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Abstract: Ester prodrugs can develop novel antibiotics and have potential therapeutic applications
against multiple drug-resistant bacteria. The antimicrobial activity of these prodrugs is activated
after being cleaved by the esterases produced by the pathogen. Here, novel esterase ScEst originating
from Staphylococcus chromogenes NCTC10530, which causes dairy cow mastitis, was identified, char-
acterized, and analyzed using X-ray crystallography. The gene encoding ScEst was cloned into the
pVFT1S vector and overexpressed in E. coli. The recombinant ScEst protein was obtained by affinity
and size-exclusion purification. ScEst showed substrate preference for the short chain length of acyl
derivatives. It was crystallized in an optimized solution composed of 0.25 M ammonium citrate
tribasic (pH 7.0) and 20% PEG 3350 at 296 K. A total of 360 X-ray diffraction images were collected at
a 1.66 Å resolution. ScEst crystal belongs to the space group of P212121 with the unit cell parameters
of a = 50.23 Å, b = 68.69 Å, c = 71.15 Å, and α = β = γ = 90◦. Structure refinement after molecular
replacement is under progress. Further biochemical studies will elucidate the hydrolysis mechanism
of ScEst. Overall, this study is the first to report the functional characterization of an esterase from
Staphylococcus chromogenes, which is potentially useful in elaborating its hydrolysis mechanism.

Keywords: carboxylesterase; Staphylococcus chromogenes; X-ray crystallography

1. Introduction

Multiple drug resistance (MDR) bacteria are an emerging global threat that potentially
imposes healthcare and economic issues [1,2]. The production of drug-inactivating enzymes,
such as β-lactamase and aminoglycoside modifying enzymes [3], drug elimination from
the cell, mutation of an existing target, and acquisition of a target by-pass system have been
proposed as major MDR resistance mechanisms. Therefore, the necessity for discovering
and developing novel antibiotics with unconventional modes of action has increased in
order to overcome these resistance mechanisms [4].

One of the strategies to avoid MDR is antibacterial prodrugs that are pharmacologically
inactive and are cleaved by bacterial enzymes to become active antibiotics [5]. Antibacterial
prodrugs are synthesized by adding functional groups to the antibiotic skeleton and may
have multiple advantages [5]. For example, adding a lipophilic pivaloyloxymethyl to
cephalosporin cefditoren increases its absorption in the small intestine [6]. Ester is also
a functional group that is added to antibiotics to increase the delivery efficiency, cell
permeability, and oral bioavailability of the prodrug [7,8]. Carbenicillin, carfecillin (phenyl
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ester), and carindacillin (indanyl ester) are some ester-containing antimicrobial prodrugs [9].
Pathogen specificity is another advantage of ester prodrugs. Since such antibacterial
prodrugs are transformed by the cytosolic esterase specifically produced by the pathogen,
the pathogen is selectively executed [10].

Previously, human esterases were studied for their function in prodrug activation [11].
However, the application of human esterase for antibiotic prodrug activation is limited
due to its esterase-dependent localization and expression. Alternatively, analyzing the
substrate selectivity and activity of bacterial esterases has provided crucial details for
targeting potential antibiotic prodrugs to develop novel antibiotics for the treatment of
MDR [5,7,10,12]. Bacterial esterases have a canonical α/β-hydrolase fold that consists of a
core β-sheet surrounded by α-helices to catalyze the hydrolysis (EC 3.1.1.X) of a variety
of substrates containing ester groups. The esterases use a catalytic triad comprising a
nucleophilic serine, a base histidine, and an activating acidic residue (Asp/Glu) to catalyze
the hydrolysis of the ester to a carboxylic acid and alcohol. Despite having the same
configuration as the enzyme hydrolase and a high degree of sequence homology, esterases
have distinct substrate specificities [13–15]. Therefore, pathogenic esterases need to be
functionally investigated, whereas the biochemical and structural studies may provide
valuable information for designing species-specific antimicrobial ester prodrugs. This
preliminary study focuses on the substrate specificity and function of esterases derived
from pathogens. Herein, we have analyzed the distribution of esterases and lipases across
the genome of Staphylococcus chromogenes NCTC10530, the prevalent bacterial pathogen
causing dairy cow mastitis. Furthermore, the carboxylesterase annotated as ScEst has been
purified, its biochemical properties have been investigated, and preliminary X-ray studies
have been conducted.

