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Abstract: The scientific discussion about classical and nonclassical nucleation theories has lasted for
two decades so far. Recently, multiple nucleation pathways and the occurrence and role of metastable
intermediates in crystallization processes have attracted increasing attention, following the discovery
of functional phase separation, which is now under investigation in different fields of cellular life
sciences, providing interesting and novel aspects for conventional crystallization experiments. In
this context, more systematic investigations need to be carried out to extend the current knowledge
about nucleation processes. In terms of the data we present, a well-studied model protein, glucose
isomerase (GI), was employed first to investigate systematically the early stages of the crystallization
process, covering condensing and prenucleation ordering of protein molecules in diverse scenarios,
including varying ionic and crowding agent conditions, as well as the application of a pulsed electric
field (pEF). The main method used to characterize the early events of nucleation was synchronized
polarized and depolarized dynamic light scattering (DLS/DDLS), which is capable of collecting the
polarized and depolarized component of scattered light from a sample suspension in parallel, thus
monitoring the time-resolved evolution of the condensation and geometrical ordering of proteins
at the early stages of nucleation. A diffusion interaction parameter, KD, of GI under varying salt
conditions was evaluated to discuss how the proportion of specific and non-specific protein–protein
interactions affects the nucleation process. The effect of mesoscopic ordered clusters (MOCs) on
protein crystallization was explored further by adding different ratios of MOCs induced by a pEF to
fresh GI droplets in solution with different PEG concentrations. To emphasize and complement the
data and results obtained with GI, a recombinant pyridoxal 5-phosphate (vitamin B6) synthase (Pdx)
complex of Staphylococcus aureus assembled from twelve monomers of Pdx1 and twelve monomers
of Pdx2 was employed to validate the ability of the pEF influencing the nucleation of complex
macromolecules and the effect of MOCs on adjusting the crystallization pathway. In summary, our
data revealed multiple nucleation pathways by tuning the proportion of specific and non-specific
protein interactions, or by utilizing a pEF which turned out to be efficient to accelerate the nucleation
process. Finally, a novel and reproducible experimental strategy, which can adjust and facilitate a
crystallization process by pEF-induced MOCs, was summarized and reported for the first time.

Keywords: phase transition; multiple nucleation pathways; mesoscopic ordered clusters; pulsed
electric field; dynamic light scattering; depolarized dynamic light scattering

1. Introduction

Regardless of the establishment of the nucleation theory for approximately a hundred
years [1], the discussion between classical and nonclassical nucleation theories is still an
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ongoing topic in the field of crystallogenesis [2–12]. The most important characteristic of the
classical nucleation theory (CNT) assumes a one-step nucleation of solute molecules directly
from the supersaturated bulk solution, along with the simultaneous increase in two ordering
parameters—concentration and structural arrangements guiding the three-dimensional
(3D) ordering of a protein crystal [13]. However, proposed simulations have decoupled the
development of the two ordering parameters leading towards a multi-step nucleation [14],
termed as nonclassical nucleation theory (NCNT), which was supported subsequently by
experimental discoveries [15–18]. In particular, the two-step nucleation theory has recently
been receiving more attention since widespread observations of functional liquid-liquid
phase separation (LLPS), part of the two-step nucleation process, were published in cellular
biology, in the crystallization of inorganic [19–23] and organic particle system [24–27], and
in the in vivo formation of crystals and fibers, which can also be involved in diseases [28–31].
According to the two-step nucleation theory, the homogeneous solution undergoes LLPS
and firstly forms a liquid dense phase without internal order, after which the molecules
within this liquid dense phase can rearrange to form nuclei [32,33]. This liquid dense
phase is classified as a metastable intermediate, as its free energy level is lower than in
the initial homogeneous solution, but higher than in the following crystalline phase [34].
By analyzing the impact of mesoscopic clusters in protein solutions in the context of the
observed nucleation rate, Mike Sleutel and Alexander E. S. Van Driessche demonstrated
that mesoscopic clusters can enhance the crystallization rate 10-fold for lysozyme and
100-fold for glucose isomerase [35]. With the recent options of time-resolved imaging
at a molecular resolution, direct evidence of nucleation through multiple pathways was
uncovered. For example, Houben et al. recorded utilizing Cryo-STEM tomography the
formation of disordered ferritin aggregates, followed by a desolvation process which leads
to a jointly continuous increase in density and order from the surface towards the center of
aggregates [36]. This observed phenomenon is already beyond the original explanation
of either CNT or NCNT. Van Driessche et al. observed, by means of Cryo-EM, the early
nucleation events of GI with varying precipitants, showing no occurrence of liquid dense
intermediates as a precursor of crystal nuclei, but driven by the oriented attachment of
nanosized and ordered ‘building blocks’ emerged directly from the protein solution [7].
They revealed further the interplay between the earliest formed crystalline nano-assemblies
and their effect of oriented attachment upon the nucleation process [37]. On the other hand,
and complementarily, the group of Fajun reported the effect of multivalent ions capable of
tuning protein interactions [38–41], and reviewed the interplay of specific and nonspecific
interactions influencing the nucleation pathway which can contain metastable intermediate
phases [9]. In this context, more comprehensive crystallization scenarios remain to be
explored in more detail, applying complementary bioanalytical techniques to obtain more
insights about the crystal nucleation pathways.

