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Abstract: The enhancement of the crystallization process through high pressures was studied by using
ribavirin (RVB) as a model compound. The effects of high pressure on crystallization thermodynamics,
nucleation kinetics, and process yield were evaluated and discussed. The solubility of ribavirin in
three pure solvents was measured at different pressures from 283.15 to 323.15 K. The results indicate
that the solubility data of ribavirin decreased slightly when pressure was increased. The induction
time of the cooling crystallization of ribavirin under different pressures was measured. The results
show that high pressure could significantly reduce the nucleation induction period. Furthermore, the
nucleation kinetic parameters under different pressures were calculated according to the classical
nucleation theory. The effect of high pressure on the anti-solvent crystallization of ribavirin was
also studied.

Keywords: high pressure; ribavirin; solubility; induction time; nucleation

1. Introduction

Crystallization is a very important unit operation in the pharmaceutical industry
because more than 90% of active pharmaceutical ingredients (API) are crystalline prod-
ucts [1]. Recently, researchers have studied the crystallization process of pharmaceutical
molecules under physical fields, including the electric field [2], magnetic field [3], laser [4],
ultrasonic [5], gravity [6], pressure [7], etc. As a basic thermodynamic variable, pressure is
a powerful tool for exploring new materials [8]. As early as 2003, Fabiani et al. obtained
one methanol solvate by compressing the methanol solution of paracetamol at 0.62 GPa [9].
In the following 20 years, researchers have conducted a lot of work in the high-pressure
crystallization of API [7]. Wierschem et al. found that high pressure can significantly reduce
the induction time and improve the crystal growth rate under 200–450 MPa [10]. Elena
Boldyreva have systematically studied the solid-phase transformation of a variety of amino
acids under several GPA, which provides an effective method for the understanding of the
mechanism of phase transitions between polymorphs of small organic molecules [11–13].
Andrzej Katrusiak obtained different polymorphisms and solvates of organic molecules
such as xylazine hydrochloride and triiodoimidazole under several GPA and provided
guidance for predicting the formation and structure of solvates under high pressure [14,15].
However, from the literature review, the high-pressure crystallization of API is mainly
carried out by diamond anvil cell (DAC) under the pressure of hundreds of MPa to several
GPa. There are few studies on the solution crystallization process of API under several
MPa, although several MPa is easier to achieve on an industrial scale.

In this paper, the enhancement crystallization process of API at several MPa was stud-
ied, and whether this enhancement will bring the risk of polymorphic transformation was
also considered, which can enrich the control methods of the crystallization process that are
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easily realized in industry. Ribavirin (RBV, C8H12N4O5, CAS No. 36791-04-5) is an antiviral
drug widely used in hepatitis C virus infection treatment [16]. The chemical structure of
ribavirin is presented in Figure 1. Three crystal forms of RBV have been previously re-
ported, conventionally referred to as Form I, Form II, and DMSO solvate [17,18]. However,
its crystallization behaviors and its polymorphic forms under high pressure have not been
studied. In this work, the solubility of RBV in three solvents (water, dimethylformamide,
and dimethylacetamide) was firstly measured from 283.15 to 323.15 K at 12.0 MPa and
0.1 MPa since the solubility is basic data of crystallization thermodynamics. Then, the
induction time of cooling crystallization of RBV in water was measured under different
temperatures, pressures, and supersaturations. Furthermore, nucleation parameters un-
der different pressures were calculated based on the induction time data. The yield and
crystal form of anti-solvent crystallization under different pressures were characterized
and compared.
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Figure 1. Chemical structure of ribavirin.

2. Experimental
2.1. Materials

Ribavirin (Form II, mass purity ≥ 99.0%) was purchased from Shanghai Xiand-
ing Biotechnology Co., Ltd. (Shanghai, China). Ultrapure water with a resistivity of
18.2 MΩ·cm was prepared in our laboratory. Other solvents were obtained from Lianlong
Bohua Chemical Co., Ltd. and were directly used without further purification.