2. Materials and Methods
2.1. Phylogenetic Analysis

The subfamily of ScEst was analyzed using a phylogenetic tree based on full-length
protein sequences of several lipolytic enzymes that are already classified into specific
subfamilies [16–18]. A total of 69 protein sequences, including ScEst and other proteins
from the S. chromogenes strain NCTC10530 were used for multiple sequence alignment
using ClustalX [19]. The neighbor-joining method was used to generate a phylogenetic tree
using the MEGA-X [20].

2.2. Gene Cloning, Expression, and Purification of Recombinant ScEst Protein

The gene encoding ScEst (GenBank ID: SUM13810) was amplified by PCR and cloned
into the pVFT1S plasmid between the BamHI and XhoI restriction sites. The cloned sequence
was verified using Sanger sequencing using T7 promoter and terminator primers. E. coli BL21
(λDE3) was transformed with the recombinant plasmid harboring N-terminal 6xHis-tagged
ScEst for protein overexpression (Table 1). A single colony from the Luria Bertani (LB) agar
plate containing kanamycin was inoculated as a seed culture and grown overnight. The seed
culture (20 mL) was inoculated into 1 L of culture medium and kanamycin (50 µg mL−1)
and incubated at 37 ◦C at 150 rpm. When the OD600 of the culture reached 0.4, protein
overexpression was induced by adding 1.0 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG). The cells were further incubated at 37 ◦C for 4 h, and harvested by centrifugation
at 6000× g. The cell pellets were resuspended in a lysis buffer (20 mM Tris-HCl [pH 8.0],
500 mM NaCl, and 20 mM imidazole) and disrupted by sonication (Vibra-Cell™, Sonics &
Materials, Inc., Danbury, CT, USA) for 30 min at 35% amplitude (on for 2 s and off for 4 s).
The soluble fraction of protein was separated by centrifugation at 20,000× g for 40 min.

Recombinant ScEst was purified via a two-step purification process. First, the His-tag-
based purification was performed using a His-trap™ FF column (GE Healthcare, Chicago,
IL, USA). The supernatant containing the recombinant ScEst was loaded onto the column,
and the resin was washed with 10 column volumes of washing buffer. The remaining
recombinant ScEst was eluted with two column volume elution buffer (20 mM Tris-HCl
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[pH 8.0], 500 mM NaCl, 300 mM imidazole). The elute was then concentrated to 5 mL and
treated with thrombin for three days at 4 ◦C in a rotating incubator to cleave the His-tag.
For the second purification, HiPrep™ Sephacryl® S-200 HR (Cytiva, Marlborough, MA,
USA) connected to an ÄKTA™ Start chromatography system (GE Life Sciences, Piscataway,
NJ, USA) was equilibrated with a buffer composed of 20 mM Tris-HCl (pH 8.0), 200 mM
NaCl, and 1 mM EDTA, and the protein sample was loaded onto the column. The column was
calibrated using cytochrome C (12.4 kDa), carbonic anhydrase (29 kDa), alcohol dehydroge-
nase (150 kDa), and β-amylase (200 kDa). Kav was calculated by (Vs − Vo)/(Vt − Vo), where
vs. = elution volume, Vo = column void volume, Vt = column volume. The purity and
concentration of the recombinant ScEst were validated using SDS-PAGE and the Bradford
protein assay, respectively.

Table 1. Recombinant ScEst protein attributes.

ScEst

Source organism Staphylococcus chromogenes strain NCTC10530

DNA source Genomic DNA

Cloning vector pVFT1S

Expression host Escherichia coli BL21(DE3)

Amino acid sequence

MKIQLPKPFLFEEGKRAVLLLHGFTGNSSDVRQLG
RFLQKKGYTSYAPHYEGHAAPPEEILKSSPHVWY
KDALDGYDYLVDKGYDEIAVAGLSLGGVFALKLS
LNRDVKGIVTMCSPMYIKTEGSMYEGVLEYARNF
KKYEGKDETTIEREMQAFHPTSTLRELQETIQSV