Here, we employed a well-studied model protein glucose isomerase (GI, 43.23 kDa)
from Streptomyces rubiginosus to investigate systematically: (1) the early stages of protein
phase transition and crystallization in a wide range of physicochemical scenarios, including
varying salt conditions, crowding agent polyethylene glycol (PEG) and applying a pulsed
electric field (pEF); (2) the mediating effect of mesoscopic ordered clusters (MOCs), which
mostly have a dimension range of 10 to 1000 nm [42], induced by pEF on the crystallization
process. Furthermore, a more challenging and complex biomacromolecular system, the
pyridoxal 5-phosphate (vitamin B6) synthase (Pdx) complex of Staphylococcus aureus, was
employed to verify the universal effect of pEFs and to verify the effect of MOCs on the
crystallization process. The Pdx complex, as shown in Figure 1b, is formed by a dode-
cameric assembling of Pdx1 (32.12 kDa) attached to twelve monomers of Pdx2 (23.76 kDa)
via a dynamic and transient complex formation that causes the crystallization to be most
challenging for obtaining X-ray-suitable crystals [43]. To date, three-dimensional X-ray
structures of Pdx complexes from four different organisms, but not S. aureus, have been
reported and deposited in the protein data bank. Strohmeier and co-workers found that
the H170N (H165N in Pdx2 from S. aureus) mutation in the catalytic site of Pdx2 from



Crystals 2022, 12, 437 3 of 22

Bacillus subtilis stabilizes the complex in a fully saturated form, enabling and supporting
crystallization and structural analysis [44]. Therefore, in our investigations, we also ap-
plied the Pdx2 mutant of S. aureus to prepare a Pdx1/Pdx2H165N (Pdx) complex for the
experiments performed.
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Figure 1. (a) The structure of monomeric glucose isomerase from Streptomyces rubiginosus
(PDB: 4ZB2) [45]. (b) The Pdx1–Pdx2 complex from the homologue Bacillus subtilis (PDB: 2NV2)
shown in two orientations rotated by 90◦. Twelve Pdx1 synthase subunits form a double hexameric
ring core (purple), to which twelve Pdx2 glutaminase subunits (orange) are attached [44].

The main technique utilized in this work is non-invasive depolarized dynamic light
scattering (DDLS) [46–50], which employs the birefringent optical property of crystalline
materials to detect the early and nanoscale formation of nuclei not detectable via opti-
cal microscopes. The scattered DDLS signal intensity therefore rises with the ordering
of a 3D structure in a solution exposed to laser light. Meanwhile, the polarized compo-
nent of scattered light is collected by a separate detector as a conventional DLS signal,
whose intensity depends only on particle dimension and density in solution. Hence,
synchronously monitoring DLS and DDLS signal intensities allows us to identify and
investigate the early-stage evolution of a crystal nucleation process time-resolved under
different physicochemical conditions following both detected signals and corresponding
derived parameters—condensing and ordering. In addition, we measured the diffusion
interaction parameter KD, applying a different hardware system, to investigate the influ-
ence of different salt conditions to non-specific protein–protein interactions and to the
resulting phase behaviors. Our results confirm the coexistence of different nucleation
pathways by tuning the proportion of specific and non-specific protein–protein interactions
and by introducing an external force–pulsed electric field. The application of pEF and the
addition of pre-grown mesoscopic ordered clusters proved for both proteins applied in
these investigations to be effective methods to support and improve protein nucleation
towards obtaining X-ray suitable crystals.

2. Materials and Methods

The homotetrameric glucose isomerase (GI) from Streptomyces rubiginosus (Hampton
Research, Aliso Viejo, CA, USA), with an isoelectric point of 5.0 and molecular weight of
43.23 kDa, was stabilized in 10 mM MES buffer, pH 6.5 with 1 mM dithiothreitol (DTT).
The Pdx complex from Staphylococcus aureus, composed of twelve Pdx1 (32.12 kDa) and
twelve Pdx2H165N (23.76 kDa) subunits, with an isoelectric point of 5.26, was expressed and
purified as reported before [51] and stored in 20 mM Tris-HCl buffer, pH 8, 200 mM NaCl,
1 mM ethylenediaminetetraacetic acid (EDTA), 2 mM DTT and 10 mM L-glutamine. All
the stock solutions of precipitants and salts applied were prepared in the same buffer with
the corresponding proteins and filtered prior to use, applying either a 0.2 µm or a 0.45 µm
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filter (SARSTEDT, Nümbrecht, Germany). Prior to experiments, GI and the Pdx complex
were centrifuged for 30 min at 21,130× g and 4 ◦C and the protein concentrations were
determined applying a Nanodrop 2000 (Thermo Fisher Scientific, Bremen, Germany). All
measurements were carried out at 20 ◦C.

2.1. Polarized and Depolarized Dynamic Light Scattering (DLS/DDLS) Experiments
2.1.1. DDLS Instrument and Setup for Applying Pulsed Electric Field

As shown in Figure 2a,b, one custom-built light scattering instrument, which is capable
of detecting simultaneously the vertical component (polarized) and horizontal component
(depolarized) of scattered light from the sample, was designed and constructed in collaboration
with XtalConcepts (Hamburg, Germany). The instrument provides a laser wavelength of
532 nm and a laser output power of 100 mW. The laser light was polarized by a vertical
polarizer before passing through the sample. The vertical component of scattered light (DLS
signal) was collected directly at 90◦ by an objective (Plan APO ELWD 20 × 0.42 WD = 20),
and the horizontal component was separated from scattered light by a polarizing beam
splitter (Qioptic Photonics, Göttingen, Germany) and collected as a DDLS signal. The
autocorrelators of the instrument cover an acquisition time range from 0.4 ms to 30 s.
A transparent quartz cuvette (101.015-QS, Hellma Analytics, Munich, Germany), with
3 mm × 3 mm inner cross-section and 21 mm height, was used as the sample container
and immersed into an index matching bath with plane parallel walls (thickness 1 mm)
and filled with ultrapure water. The design and setup for applying pEF to a sample
suspension in the cuvette during DLS/DDLS measurements is shown in Figure 2c and
was described in detail in a previous publication [52]. Two platinum (Pt) wires with
0.3 mm diameter, 25 mm length and a resistance (R) of approx. 37.5 mΩ at 20 ◦C (Sigma,
Neustadt, Germany) were inserted at two opposite corners of the cuvette to generate a
pEF. The applied pulsed waveform is with a pulse amplitude rising continuously in the
first half period and decreasing gradually in the second half period of one waveform circle
(Figure 2c), which was referred to waveform 4 (W4) in our previous publication. The
maximum output pulse amplitude in each wave circle was 30 V and the minimum was no
larger than 1 V on 500 Ω load. The pulse width (τ) of each single pulse was 0.6 ± 0.15 ms.
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Figure 2. (a) Schematic [53] and (b) photographic [52] images of the DDLS instrument. (c) Illustra-
tion of the quartz cuvette with two Pt wires to apply a pulsed electric field during a DLS/DDLS
measurement [52].