Ribavirin (Form I) was prepared by anti-solvent crystallization. The raw material
(100 g) was dissolved in dimethylacetamide (300 mL) at 313.15 K and crystallized by
gradually adding n-butanol (2000 mL, 5 mL/min). The product was washed with ethanol
and dried in a vacuum-drying oven.

2.2. High-Pressure Device

The device used in the experiment was a high-pressure stainless-steel reactor (Xi’an
Taikang Biotechnology Co., Ltd., Xi’an, China) with a volume of 100 mL and a maximum
pressure of 12.5 MPa. As shown in Figure 2, the reactor was equipped with an inflation
valve, liquid-taking valve, magnetic–mechanical coupled stirring, and a sapphire window
for observing the crystallization process. The high pressure of the reactor was provided by a
nitrogen steel cylinder (Tianjin Liufang Industrial Gas Distribution Co., Ltd., Tianjin, China)
with the nitrogen purity ≥ 99.999% and the initial pressure ≥ 14.5 MPa. The pressure of
the reactor was controlled by the pressure-reducing valve, and the control accuracy was
0.1 MPa. All experiments at 0.1 MPa in this paper were carried out at atmospheric pressure.
A thermostat (CF41, Julabo Technology Co., Ltd., Seelbach, Germany) and jacket were used
to control the temperature of the reactor with a temperature accuracy of 0.1 K.



Crystals 2022, 12, 432 3 of 12Crystals 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 2. High-pressure experimental device. 

2.3. Solubility Measurement 
The solubility of RBV in three solvents (water, dimethylformamide, and dimethyla-

cetamide) at 12.0 MPa was determined by the gravimetric method in the above reactor 
[19]. Firstly, pure solvent (about 50 mL), excess RBV, and a magneton were added to the 
reactor. After the device was assembled, the pressure-reducing valve was opened to pres-
surize the reactor to 12.0 MPa. Then, the solid-liquid system in the reactor was continu-
ously stirred with a magnetic stirrer at 300 rpm for 8 h to ensure that the system reached 
equilibrium, which had been proven by preliminary experiments. Then, the magnetic stir-
rer was stopped, and the solid–liquid system was kept still at a constant temperature for 
4 h to obtain a clear, saturated solution. Finally, the liquid-taking valve was opened, and 
the supernatant liquid (about 5 mL) was pressed into the pre-weighed beaker through a 
polytetrafluoroethylene (PTFE) membrane filter (0.45 μm, Tianjin Jinteng Experimental 
Equipment Co., Ltd., Tianjin, China). 

For comparison, the solubility of RBV in four solvents at 0.1 MPa was also deter-
mined by the gravimetric method. A jacketed crystallizer was used for measurements, 
and the steps were similar to the above description. The difference was that the superna-
tant was extracted through a syringe, and then was quickly filtered into a pre-weighed 
beaker through the above PTFE membrane filter. 

The beaker containing the supernatant was weighted quickly and dried in a vacuum 
oven at 333.15 K for 72 h to ensure that the solvent was completely volatilized. The above 
operations were performed three times, and the average value was taken to calculate the 
solubility data. The solubility of ribavirin expressed in the molar fraction was calculated 
according to the following equation [20]: 𝑥 = 𝑚1 𝑀1⁄𝑚1/𝑀1 + 𝑚2/𝑀2

 (1) 

where m1 and M1 are the mass and molar mass of RBV, respectively, and m2 and M2 are 
the mass and molar mass of the pure solvent, respectively. 

  

Figure 2. High-pressure experimental device.

