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Abstract: Smart textiles have recently aroused tremendous interests over the world because of their
broad applications in wearable electronics, such as human healthcare, human motion detection,
and intelligent robotics. Sensors are the primary components of wearable and flexible electronics,
which convert various signals and external stimuli into electrical signals. While traditional electronic
sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile
materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics
including light weight, flexibility, and breathability. Of fundamental importance are the needs for
fabrics simultaneously having high electrical and mechanical performance. This article focused on
the hierarchical design of the textile-based flexible sensor from a structure point of view. We first
reviewed the selection of newly developed functional materials for textile-based sensors, including
metals, conductive polymers, carbon nanomaterials, and other two-dimensional (2D) materials.
Then, the hierarchical structure design principles on different levels from microscale to macroscale
were discussed in detail. Special emphasis was placed on the microstructure control of fibers,
configurational engineering of yarn, and pattern design of fabrics. Finally, the remaining challenges
toward industrialization and commercialization that exist to date were presented.

Keywords: textile; sensor; hierarchical design; wearable electronics

1. Introduction

Textiles are ubiquitous and indispensable to human lives. Owing to the light weight,
high deformability, and breathability as well as the integrability with other materials,
textiles have provided an optimal platform for the development of next-generation flex-
ible electronics. In particular, textile-based sensors are a key component in these elec-
tronic devices designed for human healthcare, human motion detection, and intelligent
robotics [1–3].

Flexibility or stretchability and electrical conductivity are two essential metrics for
sensors in wearable electronics applications [4]. While textiles are easily stretched, com-
pressed, bent, or twisted to allow for the high deformability, the electrical conductivity
can be realized either extrinsically or intrinsically. The most straightforward way is to
integrate rigid semiconductor and metal sensors to textile materials; however, the sensing
performance is greatly limited by the mismatch of conformation at the interface [5]. Re-
cently, the development of nanotechnology has enabled the direct coating, deposition, and
printing of electrically conductive materials on textile supports. Although the conformable
coating could maintain the conductive network within a low strain range, the coated fabrics
always suffered from structural damage and interfacial delamination under large mechan-
ical deformation, especially during cyclic loading conditions, leading to relatively poor
sensing performance and service lifetime [3]. In this regard, constructing the fabric via
hierarchical assembly of fibers or yarns made of intrinsically conductive materials, such as
conductive polymers, metals, and carbon nanomaterials, represents a potent strategy to
fabricate high-performance flexible sensors.
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As known, textile materials can be classified as fiber, yarn, or fabric [6]. Specifically,
fibers with a high aspect ratio act as element structure for the textiles. They can be further
twisted into yarns, serving as the second level of textiles. Through some existing textile
technologies such as weaving and knitting, yarns are leveraged to construct the third level
of integration, namely, the fabrics (Figure 1). Considering the hierarchical architectures of
textile materials, the overall performance of textile-based sensors is collectively determined
by the interplay between the fiber properties and the geometrical or structural character-
istics of their assembly at different length scales [7]. In detail, the fabric properties can
be affected by several factors, including the selection of different fibers (metal, polymer,
etc.), the use of various yarns (filament yarn, textured yarn, etc.), and the development of
different patterns (woven, knitted, etc.). Therefore, delicate design of the microstructures
and interfaces across multiple levels of hierarchy is anticipated to tailor the mechanical and
functional properties of textile-based sensors.

Numerous studies have reviewed the textile sensors for wearable applications, with
focuses ranging from materials, geometries or configurations, and preparation methods,
to sensing mechanisms, functional performance, and electronics applications [1–4,6,8–11].
Differing from previous reviews, we paid attention to the hierarchical structural design
of textile-based sensors, including the selection of constituent materials (e.g., conductive
polymers, metals, and carbon nanomaterials), surface modification and shape control of
fibers (e.g., twist, helix, and core-sheath), twisting and spinning of yarns (e.g., rotor-spun,
ring-spun), and engineering of fabric patterns (e.g., weaving, knitting). Our study offers a
guideline for the massive production of textile-based sensors with desired performance.
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2. Selection of Constituent Materials

The first step for the design of wearable electronics is the selection of building blocks,
which are able to afford outstanding mechanical properties without sacrificing electrical
performance. In recent years, a variety of conductive materials have been extensively
used to build electronic textiles, such as metal and metal oxide (nanoparticles, nanowires,
and nanorods) [15,16], conductive polymers [17,18], and carbon nanomaterials (carbon
nanotubes, graphene) [19–24].

2.1. Metallic Nanostructure

Thanks to the high free-electron density, metals are deemed as the most conductive
materials on Earth, among which silver is the most widely studied given its highest con-
ductivity [25,26]. However, as metal wires are relatively rigid and cannot be effectively
woven into fabric, they are usually coated on polymer fibers or embedded in composite
fibers. More intriguingly, when the size of metals decreases down to nanoscale, their
physical properties become distinct from the bulk counterparts. This enables the metal
nanostructures to be competent candidates for conductive-filled materials in textile-based
sensors. Extensive studies have demonstrated the successful application of gold, silver, and
copper nanowires in electronic textile devices [27]. For example, Xu et al. [28] fabricated a
wearable pressure sensor based on copper nanowire aerogel monolith. By controlling the
density and pore structure, the sensitivity and detection limit of sensors could be efficiently
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modulated. In addition, Park’s group [29] developed strain sensors with high sensitiv-
ity from the sandwiched polydimethylsiloxane (PDMS) and silver nanowire composite.
The strain sensors exhibited a high piezo-resistivity with controllable gauge factors, as
well as high stretchability and flexibility, which benefited the application in human body
motion detection.

