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Abstract: It is shown that in auxetic materials (materials with negative Poisson’s ratio), supersonic
Stoneley waves travelling without attenuation with a velocity equal to or exceeding maximum bulk
wave velocity, may exist. Analytical expressions for the relation between negative Poisson’s ratio
and Young’s moduli of the contacting isotropic media ensuring the condition of propagation for
supersonic Stoneley waves, are derived by solving a secular equation for Stoneley waves.
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1. Introduction

It is known [1–9] that genuine Stoneley waves travel along an interface between two
dissimilar halfspaces with subsonic velocity, which is smaller than the minimal shear bulk
wave velocity in the halfspaces. However, as it is shown theoretically and numerically,
the supersonic Stoneley waves may also exist when both halfspaces have a common
negative Poisson’s ratio (auxetics). Propagation of the interfacial Stoneley waves in linearly
elastic homogeneous isotropic and auxetic halfspaces is analyzed by constructing analytical
solutions of a secular equation for Stoneley waves [1]. According to [1], the interfacial
Stoneley waves propagate along an interface between two acoustically different halfspaces
under ideal contact conditions. Thus, the contacting halfspaces form an inhomogeneous
space. It is known [1–4] that these waves propagate at a constant speed, independent of
frequency; therefore, Stoneley waves do not exhibit dispersion; and in both halfspaces,
Stoneley waves exponentially attenuate with depth.

Herein, the secular equation is written in a dimensionless form close to Scholte’s secu-
lar equation [2,3] for the velocity of Stoneley waves propagating along an interface between
two isotropic elastic halfspaces. While Scholte’s secular equation has been previously used
for deriving the velocity of Stoneley waves, it is being used for the first time for analyzing
the velocity of supersonic Stoneley waves, when acoustical properties ensure Stoneley
wave velocity exceeding bulk wave velocity in one of the halfspaces.

P(c) ≡ c4
(
(ρ1 − ρ2)

2 − (ρ1 A2 + ρ2 A1)(ρ1B2 + ρ2B1)
)

+2Kc2(ρ1 A2B2 − ρ2 A1B1 − ρ1 + ρ2) + K2(A1B1 − 1)(A2B2 − 1) = 0
(1)

where c is the Stoneley wave velocity; ρk, k = 1, 2 are material densities of the contacting
halfspaces, and

K = 2
(
ρ1β

2
1 − ρ2β

2
2

)
, Ak =

√
1− c2

α2
k

, Bk =

√
1− c2

β2
k

, k = 1, 2 (2)

In Equation (2) αk, βk, k = 1, 2 are longitudinal and shear bulk wave velocities:

αk =

√
λk + 2µk

ρk
, βk =

√
µk
ρk

(3)
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where λk, µk, k = 1, 2 are Lame’s constants.
The majority of theoretical works on Stoneley wave analyses [1–9] are concerned with

the case of subsonic velocities, satisfying condition

c < min
k=1,2

(βk) (4)

Condition Equation (4) implies all the coefficients in the Stoneley equation to be real,
and, as was asserted in [1], it is necessary for the existence of a positive root of the secular
Equation (1) associated with the Stoneley wave velocity. Other methods for analyzing
Stoneley waves propagating with subsonic velocities obeying condition Equation (4) relate
to different variants of sextic formalisms, Stroh [10,11] and Cauchy [12], along with various
asymptotic techniques [13–15]. The principal ability for leaky Stoneley waves propagat-
ing with velocities exceeding the limit in the right-hand side of Equation (4) is asserted
in [10,11].

Herein, an explicit analytical condition between physical properties of the auxetic
media is derived, ensuring the existence of supersonic leaky Stoneley waves propagating
with velocity

c = max
k=1,2

(αk). (5)

The derivation is based on constructing analytical solution for Stoneley secular Equation (1)
at a special condition

ρ1β
2
1 = ρ2β

2
2 (6)

Condition Equation (6) is in some cases less restrictive than the Wiechert condition [16,17]
frequently used at Stoneley wave analyses [1–8]:

λ1

λ2
=

µ1
µ2

=
ρ1
ρ2

(7)

since in view of Equation (3), condition Equation (6) imposes restriction on µk, k = 1, 2
only, demanding

µ1 = µ2. (8)

Note that condition Equation (8) does not necessarily imply λ1 = λ2. Actually, condi-
tion Equation (6) resembles the condition for equal acoustic impedances [17]. However, as
will be shown below, condition Equation (6) is much less restrictive than the condition of
equal acoustic impedances.