2.3. Solubility Measurement

The solubility of RBV in three solvents (water, dimethylformamide, and dimethylac-
etamide) at 12.0 MPa was determined by the gravimetric method in the above reactor [19].
Firstly, pure solvent (about 50 mL), excess RBV, and a magneton were added to the reactor.
After the device was assembled, the pressure-reducing valve was opened to pressurize
the reactor to 12.0 MPa. Then, the solid-liquid system in the reactor was continuously
stirred with a magnetic stirrer at 300 rpm for 8 h to ensure that the system reached equi-
librium, which had been proven by preliminary experiments. Then, the magnetic stirrer
was stopped, and the solid–liquid system was kept still at a constant temperature for 4 h
to obtain a clear, saturated solution. Finally, the liquid-taking valve was opened, and
the supernatant liquid (about 5 mL) was pressed into the pre-weighed beaker through a
polytetrafluoroethylene (PTFE) membrane filter (0.45 µm, Tianjin Jinteng Experimental
Equipment Co., Ltd., Tianjin, China).

For comparison, the solubility of RBV in four solvents at 0.1 MPa was also determined
by the gravimetric method. A jacketed crystallizer was used for measurements, and the
steps were similar to the above description. The difference was that the supernatant was
extracted through a syringe, and then was quickly filtered into a pre-weighed beaker
through the above PTFE membrane filter.

The beaker containing the supernatant was weighted quickly and dried in a vacuum
oven at 333.15 K for 72 h to ensure that the solvent was completely volatilized. The above
operations were performed three times, and the average value was taken to calculate the
solubility data. The solubility of ribavirin expressed in the molar fraction was calculated
according to the following equation [20]:

x1 =
m1/M1

m1/M1 + m2/M2
(1)



Crystals 2022, 12, 432 4 of 12

where m1 and M1 are the mass and molar mass of RBV, respectively, and m2 and M2 are the
mass and molar mass of the pure solvent, respectively.

2.4. Induction Time Measurement

The induction time (tind) is defined as the time from the generation of constant su-
persaturation to the appearance of crystals [21,22]. In this paper, the induction time of
the cooling crystallization of RBV in water was measured by naked eye observation [23].
All measurements were carried out in the same high-pressure reactor, with pressures of
0.1 MPa, 5.0 MPa and 10.0 MPa and temperatures of 283.15 K, 293.15 K and 303.15 K,
respectively. Firstly, RBV (Form II) aqueous solution with different supersaturation (S) was
prepared. The preparation temperatures of supersaturated solutions at 283.15 K, 293.15 K
and 303.15 K were 308.15 K, 313.15 K and 318.15 K, respectively, to ensure that the solute
was completely dissolved. Then, 50 mL of supersaturated solution was quickly transferred
into the pre-cooled reactor. The high-pressure nitrogen was added to the reactor when the
solution was cooled down to the preset temperature. Then, the mechanical stirring was
started at speed of 200 rpm and the timing was started. After the crystals appeared, the
timing was stopped, and the crystals were separated immediately and characterized by
microscope and PXRD. The above operations were carried out three times, and the average
value was taken to calculate the induction time.

The supersaturation was calculated by Equation (2).

S =
c
c0

(2)

where c is the actual concentration of the solute, and c0 is the equilibrium concentration of
the solute.

2.5. Anti-Solvent Crystallization

The yield and crystal form of anti-solvent crystallization at 10.0 MPa and 0.1 MPa
were compared. Firstly, RBV (5 g, Form II) was dissolved in solvent (15 g, water, dimethyl
sulfoxide, and dimethylformamide). Then, anti-solvent (15 mL, alcohol solvents such as
methanol, ethyl acetate, and butyl acetate) was added to the solution. The solution was
stood for 24 h at 10.0 MPa and atmospheric pressure at 20 °C to allow crystal nucleation
and growth. Finally, the solution was filtered, and the crystals were washed with ethanol
and dried at room temperature. The crystals were weighed and characterized by PXRD.
The above operations were carried out three times and the average value was taken for
further calculation.

3. Results and Discussion
3.1. Effect of High Pressure on Solubility

The solubility data of RBV in four solvents at 12.0 MPa and 0.1 MPa are shown in
Tables S1 and S2 and Figures 3 and 4. The experimental solubility data were correlated
by the modified Apelblat model Equation (3), and the fitting curves are also given in
Figures 3 and 4.

ln x1 = A +
B
T
+ C ln T (3)

where x1 represents the mole fraction solubility of RBV. T is the temperature (K). A, B, and
C are model parameters [24].