2.1.2. Sample Preparation and Experimental Methods for DLS/DDLS Measurements

Prior to DLS/DDLS measurements, the stock solutions of protein, salt and crowding
agent were mixed according to the final concentration of each composite in the mixture with
a final volume of 40 µL. The measured solutions were pipetted into the transparent quartz
cuvette and sealed with a glass cover slid. To investigate the effect of a pEF on protein
crystallization (Sections 3.3 and 3.4), the pEF described in Section 2.1.1 and Figure 2c was
applied to GI and Pdx samples of pEF groups continuously during the entire DDLS mea-
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surement. For GI, each data acquisition step was recorded for 20 s followed by a delay time
of 20 s for a DLS/DDLS measurement of 1 h. For the Pdx complex, each measurement was
recorded for 4 h with 20 s of acquisition time for each data point and 60 s of interval delay
time between two data points. The decay time constants of the DLS signal (translational dif-
fusion coefficient, Dt) and the DDLS signal (rotational diffusion coefficient, Dr) are obtained
from the autocorrelation function (ACF) by using the CONTIN algorithm [54]. Appropriate
viscosity of each solution was considered to calculate the hydrodynamic radii (Rh) based on
the well-known Stokes–Einstein equation [55] (Equation (1)) and Stokes–Einstein–Debye
equation [56] (Equation (2)):

Dt =
KBT

6πηRh
(1)

Dr =
KBT

8πηR3
h

(2)

where Dt and Dr are the translational and rotational diffusion coefficients derived from the
ACF of the DLS and the DDLS signal as a function of time, respectively. KB is the Boltzmann
coefficient, T is the absolute temperature and η is the viscosity value of the solution.

2.2. Measuring Diffusion Interaction Parameter—KD

To obtain information about the protein diffusion interaction parameter KD, a Wy-
att Mobius instrument was applied (Wyatt Technology, Santa Barbara, CA, USA), which
is a non-destructive and versatile light scattering instrument applied to measure par-
ticle dimensions and electrophoretic mobility of proteins/polymers. The translational
diffusion coefficient Dt determined by DLS is a function of concentration c as shown in
Equation (3) [57], from which the KD value was calculated:

Dt = D0 (1 + KDc) (3)

where Dt is the measured transitional diffusion coefficient, D0 is the diffusion coefficient at
infinite dilution, and c is the concentration of the protein in mg/mL, KD is the first-order
diffusion interaction parameter, which is fundamentally related to the common indicator of
protein–protein interactions—the second virial coefficient A2 [58]:

KD = 1.024A2M − 6.18 (4)

where M is the protein molecular weight.
For the determination of the KD values, six concentrations of the GI solution ranging

from 1 to 20 mg/mL were applied and for the Pdx complex six solutions in the range of 0.5
to 5 mg/mL were prepared and measured. Before preparing the sample suspensions the
concentrations of the stock protein solutions were measured after centrifugating them for
30 min at 21,130× g and 4 ◦C. Buffers were filtered, applying 0.2 µm filters. Then, 45 µL
of the protein sample solution was pipetted into a quartz cuvette (WNQC45-00, Wyatt
Technology, Santa Barbara, CA, USA) and recorded by DLS. The corresponding KD values
were calculated and analyzed by applying the software DYNAMICS [57].

2.3. Hanging-Drop Crystallization of Protein with Mesoscopic Ordered Clusters (MOCs) Induced
by pEF
2.3.1. Glucose Isomerase

A 40 µL solution of 4 mg/mL GI in 10 mM MES pH 6.5, 1 mM DTT and 50 mM MgCl2
buffer was exposed to a pEF (parameters described in Section 2.1.1) for 30 min (Figure 3,
Step 1). After, the pEF-treated protein solution containing MOCs was mixed on one cover
slide with 4 mg/mL fresh protein solution in five different volume ratios to form a 2 µL
protein droplet in total (Figure 3, Step 2). Finally, protein droplets on four cover slides
were mixed with PEG20k in a 1:1 volume ratio (Figure 3, Step 3). Four concentrations of
PEG20k (2%, 4%, 8% and 12%) were applied to droplets on different cover slides. Then,
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500 µL of PEG20k at the same initial concentration as prepared for the 5 droplets on
each slide was added to the reservoir of the hanging-drop 24-well crystallization plate
(Jena Bioscience, Jena, Germany), and afterwards each cover slide with 5 droplets was
turned over on individual crystallization reservoirs and sealed with silicone grease (Kurt
Obermeier, Bad Berleburg, Germany). All experiments were performed in quadruplicate.
The crystallization plates were placed at 20 ◦C and observed applying an OLYMPUS SZX12
Microscope (OLYMPUS, Tokyo, Japan).
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Figure 3. Scheme showing the three-step experimental procedure to prepare hanging-drop crystal-
lization droplets of GI with varying volume ratios of mesoscopic ordered clusters, prior prepared by
treating a protein solution with a pEF.