2.2. Conductive Polymer

Conducting polymers with π-conjugated bond structures possesses superior elec-
trical properties comparable to metals. Besides that, they have additional advantages
including light weight, transparency, intrinsic flexibility, processability, cost-effectiveness,
biocompatibility, and so forth. Commonly used conductive polymers include polypyrrole
(PPy), polyaniline (PANI), polythiophenes (PTs), and poly(3,4-ethylenedioxythiophene)
(PEDOT) [9], which satisfy different practical requirements. In particular, polypyrrole has
been widely utilized in biomedical applications, attributed to its thermal stability, biocom-
patibility, and biodegradability [30–32]. Nevertheless, it is sensitive to moisture and prone
to deterioration over time when exposed to a humid environment [33]. In contrast, PANI
displays high environmental stability and is the optimal choice for corrosion protection,
while its non-biodegradability, low processability, and low flexibility limit its application in
biological fields [34–36]. PEDOT is another conjugated polymer that shows higher electrical
conductivity and thermal stability than PPy. When doped with a polyanion like poly-
styrenesulfonate (PSS), the formed PEDOT:PSS has become the standard for conductive
polymers and extensively used for flexible sensors in a number of applications [37].

2.3. Carbon Nanomaterial

Carbon nanomaterials (e.g., carbon nanotubes (CNTs), graphene and its derivatives)
hold enormous potential in the application of flexible sensors. This is due to their low-
dimensionality, huge specific surface area, and a collection of fascinating physical prop-
erties, including excellent flexibility, ultrahigh strength, and electrical conductivity. In
detail, the elastic modulus and fracture strength of graphene were reported to be ~1 TPa
and around 130 GPa, respectively [38–40], while the bending rigidity was only on the eV
level [41]. Furthermore, its electrical conductivity and thermal conductivity reached as
high as 107 S/m and 3500 W/(K·m), respectively [42–44]. The nanoscale size also makes
them easily assembled into the macroscopic hierarchical textiles, endowing the sensor not
only with high mechanical robustness and electrical conductivity but also with multifunc-
tionality [4]. To increase the processibility of carbon nanomaterials, defect engineering and
chemical functionalization are usually adopted [45–47]. Representative demonstrations are
graphene oxide (GO) and reduced GO (rGO), where oxygen functional groups attached on
the surface help avoid the agglomeration and improve the dispersion [48]. Moreover, the
solution-processable GO and rGO facilitate the large-scale production of textiles.

2.4. Two-Dimensional (2D) Materials

The intensive study of graphene has drawn worldwide attention to other 2D ma-
terials as well. Some emerging 2D materials such as transition metal dichalcogenides
(TMDs) [49–51], transition metal carbides and nitrides (MXene) [52], black phosphorus [53],
and metal-organic frameworks (MOFs) [54] have been synthesized and used for the prepa-
ration of flexible sensors. For instance, MXene (Ti3C2Tx)-based textile strain sensors were
constructed by Yang et al. [55], showing a high sensitivity, a wide strain range, an ultralow
detection limit, and an impressive cyclic durability. In contrast to graphene, MXene presents
a number of surface functional groups, which considerably increases the chemical activity
and hydrophilicity, leading to a high dispersibility in solutions [56,57]. When assembled
into fibrous structures, the interfacial bonding is also relatively strong beyond van der
Waals interactions.
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3. Microstructural Control of Fiber

Fibers act as the building blocks of textiles to create various styles of clothes through
knitting or weaving technologies. They are usually prepared by a spinning method (e.g.,
wet-spinning and electrospinning) and present a straight configuration with limited stretch-
ability [58–60]. To this end, substantial efforts have been dedicated to improving the
deformability of fiber sensors while maintaining high electrical conductivity.

3.1. Helical or Twisted Structure

The creation of the helical structure of fibers affords an effective way to increase the
stretchability, which can be achieved by mechanically twisting or coiling straight fibers.
When the helix fiber is under tension, it is subject to a straightening process first, so that the
tensile strain directly imposed on the fiber is minimized. It has been documented that the
spiral-arranged textures along twisted graphene fibers improve their tear resistance and
fracture toughness [61]. From a mass production perspective, twisting and coiling is also a
relatively common process in industry and is simple to scale up.

Using a humidity-assisted strip-scrolling approach, Cao’s group spun freestanding
GO membranes into helical fibers comprised of homogeneously distributed loops along
the entire fiber length, as shown in Figure 2a [62]. Further reduction in GO could enhance
the electrical conductivity to ~50 S/cm. Upon continuous elongation, helical loops were
opened to accommodate large deformation, allowing rGO fibers to sustain a strain as high
as 60%, as show in Figure 2b. Such a high structure elasticity favors a stable and reversible
resistance change over repeated loading cycles within a moderate strain range (Figure 2c).
One thing should be noted that the internal stress is inevitable during the twisting process,
which can lead to stress concentration and easy damage under large deformation. Thus,
the density, diameter, and charity or angle of loops need to be well controlled to balance
the stretchability and the failure strength of helical fibers. To this end, Gao’s group has long
been engaged in design and manufacture of high-strength graphene fibers by tuning the
axial orientation, radial alignment, wrinkled morphology, and interaction strength between
graphene layers [61]. Recently, they exploited a liquid crystalline wet-spinning method
combined with a twisting–drawing strategy to prepare continuous helical GO fibers [63].
The obtained fibers showed superb stretchability and mechanical robustness, giving rise to
high stability and reversibility over multiple operation cycles.
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Figure 2. (a) Schematic of the fabrication procedures of helical GO and rGO fibers; (b) photographs
of helical rGO fibers under strains of 30% and 60%; (c) oscillation of resistance at two different strain
levels over 1000 cycles; Reprinted with permission from Ref. [62]. 2016, Royal Society of Chemistry
(d) schematic of preparation process of the straight conductive fiber (SCF) and helical fiber (HCF);
(e) the relative resistance changes; and (f) gauge factors of the SFC and HCF vs. strain. Reprinted
with permission from Ref. [64]. 2018, American Chemical Society.
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Chen et al. [64] prepared conductive hollow fibers with helical microchannels filled
with ion liquid, followed by sealing with PDMS, as depicted in Figure 2d. The electronic
properties of these two kinds of fibers are presented in Figure 2e. Different from the straight
conductive fiber (SCF) showing a high strain sensitivity, the helical conductive fiber (HCF)
was observed to display a strain-independent conductivity because of the elongation of
the helical structure instead of straining of fiber when subjected to 100% strain. Both SCF
and HCF demonstrated an excellent working durability and long-term stability during
10,000 cycles at 50% strain (Figure 2f). It is clear that SCF featuring fast responses to
strain and pressure could well detect human motion and capture the signal language. By
comparison, the helical configuration may not be suitable for the design of strain sensors,
considering its low sensitivity and narrow strain range less than the maximum sustained
strain; instead, HCF can be a promising candidate to replace the industrial wires in circuit.