RDHVEDVIEPLLVIQAEQDEMINPDSANVIYNEA
ASDEKHLSWYKNSGHVITIDKEKEDVFEEVYQFLESLDWSE

2.3. Enzymatic Analysis

The substrate specificities of ScEst were measured using various p-nitrophenyl esters,
including p-nitrophenyl acetate (pNP-C2), p-nitrophenyl butyrate (pNP-C4), p-nitrophenyl
hexanoate (pNP-C6), p-nitrophenyl octanoate (pNP-C8), and p-nitrophenyl decanoate (pNP-
C4), obtained from Sigma-Aldrich (St. Louis, MO, USA). The esterase activity with acyl
carbon chains of various lengths was evaluated by monitoring the p-nitrophenol (pNP) in
the solution spectrophotometrically [21]. Storage buffer (1 mL) containing 20 mM Tris-HCl
(pH 8.0), 200 mM NaCl, and 1 µg ScEst was prepared, and the reaction was initiated
by mixing an equal volume of the substrate (final 0.12 µM). The final concentration of
acetonitrile in the reaction mixture kept to 5% to avoid micelle formation of substrates with
longer acyl chains. The enzyme reactions were analyzed at 405 nm using an Epoch™ 2
microplate spectrophotometer (BioTek Instruments, Winooski, VT, USA), using the storage
buffer as control. Three independent measurements were used to represent the activity data.

2.4. Crystallization, Data Collection, and Structural Analysis

Commercially available crystallization solutions, MCSG I-IV (Anatrace Inc., Maumee,
OH, USA), and JCSG™ and PGA Screen™ (Molecular Dimensions Inc., Altamonte Springs,
FL, USA) were used to screen the crystallization conditions of ScEst. The sitting-drop vapor
diffusion method was set up by mixing 300 nL of solution and an equal volume of protein
(25 mg mL−1) against 80 µL of solution in the reservoir using a mosquito® liquid-handling
robot (TTP Labtech Ltd., Hertfordshire, UK). Subsequently, multiple optimizations using
24-well plates were further carried out to obtain a decent size and quality of crystals. The
crystallization data are presented in Table 2.

The single crystal of ScEst was cryoprotected using a mixture of crystallization solution
where the crystal of ScEst grew and glycerol (25% w/v) to prevent the crystal from being
frozen under a liquid nitrogen stream. The crystal was then mounted on a sample holder.
A total of 360 diffraction images were collected at the synchrotron Beamline 7A of the
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Pohang Accelerator Laboratory (PAL, Pohang-si, Korea) by rotating at 1◦ oscillation per
frame. The dataset was indexed, integrated, and scaled using the HKL-2000 software
package (HKL Research Inc., Charlottesville, VA, USA). The phase of the ScEst structure
was successfully determined using the carboxylesterase Est30 (PDB code: 1TQH) with the
molecular replacement method. The X-ray diffraction results are listed in Table 3.

Table 2. Initial crystallization conditions and optimization method.

Method Vapor Diffusion

Plate type for screening 96-well sitting drop MRC plate
(Molecular dimension, UK)

Composition of reservoir solution 0.2 M Ammonium citrate tribasic (pH 7.0),
20% PEG 3350

Plate type for optimization 24-well hanging drop plate,
(Molecular dimension, UK)

Composition of optimal solution 0.25 M Ammonium citrate tribasic (pH 7.0),
20% PEG 3350

Temperature (K) 296

Protein concentration (mg/mL) 4.3

Composition of protein solution 20 mM Tris-HCl (pH 8.0), 200 mM NaCl

Volume and ratio of drop (protein: solution) 2.0 µL, 1:1

Volume of reservoir (µL) 500

Table 3. X-ray diffraction data.

Data Collection

Wavelength (Å) 0.9793

X-ray source PAL 7A

Rotation range per image (◦) 1

Exposure Time (s) 1

Space group P212121

Unit-cell parameters (Å, ◦)
a = 50.23, b = 68.69, c = 71.15

α = 90, β = 90, γ = 90

Resolution range (Å) a 50–1.66 (1.69–1.66)

No. of observed reflections a 402,244 (19,564)

No. of unique reflections a 29,406 (1471)

Completeness (%) a 99.3 (100)

Redundancy a 13.7 (13.3)

Rsym
a,b 0.112 (1.202)

Rmeas
c 0.117 (1.250)

I/σ a 62.3 (4.0)

CC(1/2) (%) 99.6 (82.8)

Wilson B factor (Å2) 24.66

Matthews coefficient 2.18
a Values in parentheses correspond to the highest-resolution shells. b,c Rsym = hi|I(h)i−<I(h)>|/hiI(h)i, Rmeas =
Σhkl {N (hkl)/[N (hkl) − 1]}1/2 i |Ii (hkl) − |/hkli I(hkl), where I is the intensity of reflection h, h is the sum over all
reflections, and i is the sum over i measurements of reflection h.