2.3.2. Pdx Complex

A 40 µL solution of the Pdx complex at 5 mg/mL was mixed 1:1 with 10% PEG4K,
0.2 M ammonium citrate pH 7.0, 10 mM L-Glutamine and treated with pEF (parameters
described before in Section 2.1.1) for 4 h as shown in step 1 of Figure 3. Afterwards, 0.5 µL
of the pEF-treated protein solution containing mesoscopic ordered clusters was taken from
the cuvette and mixed on a cover slide with 2 µL of 5 mg/mL of fresh Pdx solution to
reach a final volume of 2.5 µL. Subsequently, 0.5 µL of 20% PEG4K was added to the
droplet. For control, a 3 µL droplet was prepared and placed on a glass cover slide without
pEF-treated protein solution but containing the same final concentration of Pdx and PEG4K.
All experiments were prepared in quadruplicates. Each cover slide was turned over on one
crystallization reservoir of the hanging-drop 24-well plate (Jena Bioscience, Jena, Germany)
containing 500 µL of 20% PEG4K as the reservoir mother liquor and sealed with silicone
grease (Kurt Obermeier, Bad Berleburg, Germany). The crystallization plate incubation and
further analysis of droplets were carried as described for GI previously.

3. Results

3.1. Effect of the Metal Cations Na+ and Mg2+ on Early Stage Condensing and Prenucleation
Ordering of GI

To investigate GI prenucleation under the effect of different ions and ionic strength
conditions, a GI solution at 2 mg/mL was mixed with 4% PEG20k acting as crowding agent
in final concentration (Figure 4). The hydrodynamic radius (Rh) of tetrameric and negatively
charged GI was stable during the 1-hour measurement and showed a value of approx. 3 nm
(Figure 4a1), which is smaller than the reported tetrameric Rh of 4.4–5.0 nm [59–61], due
to the hyper-diffusivity of proteins caused by the relative high repelling strength between
proteins in solution at low concentrations of ions [57]. A slight fluctuation of GI Rh appeared
after adding 20 mM NaCl (Figure 4a2); however, only NaCl at concentrations higher than
60 mM triggered the formation of nanoscale clusters with Rh of approx. 9 nm, which
transformed along an increasing NaCl gradient towards mesoscopic clusters with initial
dimensions of approx. 100 nm (Figure 4a3–a5). Clusters with larger dimensions as well
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an increasing clusters density were acquired applying 250 mM of NaCl, as demonstrated
by the increase in the DLS signal intensity, although nonstructural ordering was detected
according to the negligible increase in DDLS signal intensity within 1 h of measurement
(Figure 4a5′).

The results shown in Figure 4b,b′ were obtained by adding different concentrations
of MgCl2 into the mixtures of 2 mg/mL GI containing 4% PEG20k. The concentration
of MgCl2 was selected based on the aim to keep the concentrations of chloride ions and
cationic net valency the same as in the NaCl+GI assays (Figure 4a,a′). Compared with the
effect of NaCl, even 10 mM MgCl2 induced the formation of nanoscale clusters with approx.
Rh of 9 nm and mesoscopic clusters with radius of approx. 300–400 nm (Figure 4b2),
accompanied by a strong increase in DLS signal intensity (Figure 4b2′). Interestingly,
a synchronous rise in DDLS signal intensity showing changes in structural order also
occurred at MgCl2 concentrations higher than 30 mM (Figure 4b′, 30–125 mM MgCl2),
indicating the simultaneous evolution of structural ordering within condensing GI particles
in solutions.
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Figure 4. Monitoring phase transition of a 2 mg/mL GI solution by DLS and DDLS under the effect
of Na+ and Mg2+ gradients in 10 mM MES pH 6.5 and 4% PEG20k buffer. (a1–a5) Kinetic evolution
of the hydrodynamic radius in the presence of a NaCl gradient (a1′–a5′) showing the resultant
DLS (left Y-axis, orange open circles) and DDLS (right Y-axis, green closed circles) signal intensities.
(b1–b5) Kinetic evolution of the hydrodynamic radius and (b1′–b5′) corresponding DLS/DDLS
signal intensities of a GI solution by mixing the solution with a MgCl2 gradient.

To explore the mechanisms caused by the NaCl and MgCl2 ions on the GI phase
behaviors shown above, the diffusion interaction parameter KD of GI solutions in the corre-
sponding gradients of NaCl (Figure 5c) and MgCl2 (Figure 5d) was measured subsequently.
As an indicator of non-specific protein–protein interactions, positive KD values indicate
repulsive intermolecular interactions, while negative values denote attractive interactions.
The decreased KD value in Figure 5c (black crosses) demonstrated that an increasing NaCl
concentration diminished the repulsive forces between negatively charged GI particles in
solution. However, the divalent cation Mg2+ caused even stronger effects and obviously
promoted more intermolecular interactions between GI molecules, and the KD values of GI
were reduced more sharply in the concentration range of 0 to 50 mM Mg2+ (black crosses
in Figure 5d) compared to those of Na+ ions in the concentration range of 0 to 100 mM
(black crosses in Figure 5c). The positive KD values of GI at MgCl2 concentrations above
50 mM are higher than those of GI with MgCl2 at concentrations below 50 mM. In parallel,
polydisperse Rh values indicate the formation of aggregates at MgCl2 concentrations higher
than 50 mM (red dots in Figure 5d), which were also accompanied by the presence of
multiple decay steps of the corresponding ACF, as shown in Figure 5b. Therefore, the
obtained KD values of GI in the presence of MgCl2 at concentrations above 50 mM probably
do not reveal the real situation of protein interactions. These results correlate with the
order of cations in the Hofmeister series—Na+ is in a higher order in the cation series than
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Mg2+ to enhance the ‘salting in’ effect and the solubility of protein at lower ionic strengths,
while the ‘salting out’ effect appeared and caused the aggregation of the protein at a high
concentration of Mg2+ [62]. It is worth pointing out that the subtle decline in GI Rh with
decreasing concentrations of 100 to 0 mM NaCl (red dots in Figure 5c) and 50 to 0 mM
MgCl2 (red dots in Figure 5d) can be considered as a result of the hyper-diffusivity of the
protein at low ionic strength, which is used to calculate Rh based on Equation (1).
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Figure 5. The auto-correlation function of a GI solution (a) with varying NaCl and (b) with varying
MgCl2. KD values (left Y-axis, black cross) and the hydrodynamic radii (Rh, right Y-axis, red dot) of
GI as a function of (c) NaCl and (d) MgCl2 concentration.