3.2. Core–Sheath Structure

The design of coaxial fibers provides an alternative pathway to gain higher stretchabil-
ity. Coaxial fibers commonly include a conductive core wrapped by an elastic shell. Distinct
from the twisting structure, the core–sheath structure offers a shorter ion transport path
and a higher stability upon external loading due to the strong interface bonding within the
layer-by-layer configuration [65].

The coaxial wet-spinning assembly method has been proposed to produce polyelectrolyte-
covered graphene fibers. For example, a one-step coaxial wet-spinning assembly method
was developed to prepare silicone elastomer-coated CNT core-sheath fibers as wearable
strain sensors, as depicted in Figure 3a [66]. By augmenting the CNT content, the conductiv-
ity was enhanced by several orders of magnitude, suggesting that a continuous conductive
network was formed (Figure 3b). The obtained fiber strain sensors were found to have
a tolerable strain of >300% and a gauge factor of 1378 (Figure 3c). Higher CNT content
also gave rise to a slower resistance change under strain. In addition to high stretchability,
outstanding stability was achieved simultaneously, evidenced by the reversible resistance
change over >10,000 cycles. Benefiting from the bending- and torsion-insensitiveness,
coaxial fiber strain sensors could precisely detect subtle human motions. Through a coaxial
wet-spinning process, Zhou et al. [67] fabricated a fiber-based strain sensor in a core–sheath
configuration consisting of a thermoplastic elastomer (TPE) wrapped with CNTs, as de-
picted in Figure 3e,f. The fragmentation of the coaxial fiber was observed during stretching
(Figure 3g), implying good load transfer efficiency between the CNT core and the TPE
matrix, and could be nearly recovered upon unloading. Such cracks are critical to the
stretchability of the fibers and allow the linear resistance response. The consequent fiber
sensor had a high sensitivity (~425) for the strain range up to 100%, as well as high me-
chanical stretchability and stability, showing great potential as the sensing components in
wearable textiles.

Similarly, by coaxial wet-spinning of GO with aramid nanofiber (ANF), the core–sheath
structured graphene fibers were prepared for the application of wearable electronics [68].
The addition of ANF as the sheath not only increased the strength of the graphene fiber but
also imparted excellent flexibility and weavability. Compared to the pure graphene fibers,
the fracture strength and failure strain was increased by 80% and 700%, respectively. The
high thermal resistance of ANF also allowed for direct thermal reduction in GO, followed
by incorporation of graphene nanoplatelets. Consequently, the electrical conductivity was
elevated up to ~15,000 S/m. More recently, Gao et al. [69] employed the coaxial extrusion
3D-printing technology to fabricate wearable sensor arrays composed of pressure and
strain sensors. The sensor array presented a pressure sensitivity of 0.562 kPa−1, a high
detection limitation (3 Pa), a rapid response and relaxation speed (230 ms), and superior
durability (>10,000 cycles). Different mechanical loading such as twisting, bending, and
shearing could be accurately captured.
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3.3. Buckling Structure

Introducing buckling structure via the pre-stretch-and-release method has been mani-
fested as a facile way to realize the high stretchability and flexibility in electronic devices [70,71].
Similar to helical configuration, the buckling structure is flattened first under tensile
loading, thus giving rise to a stable conductance during deformation. According to the
literature [3,6], a buckling structure can be created in either conductive core fibers in TPE
or conductive coating materials wrapped on pre-stretched elastomeric fibers.

For example, Baughman’s team developed a fiber-based strain sensor by depositing
CNT films onto a rubber fiber [72]. The fiber core was pre-stretched to a 1400% when wrap-
ping CNT, which was oriented parallel to the axial direction (Figure 4a). As a result, from
the SEM images in Figure 4a, short and long buckling periods are respectively observed in
both the axial and belt direction. Further coiling of the fiber greatly increased the strain
range and quality factor up to 2470% and 526, respectively (Figure 4b). Nonetheless, the
relatively large diameter of the rubber core (2 mm) resulted in a high core-to-sheath volume
ratio, accounting for a low electrical conductivity. The strain sensor hence could only be
activated by a high drive force. In this case, a downsized core–sheath conducting fiber
in a diameter of 40 µm but the same sheath thickness was then designed to improve the
electrical conductivity [73]. When the diameter of the fiber core decreased, the spacing
between the buckles tended to increase. This led to a reduction in or even elimination of
the contact between neighboring buckles in the lateral direction during compression of
the sheath–core fiber. In addition, the fiber conductance was almost independent of the
strain due to the buckling structure; therefore, the conductivity rose quadratically with fiber
length as shown in Figure 4c. It was found that the fiber conductor displayed a substantial
enhancement in conductivity when being stretched, close to the theoretical limit denoted
by the dashed line, suggesting a negligible resistance change during the deformation.