The results indicate that all the solubilities of the two crystal forms of RBV at 12.0 MPa
decrease slightly when compared with those at 0.1 MPa. The solubility data of RBV increase
significantly with the increase in temperature whether at 12.0 MPa or 0.1 MPa. The effect
of pressure on solubility values is weaker than the effect of temperature. In addition, the
solubility of Form I in water is smaller than that of Form II, which is consistent with Form I
being a thermodynamically stable form.
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The PXRD patterns and DSC plots of the RBV (Form I and Form II) used in the
solubility experiment are shown in Figures S1 and S2. The PXRD patterns of undissolved
wet solid taken out after the solubility experiments are shown in Figure S3. It can be seen
that the PXRD patterns of the samples before and after the experiments are consistent,
and they are all pure crystal forms. Therefore, no polymorphic transformation or solvate
formation happened in the solubility experiments at two pressures. Furthermore, the
decrease in solubility at high pressure is not caused by crystal transformation.

3.2. Effect of High Pressure on the Induction Time

The influence of high pressure on the induction time of the cooling crystallization of
RBV in water is shown in Figure 5. The specific induction time data are listed in Table S3.
For the convenience of calculation and comparison, all the calculations of supersaturation
under high pressure in this section were based on the solubility data of RBV (Form II) at
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atmospheric pressure. At the same time, it is also because Form II is the polymorph always
obtained in the induction time experiment. It can be seen that the induction time decreases
significantly with the increasing concentration of RBV, whether at atmospheric pressure
or high pressure. More importantly, the induction time of RBV cooling crystallization
decreases significantly at high pressure. The PXRD characterization shows that all the
crystals obtained in the induction time experiment are RBV (Form II). Therefore, the
reduction in the induction time is independent of the crystal form of RBV. The high pressure
may enhance the collision probability of solute molecules in the solution, thus promoting
the nucleation process.
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3.3. Effect of High Pressure on the Nucleation Kinetics

To quantitatively explain the effect of pressure on nucleation rate, the nucleation
kinetic parameters under different pressures were calculated according to the classical
nucleation theory (CNT) [25–27]. The crystal nucleation rate equation in the classical
nucleation theory is given by the following formula [28,29]:

J = A exp
(
− 16πγ3V2

m

3 k3T3 ln2 S

)
(4)

where J represents the nucleation rate (m−3 s−1), A is the pre-exponential factor, T is the
nucleation temperature (K), κ refers to the Boltzmann constant (J K−1), S is the supersatu-
ration ratio, γ is the crystal-solution interfacial tension (J K−1), and Vm is the molecular
volume of the solute molecule (m3) [30]. In this paper, the molecular volume of RBV is
1.943 × 10−28 m3, which was calculated according to the Avogadro constant and the molar
volume obtained from CAS SciFindern Database.

There is an inverse relationship between nucleation rate and induction time, which
can be expressed follows:

J ∝
1

tind
(5)

Therefore, the relationship between supersaturation and induction time can be written
as follows:

ln(tind) ∝
16πγ3V2

m
3 k3T3 ln−2 S = α ln−2 S (6)

A linear relationship exists between lntind and ln−2S. By linear fitting, the interfacial
tension (γ) can be obtained from the slope (α):

γ = kT
(

3α/16πV2
m

)1/3
(7)

Generally, the lower the interfacial energy, the easier the nucleation will be [31].
Based on the interfacial tension and supersaturation, the other four nucleation parameters,
including the change of Gibbs free energy per unit volume (∆GV), the critical nucleation
radius (r*), the change of critical Gibbs free energy (∆G*), and the number of molecules
constituting the critical nucleus (i*) can be calculated by the following equations [32,33]:

∆GV =
−kT ln S

Vm
(8)

r∗ =
−2γ

∆GV
(9)

∆G∗ =
4
3

π(r∗)2γ (10)

i∗ =
4π(r∗)3

3Vm
(11)

Among them, ∆GV can represent the driving force of nucleation, where ∆G* represents
the critical energy barrier that must be overcome in the nucleation process [32].