3.2. Effect of a Crowding Agent on Condensing and Prenucleation Ordering of GI

In a crowded environment, proteins are subjected to an entropic penalty if they form a
large co-volume with impenetrable crowders, which occupy the solvent space and reduce
the volume accessible to the protein [63]. How does volume exclusion affect the protein
nucleation considering condensing and ordering? Here, we tried to answer this question
by monitoring the phase behaviors of GI mixed with varying concentrations of PEG20k
applying DLS/DDLS. Based on the results shown in Figures 4 and 5, the 10 mM MES
pH 6.5, 1 mM DTT buffer was prepared by (i) adding 100 mM NaCl and (ii) adding 50 mM
MgCl2 to investigate the effect of varying PEG20k concentrations on GI phase behavior in
different ionic systems. It is very noticeable, as shown in Figure 6a, that the condensation
of GI in solutions with 100 mM NaCl was promoted gradually with the rise in PEG20k
concentration from 0 to 6%, but no obvious structural ordering was detected as the DDLS
signal intensities remained lower than 5 kHz, as shown in Figure 6a′. ]vspace-6pt
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Figure 6. Time-resolved monitoring of GI phase transition in context of varying crowding environ-
ments. (a1–a5) Kinetic evolution of the hydrodynamic radii and (a1′–a5′) corresponding DLS (left
Y-axis, orange symbol)/DDLS (right Y-axis, green symbol) signal intensities of a 2 mg/mL GI solution
mixed with a gradient of PEG20k in a buffer containing 100 mM NaCl. (b1–b5) Kinetic evolution of
the hydrodynamic radii and (b1′–b5′) corresponding DLS/DDLS signal intensities of a 2 mg/mL GI
solution mixed with a gradient of PEG20k in a buffer containing 50 mM MgCl2.

However, evident structural ordering was observed in parallel with GI condensing under
the effect of 4% and 6% PEG20k in the presence of 50 mM MgCl2 (Figure 6b4,b4′ and b5,b5′).
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The highest DDLS intensities of approx. 360 kHz were detected from the beginning onwards
after mixing GI with 6% PEG20K, indicating a simultaneous trigger of condensing and
structural ordering within the GI particles. Furthermore, 6% PEG 20k induced a different
evolution pattern of Rh, from which no nanoscale or mesoscopic (10–1000 nm) clusters
were detected at the beginning of the mixing; however, after 15 min, a minor population of
mesoscopic clusters approx. 200–400 nm in size occurred (Figure 6b5), and may represent
the existence of a re-arranging nucleation mechanism leading to the re-directing and re-
ordering of MOCs within the clusters during the nucleation process. This re-arranging
nucleation mechanism was also confirmed by the increase in the corresponding DDLS
signal intensities from 400 kHz to 700 kHz during the last 45 min of the measurement
(Figure 6b5′). The slight drop in DLS signal intensities shown in Figure 6b4′,b5′ can be
considered to be caused by the sedimentation of larger particles.

3.3. Effect of a pEF on the Crystallization Process of GI under Different Ionic and
Crowding Conditions
3.3.1. A pEF Modulate the Early Stage of Condensing and Prenucleation Ordering of GI

In a previous work, the effect of the pulsed electric field (pEF) on protein phase sepa-
ration applying five different waveforms was investigated and demonstrated a gradient
pulsed waveform (W4) can support the growth of liquid dense clusters and microcrystals
with homogeneous dimensions and morphology [52]. In terms of the investigations, the
identical setup with waveform 4 was applied to 2 mg/mL GI solutions containing varied
ionic strength and PEG20k. The Rh evolution and DLS/DDLS signal intensities of GI in
conditions without a pEF (control groups) are shown in Figure 6, but the Rh of each control
group is plotted together with the Rh of the corresponding pEF group in Figure 7a1–a4,b1–b4,
allowing direct comparison. For DLS and DDLS signal intensities, only the pEF groups of
all conditions are shown in Figure 7a1′–a4′ and b1′–b4′, respectively.
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Figure 7. The effect of a pulsed electric field on the phase behavior of GI in a solution with different
ions and PEG conditions. (a1–a4) Development of the hydrodynamic radii of 2 mg/mL GI with
PEG20k in a buffer containing10 mM MES pH 6.5, 100 mM NaCl exposed to a pEF (green open circles)
and without pEF (purple bubbles). (a1′–a4′) The corresponding DLS (left Y-axis, orange open circles)
and DDLS (right Y-axis, green closed circles) signal intensities of the pEF group monitored with a
buffer containing 100 mM NaCl. (b1–b4) Evolution of the hydrodynamic radii of a 2 mg/mL GI
solution mixed with PEG20k and buffer condition of 10 mM MES PH 6.5, 50 mM MgCl2 with a pEF
(pink open circles) and without pEF (green bubbles). (b1′–b4′) The corresponding DLS and DDLS
signal intensities of the pEF group monitored in a buffer containing 50 mM MgCl2. DLS/DDLS signal
intensities of each control condition without pEF are shown in Figure 6.