More recently, a worm-shaped fiber sensor was fabricated by depositing caterpillar-
structured graphene layers onto polyurethane (PU) fibers, as illustrated in Figure 4d [74].
Such a worm-shaped fiber deformed in reminiscence of the creep behavior of worms.
Consequently, the maximum strain could reach 1010% with a large electro-response range
(~815%), excellent conductivity (124 S/m), and a long-term durability (>4000 cycles). To
interpret the electrically conductive performance of the worm-shaped graphene coating, the
authors proposed a geometrical model as presented in Figure 4e. Concretely, the stretching
process could be divided into three stages, which were separated by two boundary points:
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(1) contact critical point at which two legs of the graphene and PU loop were in point-
contact; and (2) straightened pre-stretched state where the strain matched with the pre-
stretched state. The model fit well for the results of measured electrical conductivity of
worm-shaped fibers.
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wrinkles shown in SEM images; (b) resistance change vs. strain for coiled fibers; (c) comparison
of the conductivity ratio vs. the ratio of maximum stretched length to initial length; Reprinted
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from Ref. [75]. 2016, Wiley-WCH.

Wei et al. [75] also constructed multiscale wrinkled features on the pre-strained water-
borne PU fiber by writing in silver nanowire ink using a brush pen, as shown in Figure 4f.
The wrinkle size could be clearly captured in SEM, showing a uniform coverage and
distribution (Figure 4g,h). The resultant core–sheath conductive fibers exhibited high
conductivity and extendibility. Furthermore, the fibers were twisted to build a flexible
piezoresistive sensor, giving rise to a high sensitivity to the bending and pressure. This
was ascribed to more contact points resulting from the wrinkled microstructures, which
caused a considerable change in interface resistance when subjected to external loading, as
depicted in Figure 4i.
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Based on a “solution stretching–drying–buckling” process, Zhou et al. [76] prepared
stretchable coaxial fibers via a designed self-buckling behavior of conductive polymer micro-
ribbons incorporated in a TPE sheath, as shown in Figure 5a. In particular, polyethylene-
block-poly (ethylene glycol) (PBP)/PEDOT:PSS was wet-spun into the core fiber. By
controlling the applied pre-strain, the maximum failure strain could be tailored across a
large range. As presented in Figure 5b, when a 900% pre-strain was imposed to fiber, the
maximum failure could be enhanced up to ~675.8%. Thanks to the buckling structure and
the elastic TPE sheath, no obvious change was found for the cross-section of conductive
ribbon so that the electrical resistance of fiber sensor kept almost constant during the tensile
deformation until the buckled structure became fully unfolded (Figure 5a), hence increasing
the stability of electrical conductivity. The maximum ∆R/R0 for the strain sensor under the
cyclic loading was only 0.031% at the pre-strain of 900%, which kept almost constant with
increasing cycles (Figure 5c,d). From Figure 5e,f, it is obvious that increased loading of PBP
in the PEDOT:PSS/PBP fiber helped to improve both the conductivity and ductility of the
core fiber. In addition, the elastic modulus was reduced so as to generate buckles at a lower
strain level. The effect of microstructures on the electrical performance of conductive fibers
are summarized in Table 1.
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Table 1. Brief summary of the microstructures and corresponding electrical performance of conduc-
tive fibers.

Materials Preparation Strength
(MPa)

Electrical
Conductivity

(S/cm)

Sensing
Range (%) Sensitivity Response

Time (ms)
Cycling
Stability Ref.

Helical/twisted fiber

rGO humidity-assisted
strip-scrolling <10 50 60 / / 1000 cycles

under 20% strain [62]

GO wet-spinning +
twisting-drawing 130 / 29 / / 100 cycles [63]

Ion
liquid/PDMS

fiber
Template method 1.0 450 230 0.008 N−1

under 1 N 80 10,000 cycles
under 50% strain [64]
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Table 1. Cont.

Materials Preparation Strength
(MPa)

Electrical
Conductivity

(S/cm)

Sensing
Range (%) Sensitivity Response

Time (ms)
Cycling
Stability Ref.

Core-sheath fiber

CNT/PDMS one-step coaxial
wet-spinning / ~0.02 300 GF~1378 <300 10,000 cycles [66]

CNT/TPE coaxial
wet-spinning / 2804 100 GF~425 / 3250 cycles [67]

rGO/ANF coaxial
wet-spinning 386 150 18.2 / / / [68]

Carbon
grease/PDMS

coaxial extrusion
3D-printing / / / 0.562 kPa−1

GF~11.8 230 10,000 cycles [69]

Buckling structured fiber

Graphene/PU In situ deposition 30 124 815 / / 4000 cycles [74]

silver NWs/PU Pen brushing / 104–105 400 0.12 kPa−1 35 >4000 cycles [75]

TPE/PBP/PEDOT:
PSS

Solution stretching-
drying-buckling / 95 675.8 / / >11,000 cycles [76]