The linear fitting between ln(tind) and ln−2S is shown in Figure 6. It can be found that
there is more than one linear relationship between ln(tind) and ln−2S at 283.15 K, 293.15 K,
and the experimental supersaturation. According to the classical nucleation theory, homo-
geneous nucleation is dominant in the nucleation process at high supersaturation, whereas
heterogeneous nucleation will be dominant at low supersaturation [34,35]. Therefore, there
may be two different linear relationships. It can be found from Figure 6 that there are two
linear lines between ln(tind) and ln−2S at 283.15 K, 293.15 K. The high supersaturation range
with a large slope indicates the homogeneous nucleation, and the low supersaturation



Crystals 2022, 12, 432 8 of 12

range with a small slope indicates the heterogeneous nucleation. At 303.15 K, there is only
one linear relationship between ln(tind) and ln−2S and the slope is small, indicating the
heterogeneous nucleation. In the homogeneous nucleation region, the slope (α) can be used
to calculate the interfacial tension (γ) according to Equation (6) above [30].
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The results of linear fitting slope and interfacial tension calculated according to the
slope are shown in Table 1. The results show that the value of γ decreases with the increase
in pressure, which further proves that high pressure can promote the nucleation of RBV.
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Table 1. The fitting parameters of ln(tind) and ln−2S and calculated interfacial tension.

Pressure/MPa α R2 Nucleation γ/mJ m−2

283.15 K

0.1
4.053 0.9956 Homogeneous 7.007
0.7348 0.9816 Heterogeneous /

5.0
3.829 0.9970 Homogeneous 6.876
0.7207 0.9903 Heterogeneous /

10.0
3.776 0.9996 Homogeneous 6.844
0.7137 0.9997 Heterogeneous /

293.15 K

0.1
2.345 0.9996 Homogeneous 6.053
0.9966 0.9865 Heterogeneous /

5.0
2.235 0.9888 Homogeneous 5.957
0.9665 0.9995 Heterogeneous /

10.0
2.133 0.9999 Homogeneous 5.865
0.9569 0.9981 Heterogeneous /

303.15 K
0.1 0.9307 0.9870 Heterogeneous /
5.0 0.9281 0.9961 Heterogeneous /
10.0 0.9272 0.9871 Heterogeneous /

Based on the interfacial tension and supersaturation, the calculation results of the other
four nucleation parameters are listed in Table 2. Firstly, these four nucleation parameters
decrease with the increase in supersaturation under both atmospheric pressure and high
pressure, which proves that high supersaturation is conducive to nucleation. In addition,
at the same supersaturation, the nucleation parameters of r*, ∆G*, and i* decrease slightly
under high pressure compared with atmospheric pressure, which is consistent with the
decrease in induction time under high pressure.

Table 2. The calculation results of nucleation parameters.

S ∆GV × 10−7/J m−3 r*/nm ∆G* × 10−16/J i*

T = 283.15 K, p = 0.1 MPa
2.215 −1.544 0.9080 4.926 16.13
2.316 −1.631 0.8594 4.412 13.67
2.418 −1.715 0.8174 3.992 11.77
T = 283.15 K, p = 5.0 MPa
2.215 −1.544 0.8910 4.833 15.24
2.316 −1.631 0.8432 4.329 12.92
2.418 −1.715 0.8021 3.917 11.12
T = 283.15 K, p = 10.0 MPa
2.215 −1.544 0.8868 4.811 15.03
2.316 −1.631 0.8393 4.309 12.74
2.418 −1.715 0.7983 3.899 10.96
T = 293.15 K, p = 0.1 MPa
2.221 −1.606 0.7537 3.929 9.226
2.324 −1.697 0.7133 3.519 7.819
2.427 −1.785 0.6784 3.183 6.727
T = 293.15 K, p = 5.0 MPa
2.221 −1.606 0.7417 3.867 8.793
2.324 −1.697 0.7019 3.463 7.452
2.427 −1.785 0.6676 3.132 6.411
T = 293.15 K, p = 10.0 MPa
2.221 −1.606 0.7303 3.807 8.392
2.324 −1.697 0.6911 3.409 7.112
2.427 −1.785 0.6573 3.084 6.119
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3.4. Effect of High Pressure on Anti-Solvent Crystallization