Obviously, pEF had less or no functionality in the absence of ions, visualized by
the overlap of GI Rh values between the control group (without pEF) and the pEF group
(Figure 7a1). In the presence of 100 mM NaCl, the size evolution of GI with the application of
pEF showed a similar pattern in Figure 7a2,a3; however, the detected DLS/DDLS intensities
of GI with 1% PEG20k (Figure 7a3′) was much smaller than that of GI in both conditions
without PEG (Figure 7a2′) and with 2% PEG20k (Figure 7a4′) under pEF conditions. This
is because 1% PEG20k was too low to initiate GI condensation according to the size
distribution in the control group of GI with 1% PEG20k (purple bubbles in Figure 7a3),
although it can slow down the motion of molecules in the solution [64]. Conversely, the
formation of mesoscopic GI clusters was initiated in 20 min when PEG20k reached a
concentration of 2% in the solution (purple bubbles in Figure 7a4) and was accelerated after
applying a pEF (green circles in Figure 7a4), the structural ordering within mesoscopic
clusters was significantly induced by the pEF, indicated by a substantial rise in the DDLS
signal intensities, up to 1000 kHz (Figure 7a4′). Interestingly, based on the time at which
the DLS and DDLS signal intensities rose, a simultaneous development of condensing
and three-dimensional ordering was stimulated by the pEF in a GI solution without PEG
(Figure 7a2′); however, an ordering prior to a condensing process occurred in a GI solution
containing 1% or 2% PEG20k under the effect of pEF (Figure 7a3′,a4′).
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The applied pEF was shown to be more effective when Mg2+ ions were present in
the solution analyzed. The kinetic evolution of GI showed similar clustering patterns in a
solution of 50 mM MgCl2 without PEG20k (Figure 7b2) and a solution with 100 mM NaCl
and 2% PEG20k (Figure 7a4). In both mixing conditions, GI tetramers were consumed while
particles of approx. 1 µm were formed. Additionally, the DLS/DDLS signal intensities
showed the same level of anisotropy, which may suggest that in the case of GI crystallization,
a crowding agent in the crystallization solution can be replaced by a combination of
applying Mg2+ ions and pEF. The addition of Mg2+ ions and PEG20k from 1% up to 2%
and exposing the solution to a pEF triggered a similarly evolving pattern of size over time
(Figure 7b2–b4); however, a high concentration of PEG20k accelerated the condensing
and structural ordering process of GI under pEF according to the growth of DLS and
DDLS signal intensities (Figure 7b2′–b4′), leading us to believe that a critical density of
mesoscopic intermediates shall be reached for the nucleation, corresponding to 100 kHz of
DLS signal, and may indicate the metastability of mesoscopic intermediates with respect to
the crystalline phase.

3.3.2. Effect of Mesoscopic Ordered Clusters (MOCs) Induced by a pEF on
GI Crystallization

To explore the effect of mesoscopic ordered clusters (MOCs) in a crystallization pro-
cess, we applied MOCs previously produced by a pEF in a quartz cuvette (right image in
Figure 8a) by adding them into the crystallization droplets of GI. As shown in Figure 3,
crystallization droplets were prepared by mixing 2 µL of the 4 mg/mL GI solution con-
taining different volume ratios of MOCs, which served as crystallization seeds, and 2 µL
of varying concentrations of PEG20k. Then, the droplets were compared considering
aspects such as the number of crystals, crystal dimensions and morphology after 24-hour
incubation at 20 ◦C. Interestingly, the results show that the number of obtained crystals
increased (Figure 8b) but their size reduced (Figure 8c) after adding increased ratios (v/v)
of MOCs in the droplet, keeping the PEG20k concentration constant. The crystal size and
morphology in each droplet were kept homogenous for droplets where MOCs were placed
prior to crystallization, compared to those where crystallization was performed without
MOCs. This result is consistent with the assumption that increasing the number of struc-
tural ordered MOCs provided more crystallization nuclei in a droplet, and thus resulted
in more crystals. However, the amount of protein molecules in a droplet is limited, and
more nuclei serving as crystallization centers results in crystals with smaller dimensions.
Moreover, the addition of MOCs enhanced the crystallization rate at a low concentration
of PEG20k (Figure 8c, 1% PEG20k), and more crystals with homogeneous size and shape
were obtained compared to the crystals formed without MOCs (Figure 8c, 4% PEG20k).

3.4. Effect of a pEF on Crystallizing the Pdx Complex from S. aureus

Large biological protein complexes, as the Pdx complex, are most of the time chal-
lenging to crystallize [43,51], thus are interesting targets to identify crystallization methods
to overcome the bottleneck. Therefore, the prenucleation mechanism of a recombinant
complex protein from S. aureus, Pdx1/Pdx2H165N (Pdx), applying the influence of a pEF
was investigated to verify the general principle of the pEF to promote the biomolecular
crystallization process.
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3.4. Effect of a pEF on Crystallizing the Pdx Complex from S. aureus 
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3.4.1. pEFs Promote the Early-Stage Ordering of Pdx Complex Nucleation 
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Figure 8. (a) Forty microliters of 4 mg/mL GI in a buffer of 10 mM MES pH 6.5, 1 mM DTT and
50 mM MgCl2, incubated in a quartz cuvette for 30 min without and with the application of a pEF.
The scale bar corresponds to 50 µm. (b) GI crystals obtained from droplets with a final concentration
of 2 mg/mL GI, and different ratios (v/v) of fresh protein solution seeded with a pEF-treated protein
solution in 10 mM MES pH 6.5, 1 mM DTT and 50 mM MgCl2 buffer. PEG20k in the same buffer
with GI was applied as crystallization precipitant. Scale bar is 200 µm. (c) Magnified view of crystals
formed in each droplet, and the scale bar corresponds to 100 µm. All droplets were recorded via an
optical microscope after 24-hour incubation at 20 ◦C.