4. Configurational Engineering of Yarn

Yarn is defined as an assembly of a bunch of fibers held together through the insertion
of twist to form continuous strands. From the structure point of view, typically, there are
three main technologies involved in the production of yarn [77]: (1) Yarns are produced by
placing the fibers in parallel that are bonded together via mutual frictional forces. Given
the weak friction resistance dominated by van der Waals forces, the tensile loads imposed
to the yarn easily induces mutual slippage when the yarn suffers from severe bending
or twisting deformation. This is an irreversible process that can cause easier failure at
low strains and faster degradation of conductivity. (2) Densely aligned CNT bundles can
be prepared by twist spinning, typically showing a high conductivity of 300 S/cm) and
high strength of more than 100 MPa, whereas the interfibrillar slip phenomena are still
inevitable. As a result, the sensitivity of the helical fiber strain sensors is relatively low
and strain range is also lower less than the maximum sustained strain. (3) In light of the
limited stretchability of straight or twisted yarns, substantial efforts have been directed
towards configurational engineering by introducing multiply or coiled structures via
overtwisting the yarns under tension (Figure 6) [78]. The widely demonstrated examples
are the spring-like CNT yarns which show impressive stretchability while retaining high
electrical conductivity. Considering the one-dimensionality and high flexibility, CNTs have
been extensively constructed into yarn structures to fabricate flexible sensors, which is the
focus in this section.

4.1. Coiled Configuration

Leveraging high flexibility of CNTs, Cao’s group [79] demonstrated the controlled fab-
rication of a yarn-derived spring-like CNT rope, where the loops were uniformly arranged
as shown in Figure 7a. Inside each loop, the CNT bundles were observed to twist with
slight alignment (Figure 7b). These CNT ropes exhibited outstanding axial stretchability up
to strain of 285% by loop unfolding and straightening during the stretching. Accordingly,
the fracture toughness was also as high as 28.7 J/g. More importantly, the electrical con-
ductivity of such CNT yarns was nearly 440 S/cm at the initial state and no degradation
was noted after repeated loading cycles (Figure 7c). Later on, Cao et al. [80] modified the
spinning strategy and accurately controlled the loop position and number, and successfully
fabricated a partial-helical structure, as shown in Figure 7d,e. In contrast to the fully helical
configuration, the partial one exhibited a better elasticity up to the strain of 25% as well
as a linear resistance–strain relationship that is important for strain sensor applications
(Figure 7f).
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Figure 7. (a) Spinning of spring-like CNT ropes; (b) SEM images of a part of CNT rope made of
homogeneously distributed loops; (c) relative resistance change during cyclic loading; Reprinted
with permission from Ref. [79]. 2012, Wiley-WCH. (d) schematic and (e) SEM image of CNT yarn
having a helical segment in the middle; (f) resistance evolution (red) and stress–strain (black) curve
of CNT yarns; Reprinted with permission from Ref. [80]. 2013, Royal Society of Chemistry; and (g)
preparation and morphology characterization of helical CNT and PU composite yarn. Reprinted with
permission from Ref. [81]. 2020, American Chemical Society.

In another report, Gao et al. [81] prepared helical CNT and PU composite yarn adopt-
ing hierarchical structure design principles (Figure 7g). Leveraging the interlaced con-
ductive CNT networks on the microscale as well as the macroscopic helical structure, the
synergistic effect between mechanical properties and helical structures accounted for the
ultrahigh elasticity. Beyond that, they reported an impressive recoverability of electrical
resistance when the strain was within 900%; the maximum tensile elongation could reach
as high as 1700%. In addition, the strain sensor prepared by twisting the CNTs into a yarn
can present a good conductivity and hence a rapid response.
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4.2. Two-Ply Coiled and Supercoiled Configuration

In order to further improve the strain range and failure limit, Cao’s group [82] pro-
posed a two-level hierarchical composite structure composed of double-helix CNT yarn
segments (Figure 8a). As presented in Figure 8b,c, during the stretching process, a two-stage
fracture behavior could be observed, which gave rise to higher tensile strain and effectively
delayed the failure process. When the first yarn fractured at around 75% strain, the resis-
tance of double-helix CNT yarns exhibited a sudden change as shown in Figure 8c; after
that, it kept increasing steadily until the eventual failure at around 170% strain. Apparently,
such a hierarchical design would prolong the service lifetime of the double-helix CNT
yarn-based sensors. Moreover, the toughness could be significantly enhanced to guarantee
the device stability (Figure 8d).
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Figure 8. (a) Schematic of a spinning process from a straight yarn to a double-helix by loading in
the middle section; (b) schematic of tensile test of double-helix yarns; (c) tensile load and electrical
resistance vs. time for double-helix yarns of CNT; (d) the yarn diameter-dependent toughness of
double-helix yarns at two stages during the stretching; Reprinted with permission from Ref. [82].
2013, American Chemical Society. (e) schematic illustration of highly twisted CNT wrapped spandex
fiber; (f) SEM images for noncoiled, first-coiled, and supercoiled spandex@CNT fibers with increasing
number of twists; and (g) optical images for supercoil fiber showing gradual coil separation with
increasing applied strain [83].

In the reminiscence of the supercoil conformation of DNA in a twist of a double
helical axis, the supercoiled fibers were prepared by overtwisted insertion of spandex
fibers wrapped in CNT-spun sheet with surface wrinkles, as shown in Figure 8e,f [83].
Typically, the first-coiled yarns can only sustain < 400% strain, while two-ply coiled yarns
were observed to have a stretchability of 800% [84]. Son et al. found that, as supercoiled
yarn had a highly compact and ordered structure, a large amount of elastic strain energy
could be stored in the fiber, enabling the fiber to show a superelasticity of ~1500% without
significant electrical fracture. As show in Figure 8g, during the stretching process, the
yarn mainly experienced gradual opening of first coils at the low strain range (<450%) and
the supercoils. At the higher strain levels (>450%), the wrinkled structures tended to be
unfolded which further contributed to the stretchability of yarns.