Crystals 2022, 12, 546 5 of 9

3. Results and Discussion
3.1. Lipolytic Enzymes of S. chromogenes NCTC10530 and Classification of ScEst

Initially, the bacterial esterases and lipases were classified into eight families (I–VIII)
and six subfamilies, all of which belong to Family I, based on the biochemical properties
and sequence similarity known as the gold standard classification [17]. Recently, several
newly identified lipolytic enzymes have been incorporated into the classification system,
resulting in its expansion to 35 families and 11 lipase subfamilies [18].

In this study, a total of 27 putative lipolytic enzymes were identified from the in
silico analysis of the genome sequence of S. chromogenes strain NCTC10530. These enzyme
sequences were aligned with the categorized enzymes (Figure 1). Among the putative
lipolytic enzymes, ScEst was found to be homologous to Family XIII, specifically with
thermostable carboxylesterase Est30 from Geobacillus stearothermophilus (AAN81911, 62.30%
identity), EstOF4 from Bacillus sp. (AGK06467, 56.50% identity), and EstB2 from Bacillus sp.
(AAT65181, 58.54% identity).

Multiple sequence alignment revealed that the active site of ScEst shares a consensus
sequence G-X-S-X-G, characteristic of the esterase/lipase family (Figure 2). ScEst displayed
high sequence similarity with the Family XIII proteins. However, a unique region was
also identified in ScEst. The amino acid sequence 103–SLNRD–107 follows the active loop
in ScEst in contrast to its orthologs, which have GYTVLP in the corresponding region
(Figure 2). Since this site is in the vicinity of the active site, ScEst may have different
specificities for substrate recognition or activity. Overall, the phylogenetic and sequence
analyses confirmed that ScEst belongs to the XIII family but harbors a unique sequence,
which may lead to a distinctive function.

3.2. Biochemical Characterization of ScEst

To confirm the esterase activity, ScEst was expressed and purified using a two-step
purification process. His-Tag-affinity purification followed by size-exclusion chromatog-
raphy yielded the recombinant ScEst protein with high purity (>95%), and a molecular
weight similar to the calculated molecular weight of 29.2 kDa (Figure 3A). The molecular
weight of ScEst estimated by size-exclusion chromatography on FPLC was consistent with
the anticipated size of the dimer (Figure 3B). The esterase activity of ScEst assessed using
p-nitrophenyl esters (p-NP) indicated that ScEst has a substrate preference for acyl deriva-
tives with a short chain length, and the activity declined as the size of the acyl hydrocarbon
chain of the substrates increased. When the activity of ScEst against p-nitrophenyl acetate
(C2) was considered 100%, the relative activity was approximately 50% and 20% against
p-nitrophenyl butyrate (C4) and p-nitrophenyl hexanoate (C6), respectively. Substrates
longer than hexanoate did not show any measurable activity.