3.4.1. pEFs Promote the Early-Stage Ordering of Pdx Complex Nucleation

In crystallization screening experiments, crystals of the complex were obtained from
a solution of 2.5 mg/mL Pdx with 5% PEG4000 after incubation of 2–5 days. The early
stages of the crystallization process were monitored in the first 4 h via DLS/DDLS with
and without the application of a pEF. To understand the effect of the pEF on the early-stage
clustering of the Pdx complex, a Pdx crystallization concentration of 2.5 mg/mL as well as
a lower concentration of 0.75 mg/mL were assessed. The Pdx complex showed a similar
growth profile in terms of size evolution and density ordering at both concentrations
without the application of a pEF (Figure 9a,b,a′,b′). The fraction with Rh of approx. 15 nm
showed a single particle population of the Pdx complex as shown in Figure 1b. The
mesoscopic clusters with an initial Rh of approx. 100 nm displayed a progressive growth
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(Figure 9a,b) accompanied with the rise of DLS (orange circles in Figure 9a′,b′) but not
DDLS (green dots in Figure 9a′,b′) signal intensities in the first 2 h at both concentrations
without the application of pEFs, indicating a condensing process of Pdx clusters without
internal structural ordering within the first 4 h of the crystallization process.
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Figure 9. The effect of pEFs on early stages of Pdx crystallization at different protein concentrations.
Kinetic evolution of the hydrodynamic particle radii from mixtures of 2.5 mg/mL Pdx with 5%
PEG4000 (a) without and (c) with the application of a pEF, and mixtures at a final concentration of
0.75 mg/mL Pdx, 5% PEG4000 (b) without and (d) with a pEF. The corresponding DLS (orange open
circles) and DDLS (green bubbles) signal intensities of each condition are shown in (a′–d′).

The size development of Pdx mesoscopic clusters with an initial Rh of 100 nm at both
protein concentrations exposed to a pEF (Figure 9c,d) showed comparable patterns with
those of their corresponding control groups shown in Figure 9a,b. However, the single
particle fraction of Pdx was growing steadily from approx. 15 nm to 100 nm in 4 h under
the influence of the pEF (Figure 9c,d). The DDLS signal intensities fluctuated in the range
of 4–20 kHz, despite the clusters growing in both control groups at 2.5 mg/mL (Figure 9a′)
and 0.75 mg/mL Pdx (Figure 9b′), but increased noticeably to 200 kHz in a Pdx solution of
2.5 mg/mL (Figure 9c′) and to 100 kHz in a Pdx solution of 0.75 mg/mL applying the pEF
for 4 h (Figure 9d′), evidencing the strong effect of the pEF on promoting the nucleation
process of Pdx in a pathway where Pdx molecules ordering the three-dimension structure
in parallel with condensing.

3.4.2. Effect of Mesoscopic Ordered Clusters (MOCs) Induced by a pEF on
Pdx Crystallization

After monitoring the early stage of Pdx crystallization, applying the pEF for 4 h via
DDLS, as shown in Figure 9c, 0.5 µL of the solution containing MOCs was taken from the
cuvette and directly added as a seeding solution to the oversaturated Pdx crystallization
droplets. Control droplets with the same Pdx concentration and precipitant but without
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the addition of MOCs were prepared and monitored in parallel. The resulting droplets of
Pdx without MOCs showed numerous cubic crystals with tiny dimensions ranging from
5 up to 30 µm after 1 day (Figure 10a,b). In parallel, a different crystallization mechanism
was observed in droplets prepared containing MOCs, which showed a lower number of
homogeneous hexagonal crystals in droplets, compared to the control group after 1 day.
Additionally, a lower number of larger crystals were observed after 5 days (Figure 10c,d).
The crystals formed with MOCs are almost ten times larger than those formed without
MOCs. Another interesting observation is the occurrence of three-dimensional multilayer
stacks, also referred to as looped macrosteps visible on the surface of crystals formed with
MOCs, as shown in Figure 10c,d. Those looped macrosteps on the crystals are probably
caused by the fusion of mesoscopic liquid dense clusters with the macroscopic crystalline
phase [35,65], characterizing the occurrence of a multiple-step nucleation of Pdx in the
presence of a pEF.
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4. Discussion