4.3. Entangled Configuration

In addition to the coiled or double-helix yarns with relatively regular configurations,
extreme overtwisting can produce entangled CNT yarns with a higher complexity [85]. As
shown in Figure 9a, with increasing overtwisting, the straight yarn gradually self-assembled
into single-helix and then double-helix structures and finally developed random at multiple
sites along the yarn axis while intertwining to generate amorphous configurations. An ag-
gregation containing multiple self-interlocked twists were eventually generated, as shown
in Figure 9b. Such an entangled yarn structure was highly stable and could be stretched to
500% strain (Figure 9c), with no change of resistance when disentangled. According to the
stress–strain curves in Figure 9d, multiple stress peaks were visible, corresponding to the
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resolving events of the double-helix segments within the entanglement. In addition to the
large sensing range, the entangled coiled CNT yarn presented a cyclic stretching–releasing
stability at 500% strain for 600 cycles, as depicted in Figure 9e. The configuration dependent
sensing performance of conductive yarns are summarized in Table 2.
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Figure 9. (a) Schematic of the spinning process of an entangled CNT yarn; (b) SEM image of entangled
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Table 2. Brief summary of the configurations and corresponding sensing performance of
conductive yarns.

Materials Preparation Strength
(MPa)

Electrical
Conductivity (S/cm)

Sensing
Range (%) Sensitivity Cycling

Stability Ref.

Coiled yarn

CNT Spinning of
CNT film 78.3 440 285 /

1000 cycles
under 40%

strain
[79]

CNT Spinning of
CNT film 76 / 25 GF~0.14 1000 cycles [80]

CNT/PU Twisting 50.2 450 1700 /
100 cycles

under 100%
strain

[81]

Two-ply coiled and supercoiled yarn

CNT Spinning +
Overtwisting >50 / >150 0.08–0.14

Ω/◦C 10,000 cycles [82]

SEBS/CNT/Spandex Overtwisting +
Spray coating ~80 Resistance ~65 Ω/cm 1500 /

1000 cycles
under 1000%

strain
[83]

Entangled yarn

CNT dry-spinning +
Spray coating 100 Resistance ~200–350

Ω 500 / 600 cycles [85]
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5. Pattern Design of Fabric

A fabric structure is made by the interlacement of yarns or intermeshing of the loops
to act as 2D flexible materials [86]. The engineering design of patterns applied to smart
textiles are based on mature textile manufacturing and garment assembly routines, such
as knitting, weaving, braiding, embroidery, and sewing (Figure 10a). From a mechanical
and structural perspective, different fabric structures are entirely dissimilar to each other.
For instance, the yarns in woven pattern are nearly immobile and form a dense and stable
structure, so that the fabric is almost inextensible with limited deformations in the yarn
structure (Figure 10b). By comparison, the interlocked loops in a knit pattern usually
deform and slide readily, giving rise to a high stretchability with significant changes in
small-scale structure [87,88]. From the application perspective, each fabric manufacturing
technique has its own pros and cons in light of specific substrate properties, of which the
selection depends on the end-use of the electronic textile.
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5.1. Weaving

The most commonly used are the woven fabrics, consisting of yarn interlacements
mutually in orthogonal directions [90]. The length, frequency, and distribution of inter-
lacements in a woven fabric structure collectively decides its mechanical and functional
characteristics. The above parameters are critical to the electrical performance as well since
the consecutive points in interlacements influence the electrical contact [91]. According to
the weave patterns, woven fabrics can be classified into plain weave, satin weave, twill
weave, and so on, which can satisfy the needs of different applications.

Using Ni-woven fabrics as templates, Liu et al. [92] synthesized freestanding graphene
woven fabric (GWF) by the chemical vapor deposition (CVD) method, which was then
transferred onto precured PDMS film to prepare the composite sensor (Figure 11a). It was
found that the GWF and PDMS composites with thick graphene tubes showed a stable and
regular mesh configuration after the mechanical transfer; by contrast, thinner graphene
tubes were prone to shrinkage and generated a wavy structure during transfer, as presented
in Figure 11b, thus having a much lower sensitivity than those with thicker graphene tubes.
As a result, the conductivity and gauge factor of the obtained fabric could reach 2.73 S/cm
and 223, respectively, at a strain of 3%. An excellent durability was also achieved under
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1000 stretch and release cycles. Similarly, Zhao et al. [93] employed the same method to
prepare a synergistic temperature–humidity sensor from GWF with crisscrossed interlacing
graphene micro-ribbons, allowing for a ultrahigh sensitivity within a strain range of 2%.
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The woven composite fabric has been alternatively constructed from composite yarns
where graphene is coated on nd woven wearability.

Yin et al. [95] reported an facile, efficient, scalable, and cost-effective way to prepare
GWF sensors. They performed the dip coating of GO on the cotton bandage as the template
with macro-level woven-fabric geometrical conformation, followed by the reduction in GO
as well as the pyrolysis treatment of the cotton bandage in an ethanol flame. SEM images in
Figure 11e present the rGO-woven fabric sensors, where the framework was built by warp
and weft yarns, forming crisscross interlaced patterns with uniformly arranged rectangular
holes. Under a higher magnification, it could be seen that the yarn included a bundle of
twisted fibers with a wrinkled surface. Benefiting from the hierarchical structure, a high
stretchability up to 57% strain together with a high sensitivity (gauge factor of 416 for the
strain range of 0–40% strain and 3667 within 48–57% strain) was obtained for the GWF
strain sensor.individual fibers. In the work led by Cui et al. [94], composite yarns were
prepared by helically winding an elastic thread with core-spun yarns. These multifilament
yarns were obtained through electrospinning GO-doped PU nanofibers onto the Ni-coated
cotton yarns, as shown in Figure 11c. The former actually acted as dielectric layers while
the latter were the conductive electrodes. The pressure sensing mechanism is illustrated
in Figure 11d. Upon loading, it was found that the dielectric layer and the electrode both
increased the permittivity; correspondingly, the change in volume caused the distance
variation between the electrodes, implying an excellent pressure sensitivity. Even under a
low external load, the sensor unit exhibited superb sensing performance: a high sensitivity
of 1.59 N−1, a broad sensing range, a short response time, and a low detection limit. The
helix feature of the composite yarn further granted the sensor unit with a high stretchability,
a good cycling stability, a