2. Solving Secular Equation
2.1. Basic Relations

Consider stratified inhomogeneous space consisting of two isotropic and homoge-
neous halfspaces with ideal mechanical contact between them. Introducing dimensionless
Lame’s constants λ̃, µ̃ and dimensionless density ρ̃

λ̃ =
λ1

λ2
, µ̃ =

µ1
µ2

, ρ̃ =
ρ1
ρ2

(9)

the dimensionless bulk wave velocities in the halfspaces take the form

α̃ =
α1

α2
, β̃ =

β1
β2

(10)

with notations Equations (9) and (10), secular Equation (1) can be rewritten in terms of the
dimensionless variables

P(c̃) ≡ Lc̃4 + 2M c̃2 + N = 0 (11)



Crystals 2022, 12, 430 3 of 7

where c̃ is the dimensionless velocity

c̃ =
c
β2

(12)

and
L =

(
(ρ̃− 1)2 −

(
ρ̃Ã2 + Ã1

)(
ρ̃B̃2 + B̃1

))
M = K̃

(
ρ̃Ã2B̃2 − Ã1B̃1 − ρ̃+ 1

)
N = K̃2

(
Ã1B̃1 − 1

)(
Ã2B̃2 − 1

) (13)

In Equation (13) coefficient K̃ has the form

K̃ = 2
(
ρ̃β̃

2 − 1
)

(14)

and

Ãk =

√
1− c̃2β

2
2

α2
k

, B̃k =

√
1− c̃2β

2
2

β2
k

, k = 1, 2 (15)

2.2. Secular Equation at Condition

In terms of the dimensionless parameters condition Equation (6) reads as

ρ̃β̃
2
= 1 (16)

ensuring
K̃ = 0 (17)

The latter yields
M = N = 0 (18)

Now, at Equation (18), Equation (11) becomes

Lc̃4 = 0 (19)

Equation (19) may have nontrivial solution(s) with respect to c̃, if

L = 0 (20)

Suppose now that both contacting media have equal Poisson’s ratios then in view of
condition Equation (16), relative bulk velocities become

α̃ = β̃ =
1√
ρ̃

(21)

and
Ã1 =

√
1− c̃2

ρ̃γ2 , Ã2 =
√

1− c̃2

γ2

B̃1 =
√

1− c̃2

ρ̃ , B̃2 =
√

1− c̃2
(22)

where

γ =
√

2

√
1− ν

1− 2ν
(23)

In Equation (23) ν is the common Poisson’s ratio of both media.
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3. Supersonic Stoneley Waves

Consider now the case when velocity of Stoneley waves satisfies supersonic condition
Equation (5), then Equation (20) with account of Equations (21) and (22), yields

(ρ̃− 1)2 − ρ̃
√

1− ρ̃
(
ρ̃
√

1− γ2 +
√

1− ρ̃γ2
)
= 0, ρ̃ > 1 & c̃2 = ρ̃γ2

(ρ̃− 1)2 −
√

1− 1
ρ̃

(
ρ̃
√

1− γ2

ρ̃ +
√

1− γ2
)
= 0, ρ̃ < 1 & c̃2 = γ2

(24)

Note that parameter γ ∈
(

2√
3
; ∞

)
at ν ∈ (−1, 0.5), thus the left-hand sides of

Equation (24) are real, despite all imaginary radicands.

3.1. Solutions for γ

Equation (24) admit analytical closed form solutions in terms of relations between ρ̃

and γ:

γ =


ρ̃−3/2

√
(ρ̃+ 1)

(
ρ̃2 + ρ̃− 1

)
− 2
√

ρ̃(ρ̃− 1)
(
ρ̃2 + ρ̃− 1

)
ρ̃−3/2

√
(ρ̃+ 1)

(
ρ̃2 + ρ̃− 1

)
+ 2
√

ρ̃(ρ̃− 1)
(
ρ̃2 + ρ̃− 1

)
ρ̃ > 1 & c̃2 = ρ̃γ2

(25)

and

γ =



√
(ρ̃+ 1)

(
1− ρ̃2 + ρ̃

)
− 2ρ̃

√
(1− ρ̃)

(
1− ρ̃2 + ρ̃

)
√
(ρ̃+ 1)

