution, regardless of their chemical
composition, which showed to be highly complementary in nanocomposite film research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12030410/s1, Figure S1: Depth profile of pyrolyzed 15 mol.%
SrTiO3-added YBCO nanocomposite film on an LaAlO3 substrate, including the oxygen signal;
Figure S2: Depth profile of crystallized 10 mol.% SrTiO3-added YBCO nanocomposite film on an
LaAlO3 substrate, including the oxygen signal; Figure S3: Survey of the surface of a crystallized
10 mol.% ZrO2-added YBCO nanocomposite film on an LaAlO3 substrate; Figure S4: Depth profile of
crystallized 10 mol.% ZrO2-added YBCO nanocomposite film on an LaAlO3 substrate; Figure S5: Sur-
vey of the surface of crystallized 10 mol.% ZrO2-added YBCO nanocomposite film on an LaAlO3
substrate; Figure S6: Depth profile of crystallized 10 mol.% ZrO2-added YBCO nanocomposite
film on an LaAlO3 substrate; Figure S7: Survey of the surface of pyrolyzed 7.5 mol.% HfO2-added
YBCO nanocomposite film on an LaAlO3 substrate; Figure S8: Depth profile of pyrolyzed 7.5 mol.%
HfO2-added YBCO nanocomposite film on an LaAlO3 substrate; Table S1: Critical current density
(Jc) of 0, 5, 10 and 15 mol.% SrTiO3-added YBCO films on an LaAlO3 substrate, calculated via induc-
tively measurements; Figure S9: Superconducting properties of 5 and 10 mol.% SrTiO3-added YBCO
nanocomposite films compared with an pristine YBCO film: (A) Magnetic field dependence of critical
current density at 77 K and (B) angular dependence of Jc at 77 K and 1 T.
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