Inspired by the flexible and stretchable spider web, Liu et al. [96] developed a wearable
GWF composite sensor via filling PDMS into the hollow graphene tubes within GWF film,
which was then half embedded into a partially cured sticky PDMS film to enhance the
linearity and structural stability (Figure 11f). The strong bonding between GWF and PDMS
ensured efficient load transfer at the interface and hence excellent stretchability. As shown in
Figure 11g, upon stretching, the surface wrinkles on the graphene tubes were first flattened;
further increasing the applied strain above 10% led to the occurrence of microcracks, which
were growing with increasing strains in the loading direction. Consequently, the contact
between the graphene layers declined, accounting for an increase resistance as well as
a higher piezoresistive sensitivity. More importantly, these deformation processes were
totally reversible upon unloading, ensuring the sensing stability of the composite sensor
during cyclic loading. Therefore, it was concluded that the infiltrated PDMS core in the
graphene tubes protected the conductive networks and improved the sensing capability,
as well as providing high repeatability and reliability to the flexible device, allowing
long-term service.

5.2. Knitting

Different from weaving, knitted fabric is created by interlocking loops of neighbor-
ing threads [97]. In contrast to woven fabrics that require elastic yarn with accessible
extension < 10%, knitted fabrics offer high elasticity and can develop large extensions as
high as 100% even based on non-elastic yarns. As mentioned above, although the stretching
deformation of knits that involves a flattening of yarn loop curvature usually quickly
recovers, the further deformation beyond such elastic stage would lead to yarn sliding
against each other, which cannot be recovered immediately. The relevant energy dissipation
accounts for higher fracture toughness and impact resistance of knitted fabric compared to
the woven fabric.

To improve the durability and fatigue resistance, Zeng et al. [98] adopted textile
knitting technology for the preparation of fabric electrodes. The fabric was made of a PU
yarn as the core wrapped by silver-coated PA yarns. The loop structures in the plain knit
helped reduce the strain in fibers and increase the fatigue life against cyclic loading. The
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stretchability was reported to be as high as 250% with a low elastic modulus as low as
~0.05 MPa. The resistance was also kept stable at 30–33 Ω when subject to compression of
2727 cycles.

Compared to the continuous film-based flexible sensor, knit pattern design of fabric can
simultaneously improve the mechanical and electrical performance at high strain region. In
a recent work, Ma et al. [99] synthesized conductive stretchable fibers made of Ag particles,
CNTs decorated with Ag particles, and poly(vinylidene fluorideco-hexafluoropropylene)
(PVDF-HFP) substrate. These fibers were then constructed into a two-ply rope, four-ply
rope, and weft knitted fabric (Figure 12a). Obviously, the stretchability of ropes was higher
than the single fiber in Figure 12b, while the increase in the resistance tended to be more
sluggish with more plies of ropes. In contrast, for the weft knitted fabric, the resistance
change was insignificant below 200% strain. This could be explained by the intimate contact
at the stitch cross section of the knit structure. They further demonstrated that additional
coating of PDMS on fibers and fabrics could facilitate the mechanical stretchability and
electrical stability within a broad strain range of 100%.
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Figure 12. (a) Optical images of the two-ply, two-ply rope, and knitted fabric before and after
stretching; (b) the plot of normalized resistance vs. tensile strain; Reprinted with permission from
Ref. [99]. 2014, American Chemical Society. (c) photographs, optical images, schematics; and (d) strain
sensing behaviors of different knitted structures based on PU/PEDOT:PSS filaments. Reprinted with
permission from Ref. [100]. 2018, Elsevier.
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More recently, Seyedin et al. [100] demonstrated a scalable production of PU/PEDOT:PSS
multi-filaments in a kilometer scale. To tune the strain sensing behavior of the textile-based
sensors, they designed fiber in different patterns including the plain knit, co-knit, co-knit
with conductive stitch, plain knit with non-conductive stitch, and co-knit alternate, as
shown in Figure 12c. The overall sensing mechanism was governed by both the resistance
change of the fibers and the configurational transition in the fabric. In Figure 12d, it can be
found that all five textile prototypes effectively sensed strains up to 200 with no evidence
of structural damages. In particular, the plain-knit pattern represented the ideal case,
where configurational changes in the textile dominated the sensing performance, whereas
the conductive filaments were likely less to be stretched. In contrast, having a compact
structure, a co-knit pattern of fabric resulted in the filament elongation governing the
stretching deformation. In terms of the gauge factor, a plain knit pattern gave a negative
value of −0.3 at 200% strain. Although the sensitivity tended to be higher for the plain
knit with non-conductive stitch, it showed a lower sensing response recovery than plain
knit. Furthermore, it was demonstrated that the presented sensors kept stable for up to
500 cycles after running 50 cycles.