(
1− ρ̃2 + ρ̃

)
+ 2ρ̃

√
(1− ρ̃)

(
1− ρ̃2 + ρ̃

)
ρ̃ < 1 & c̃2 = γ2

(26)

3.2. Solutions for ν

Relations Equation (25), can also be expressed in terms Poisson’s ratio and ρ̃ by use of
Equation (23):

ν =

{
1
2
ρ̃3−2ρ̃2+1+2

√
ρ̃(ρ̃−1)(ρ̃2+ρ̃−1)

1−2ρ̃2+2
√

ρ̃(ρ̃−1)(ρ̃2+ρ̃−1)

ρ̃ > 1 & c̃2 = ρ̃γ2
(27a)

ν =

{
1
2
ρ̃3−2ρ̃2+1−2

√
ρ̃(ρ̃−1)(ρ̃2+ρ̃−1)

1−2ρ̃2−2
√

ρ̃(ρ̃−1)(ρ̃2+ρ̃−1)

ρ̃ > 1 & c̃2 = ρ̃γ2
(27b)

and

ν =

{
1
2
ρ̃3−2ρ̃+1+2ρ̃

√
(1−ρ̃)(1+ρ̃−ρ̃2)

ρ̃2−2+2
√
(1−ρ̃)(1+ρ̃−ρ̃2)

ρ̃ < 1 & c̃2 = γ2
(28a)

ν =

{
1
2
ρ̃3−2ρ̃+1−2ρ̃

√
(1−ρ̃)(1+ρ̃−ρ̃2)

ρ̃2−2−2
√
(1−ρ̃)(1+ρ̃−ρ̃2)

ρ̃ < 1 & c̃2 = γ2
(28b)

3.3. Numerical Analysis

All four solutions in Equations (27) and (28) lead to auxetics (materials with negative
Poisson’s ratio [18]), in particular, solution (27a) leads to negative Poisson’s ratios at
ρ̃ ∈ (1; ∼ 1.23); solution (27b) leads to negative Poisson’s ratios at ρ̃ ∈ ( ∼ 3.8; ∼ 12.0);
solution (28a) leads to negative Poisson’s ratios at ρ̃ ∈ ( ∼ 0.82; 1); and solution (28b)
yields negative Poisson’s ratios at ρ̃ ∈ ( ∼ 0.09; 0.25).
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The plots revealing the variation of Poisson’s ratio vs relative material density ρ̃

corresponding to solutions (27a) and (27b) are shown in Figure 1.
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Figure 2. Variation of Poisson’s ratio vs dimensionless density in auxetic media: (a) Equation (28a);
(b) Equation (28b).

Thus, at both ρ̃ < 1 and ρ̃ > 1 there are intervals of relative material densities
admitting propagation of non-attenuating leaky Stoneley waves for the considered auxetic
media with common negative Poisson’s ratios; in this respect, see also [19–21]. It should
also be noted that according to [22], auxetic materials need not be necessary anisotropic,
but they may belong to the isotropic class. Another remark concerns some of the related
works on acoustic wave propagation in media with more complicated properties; in this
respect, see [23] for nonlinear waves and [24] for Stoneley waves in media satisfying the
Wiechert condition.

4. Concluding Remarks

The obtained analytical expressions Equations (27) and (28) for the common Poisson’s
ratios of the auxetic media and their densities, define supersonic leaky Stoneley waves
propagating without attenuation in the direction of propagation along the interface plane,
due to real values for the Stoneley wave velocity.
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In contrast to the non-attenuating (in the direction of propagation) leaky Rayleigh
waves that arise only at special kinds of elastic anisotropy [10,11], the analyzed supersonic
and non-attenuating leaky Stoneley waves propagating with velocities{

c̃2 = ρ̃γ2 @ ρ̃ > 1
c̃2 = γ2 @ ρ̃ < 1

(29)

exist at the contacting isotropic auxetic halfspaces, satisfying condition Equation (16). Also
note that at the intermediate velocity range{

β̃ < c̃2 < ρ̃γ2 @ ρ̃ > 1
1 < c̃2 < γ2 @ ρ̃ < 1

(30)

non-attenuating in direction of propagation leaky Stoneley waves cannot exist because of
appearing imaginary terms in secular Equation (24), leading to complex values for velocity
c̃, and hence, attenuation in direction of propagation.
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