We investigated the phase and nucleation behavior of GI by monitoring time-resolved
liquid phase separation, cluster formation and nucleation applying DLS/DDLS under
several distinct concentrations of cations and PEG. The combined studies of the diffusion
interaction parameters in solutions at different cationic conditions and the resultant phase
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behavior demonstrated how cationic ions and corresponding ionic strength influence pro-
tein interactions and the development of GI clusters. Positive KD values of GI at low ionic
strength indicated strong repulsion between negatively charged GI molecules in solution.
Changing a salt concentration in a protein solution at low ionic strength (<100 mM) can alter
the electrostatic interactions between proteins [9]. The positive KD values of GI decreased
continuously with increasing NaCl concentration and reached a plateau in the range of
100–250 mM NaCl (black crosses in Figure 5c), where GI proteins started to form liquid
dense clusters in the presence of 4% PEG20k, as shown in Figure 4a4,a5. The plateauing of
protein interaction parameters at a higher ionic strength (>100 mM) was also observed by
Jordan W. Bye and Robin A [66]. For GI solutions containing MgCl2, the repulsive forces
between proteins were substantially reduced at 10 mM MgCl2 (black crosses in Figure 5d),
triggering the formation of mesoscopic clusters in the presence of 4% PEG20k (Figure 4b2).
In an ionic strength range of 0–100 mM, KD values dropped more sharply under the effect
of MgCl2 than that influenced by NaCl, indicating that the multivalent cation is more effec-
tive in interfering with protein surface charges, therefore modulating non-specific protein
interactions. Moreover, Mg2+ was reported to reversibly bind and dissociate at the catalytic
site of GI [67], and thereby the short-range attractive interaction between GI molecules was
also enhanced with increasing Mg2+ concentration. The driving force of GI condensing
can be both non-specific (diffusion interaction, volume exclusion) and specific interactions
(short-range interaction) according to the development of Rh and DLS signal intensities
of GI in the presence of NaCl and MgCl2 in Figures 4 and 6. Nevertheless, to a certain
extent, short-range interactions instead of only high-amplitude density fluctuations are
necessary to promote structure ordering within GI clusters, as confirmed by the evolution
of DDLS signal intensities of GI in a NaCl gradient and in a MgCl2 gradient, as shown in
Figures 4 and 6, under the same concentration of PEG20k. Roosen-Runge et al. proposed
a model which is well known in protein crystal growth, stating that multivalent metal
ions can support protein contacts and can stabilize a crystal lattice by bridging protein
molecules [68], which also explains the shrinkage of initial Rh of GI mesoscopic clusters
formed at 10 to 50 mM MgCl2, shown in Figure 4b, confirmed also by the increasing DDLS
signal intensity, as shown in Figure 4b′. The data shown in Figures 4 and 6 also prove
theoretical investigations which suggested that the crystallization pathway can be altered
by adjusting the proportion of the specific and nonspecific protein interactions [69–71].
We applied an external pulsed electric field (pEF) to study how a pEF can influence the
nucleation pathway of GI in different solution conditions (varying salt and PEG). The
Pdx complex of high molecular weight was employed to verify the capability of pEF to
modulate the protein nucleation pathway. The results from GI show that pEFs can strongly
drive the protein condensing and 3D ordering. An ‘ordering prior to condensing’ pathway
was observed for GI solutions under the influence of pEFs, demonstrated by the early rise
in DDLS signal intensities, as shown in Figure 7a3′,a4′ and b2′,b3′. This can be attributed
to the effect of pEFs supporting the orientation of protein molecules and further nucleation.
The substantial effect of pEFs promoting protein 3D ordering is particularly recognizable
for Pdx solutions, which showed a comparative evolving pattern of an increasing size dis-
tribution (Figure 9a–d) accompanied by rising DLS signal intensities (orange open circles
in Figure 9a′–d′), with a distinct rise in DDLS signal intensities in parallel (green bubbles
in Figure 9c′,d′). Finally, the modulating effect of obtained mesoscopic ordered clusters
(MOCs), induced by a pEF, on the crystallization pathway was investigated systematically
for GI applying different volume ratios of MOCs and PEG concentrations. The results show
that the number of crystals and crystal dimensions obtained in a droplet can be effectively
affected by changing the number of MOCs added into a droplet (Figure 8). Except for
enhancing the crystallization rate of GI at a low PEG concentration (Figure 8c, 1% PEG20k),
MOCs can also support the crystals’ growth without crystal defects and with homogeneous
size and shape for a GI solution with a high PEG concentration (Figure 8c, 4% and 6%
PEG20k), probably by guiding protein molecules to attach to nuclei of pEF-induced MOCs.
The universal effect of MOCs on adjusting protein crystallization was proved by applying



Crystals 2022, 12, 437 19 of 22

them to the Pdx complex (Figure 10). Notably, looped multilayer stacks emerged on the
surface of the Pdx crystals formed with pre-added MOCs but not on Pdx crystals formed
without MOCs. This raised the following questions: which exact mechanism contributed
to the crystallization pathway with the addition of pre-induced MOCs? Do the added
MOCs attach to each other and consume protein molecules in one droplet, or do they attract
newly formed liquid dense clusters which attach to them and re-order to form crystals?
More techniques, such as the transmission electron microscope (TEM), which can monitor
crystallization processes in situ and time-resolved at the nanoscale, are required to address
these questions in future.

5. Conclusions

The obtained data and results from GI show that short-range attractions supported
by multivalent cations are required to support protein orientation and alignment in an
undersaturated solution, despite the contribution of non-specific protein interactions. The
nucleation pathway of GI is adaptable to the changing proportions of specific and non-
specific interactions in the system. In particular, a distinct pEF is effective in driving protein
ordering and clustering in the presence of ions. The structure ordering of clusters always
appeared after the condensing step of GI in the absence of short-range attractions or a pEF,
indicating a two-step nucleation pathway. Conversely, an ordering prior to clustering or
a synchronized increase in both parameters was observed in GI solutions with a relative
high concentration of Mg2+ ions or via the application of a pEF. Here, we also report for
the first time the use of mesoscopic ordered clusters (MOCs) as ‘seeds’ with homogeneous
dimensions, obtained and induced by a pEF, to systematically investigate the effect of
such MOCs on the crystallization process. The application of a pEF and MOCs on the
Pdx complex confirmed the rather substantial effect of pEFs in accelerating the nucleation
process and the role of MOCs in modulating the crystallization pathway. Compared to
the traditional seeding method utilizing a suspension of crushed crystals, the production,
quality and dimensions of pEF-MOCs are reproducible and controllable. In summary, the
data presented show multiple pathways for crystal nucleation and growth in complex
physicochemical scenarios, which so far have not been described. In particular, the method
used to induce mesoscopic ordered clusters by a pEF, which act as crystallization seeds and
can be applied efficiently to modify the crystallization pathway, is most innovative.
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