The yield and crystal form of anti-solvent crystallization at 10.0 MPa and 0.1 MPa are
shown in Tables 3–5. It can be found that the yield of anti-solvent crystallization under
high pressure is higher than that under atmospheric pressure, and it is independent of the
choice of solvent. Furthermore, the increase in the pressure of several MPa does not affect
the final crystal polymorph.

Table 3. The results of anti-solvent crystallization at 10.0 MPa and 0.1 MPa (DMSO as solvent).

Anti-Solvent
p = 0.1 MPa p = 10.0 MPa

Yield/% Crystal Form Yield/% Crystal Form

Methanol 18.8 DMSO solvate 20.1 DMSO solvate
Ethanol 48.9 DMSO solvate 50.1 DMSO solvate
N-propanol 49.2 DMSO solvate 50.6 DMSO solvate
Isopropanol 51.4 DMSO solvate 52.2 DMSO solvate
N-butanol 48.4 DMSO solvate 49.3 DMSO solvate
Isobutanol 76.1 DMSO solvate 85.8 DMSO solvate
Ethyl acetate 51.4 DMSO solvate 61.9 DMSO solvate
Butyl acetate 35.7 DMSO solvate 38.8 DMSO solvate

Table 4. The results of anti-solvent crystallization at 10.0 MPa and 0.1 MPa (DMF as solvent).

Anti-Solvent
p = 0.1 MPa p = 10.0 MPa

Yield/% Crystal Form Yield/% Crystal Form

Methanol 8.83 Form I 12.1 Form I
Ethanol 9.28 Form I 14.0 Form I
N-propanol 26.1 Form I 43.5 Form I
Isopropanol 10.3 Form I 13.5 Form I
N-butanol 33.3 Form I 42.7 Form I
Isobutanol 28.1 Form I 38.1 Form I
Ethyl acetate 14.8 Form I 27.1 Form I
Butyl acetate 15.6 Form I 31.2 Form I

Table 5. The results of anti-solvent crystallization at 10.0 MPa and 0.1 MPa (water as solvent).

Anti-Solvent
p = 0.1 MPa p = 10.0 MPa

Yield/% Crystal Form Yield/% Crystal Form

Methanol 25.9 Form II 33.0 Form II
Ethanol 23.9 Form II 39.2 Form II
N-propanol 11.8 Form II 19.4 Form II
Isopropanol 26.5 Form II 30.9 Form II

4. Conclusions

The crystallization process of RBV at high pressure was systematically studied. It
was found that the solubility data of ribavirin in three pure solvents decrease under high
pressure. In terms of crystallization kinetics, high pressure can reduce the nucleation induc-
tion period, interfacial tension, and nucleation energy barrier. Therefore, high pressure is
conducive to nucleation. In addition, the results of anti-solvent crystallization under high
pressure show that high pressure can improve the crystallization yield without changing
the crystal form. In short, whether it is the cooling crystallization of a single solvent sys-
tem or the anti-solvent crystallization of a variety of solvents system, the yield and the
nucleation of the crystallization process of RBV could be enhanced.
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patterns of the RBV raw material (Form I and Form II); Figure S3: The PXRD patterns of residual
solid in solubility experiment; Table S3: The induction time of cooling crystallization of RBV in water
at different pressures.
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