3.3. X-ray Crystallographic Study of ScEst

To determine the three-dimensional structure of ScEst, crystallization screening using
more than 1600 conditions, X-ray diffraction experiments, and initial model building were
performed. After multiple crystallization refinements, the best single crystal was obtained
with 0.25 M ammonium citrate (pH 7.0) and 20% (w/v) PEG 3350 (Figure 4A). The single
crystal was cryoprotected by a brief soaking in 25% glycerol-based cryoprotectant solution
and mounted under a liquid nitrogen stream at 100 K. The full coverage of 360 diffraction
images was obtained at the highest resolution of 1.66 Å (Figure 4b). The space group of
the ScEst crystal belonged to P212121 with the following unit cell parameters: a = 50.23 Å,
b = 68.69 Å, c = 71.15 Å and α, β, γ = 90◦. The initial structure of ScEst was generated by
molecular replacement using the CCP4i software suite [22]. Thermophilic carboxylesterase
Est30 from Geobacillus stearothermophilus (PDB code, 1TQH) showed a high amino acid
sequence similarity (61.79% identity) with ScEst, and was thus used as reference [23].
Model building and iterative structure refinement are currently underway using Coot
software [24] and Refmac5 [25] in the CCP4i suite.
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Figure 1. Phylogenetic analysis and classification of ScEst with bacterial lipolytic enzyme families.
Full-length protein sequences of 27 putative lipolytic enzymes from the Staphylococcus chromogenes
strain NCTC10530 were aligned with bacterial lipolytic enzyme sequences of known categories using
multiple sequence alignment (69 sequences). MEGA-X was used to create the phylogenetic tree using
the neighbor-joining method. All unclear locations were deleted (using the pairwise deletion option).
The percentage of duplicate trees in which the related taxa were clustered together in the bootstrap
test (500 repetitions) appears next to each node. The GenBank accession numbers are indicated
in parentheses.
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Figure 2. Multiple sequence alignment of ScEst with other esterases of Family VIII. The sequences
including that of thermostable carboxylesterase Est30 from Geobacillus stearothermophilus (GenBank
AAN81911), EstOF4 from Bacillus pseudofirmus (GenBank AGK06467), and EstB2 from Bacillus sp.
01-855 (Genbank AAT65181) belonging to the bacterial lipolytic enzyme Family VIII were aligned
using ClustalX. The conserved sites are highlighted in a darker color, whereas varied or polymorphic
sites are shown in a lighter color. The secondary structure deduced from the Est30 structure (PDB
code 1TQH) is displayed on the top of the aligned sequences. The conserved sequence at the active
site characteristic of Family VIII is indicated with a red bar. The adjacent region specific to the ScEst
is marked with a cyan bar. The conserved catalytic triads are indicated with triangles.
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Figure 3. Purification and characterization of ScEst. (A) SDS-PAGE of purified ScEst along with
a molecular weight marker. (B) Size-exclusion chromatography (SEC) of ScEst. The elution time
of ScEst was integrated with the calibration curve obtained using molecular weight standards β-
amylase (200 kDa), alcohol dehydrogenase (150 kDa), carbonic anhydrase (29 kDa), and cytochrome
C (12 kDa). Kav = (Vs − Vo)/(Vc − Vo). vs. = elution time; Vo: column void volume; Vc: column
volume. (C) Evaluation of esterase activity of ScEst using 1 mM p-Nitrophenyl esters as substrates in
50 mM sodium phosphate buffer at pH 7.0. p-Nitrophenyl esters used in the activity assay were C2,
p-Nitrophenyl acetate; C4, p-Nitrophenyl butyrate; C6, 4-Nitrophenyl hexanoate; C8, p-Nitrophenyl
octanoate; C10, p-Nitrophenyl decanoate; C12, p-Nitrophenyl dodecanoate; PP, phenyl palmitate. The
activity of recombinant ScEst against p-NA(C2) is represented as 100%, whereas the relative activities
against other substrates are shown in percentage.
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Figure 4. Preliminary X-ray crystallographic study of ScEst. (A) ScEst crystals for diffraction experi-
ment obtained in 0.25 M ammonium citrate tribasic (pH 7.0), 20% PEG 3350. (B) Diffraction image
of ScEst crystal with the highest resolution value in the last atomic shell (1.69–1.66 Å). Blue circle
represents the highest resolution range, and diffraction spots are shown at a resolution of 1.66 Å.

4. Conclusions

The biochemical characteristics of a carboxylesterase ScEst, derived from S. chromogenes
NCTC10530, which is the most common bacterial pathogen causing infectious diseases in
dairy cows, were examined. The ScEst gene was identified, isolated, overexpressed in E. coli,
and the protein was purified with affinity columns and size-exclusion chromatography.
The ScEst enzyme prefers the acyl derivatives with a short chain length as substrates. A
preliminary crystallographic investigation of ScEst resulted in a high-resolution dataset. We
anticipate that elaborating the structure-based enzymatic mechanism of ScEst will provide
valuable information for understanding pathogenic esterases and designing ester prodrugs
to treat MDR bacteria.
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