5.3. Non-Woven

A non-woven textile is produced by the physical or chemical bonding of fibers without
any restriction. Both staple and filament fibers from different generic groups can be used
to produce the non-woven fabrics (NWF). Apparently, the properties of NWF depend
on the selection of fiber materials, the arrangement of fibers, and the bonding types and
intensity. So far, some studies have demonstrated the application of NWF in wearable
sensors, leveraging its specific functions including softness, resilience, flame retardancy,
washability, and so forth.

By coating the conductive cellulose nanocrystal and graphene on the thermoplastic
polyurethane (TPU) NWF, a flexible strain sensor having large sensing range and high
sensitivity was successfully fabricated [101]. In particular, polydopamine (PDA) was used
to treat the fabric firstly to strengthen the interface between the coating and fabric, and
subsequent immersion in hydrophobic-fumed silica (Hf-SiO2)/ethanol dispersion granted
the fabric with superhydrophobicity (Figure 13a). The as-prepared composite NWF sensor
was based on a micro-crack sensing mechanism, as shown in Figure 13b. As a consequence,
NWF sensor with denser cracks presented a lower gauge factor and a wider sensing range.
When the graphene content was 25 wt%, a broad working range (98%), a low detection limit
(0.1%), short response time (33 ms), and good durability over 1000 cycles were obtained
simultaneously. Furthermore, the superhydrophobicity of NWF strain sensor enabled
great waterproofness and hence corrosion protection and self-cleaning ability. In another
study, Wang et al. [102] reported a GO-coated NWF humidity sensor. Likewise, bovine
serum albumin (BSA) was introduced as an interfacial layer to allow more GO absorbed
on the NWF (Figure 13c). The as-obtained sensor exhibited a fast response recovery to
achieve high sensitivity, which favors its application in the detection of human respiration.
Cho et al. [103] demonstrated the fabrication of conductive NWF through blow spinning of
PVDF-HFP blended with CNTs, as shown in Figure 13d. The NWF sensor showed a high
gauge factor of 134, a detectable strain of as low as 0.03%, and good mechanical stability
within 1000 cycles. The brief summary of the fabric patterns and corresponding output
performance of textile-based sensors can be seen in Table 3.
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Table 3. Brief summary of the fabric patterns and corresponding output performance of
textile-based sensors.

Materials Preparation
Electrical

Conductivity
(S/cm)

Sensing
Range Sensitivity Response

Time (ms)
Cycling
Stability Ref.

Weaved fabric

PDMS/Graphene/Ni woven
fabric CVD 2.73 GF~223 / 1000 cycles [92]

GO-doped PU/Ni-coated
cotton yarns

Electrospinning +
helically winding / 0–5 N 1.59 N−1 <50 1000 cycles [94]

rGO/cotton bandage Dip coating +
Pyrolysis 2.73 57%

GF~416 < 40%
strain;

GF~3667 > 48%
strain

<20 1000 cycles [95]

PMMA/Graphene/
Ni mesh CVD + Dip coating / 30% GF~282 at 20%

strain 70 4000 cycles [96]
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Table 3. Cont.

Materials Preparation
Electrical

Conductivity
(S/cm)

Sensing
Range Sensitivity Response

Time (ms)
Cycling
Stability Ref.

Knitted fabric

silver-coated PA yarns/PU
yarn

Electrospinning +
twisting + knitting

Resistance
~30–33 Ω 250% / / 1,000,000

cycles [98]

Ag/CNT/PVDF-HFP Wet spinning +
twisting + knitting

Resistance ~7.8
Ω 200% / / 3000 cycles [99]

PU/PEDOT:PSS Wet spinning +
knitting / 200% GF~−0.8–0 / 500 cycles [100]

Non-woven fabric

Cellulose/Graphene/PDA/TPU Dip coating / 98% GF~2360 33 1000 cycles [101]

BSA/GO/NWF Dip coating / / / 8900 400 s [102]

CNT/PVDF-HFP Blow spinning Resistance ~3
kΩ/sq / GF~134 / 1000 cycles [103]

6. Coating Technology

The simplest way to manufacture textile-based sensors is spinning conductive fibers
and yarns, followed by weaving and knitting. Alternatively, coating of conductive materials
on fiber, yarn, or fabric affords another facile and efficient approach for the large-scale
production of electronic textiles. Commonly used coating methods include in situ polymer-
ization, vapor-phase polymerization, dip coating, spray coating, vacuum filtration, and
rod coating.

Chemical polymerization is suitable for making fabrics coated with conductive poly-
mers such as PPy and PEDOT:PSS. A common practice is soaking the fabric in a solution
containing the monomer, the oxidant, and the dopant to initiate the polymerization process.
For example, Lycra fabric-based stretchable and conductive sensor was prepared by coat-
ing a PPy layer using a chemical polymerization method [104]. In contrast, vapor-phase
polymerization provides a higher homogeneity of coating than chemical polymerization.
Therein, the textile substrate is immersed in a solution of oxidant and dopant and then
exposed to the vapor of the monomer to form the polymer layer. As a result, the sensi-
tivity is higher but the sensing range is lower compared to the fabric coated with the in
situ polymerization method [105]. Dip coating represents a simple way to prepare the
conductive textiles. Soaking a Spandex fabric in aqueous PEDOT:PSS dispersion was
demonstrated to endow the fabric with an electric conductivity of 0.06 S/cm [106]. Multiple
dip coating can further increase the conductivity up to 1.7 S/cm; however, over-coating
would lead to the interfacial delamination failure which has a negative effect on the electric
performance. Spray coating has an advantage of better thickness controllability compared
to dip coating. Lee et al. [107] assembled functional hybrid carbon nanomaterials and
piezoresistive ZnO nanowires on a PET fabric by spray coating. The resultant fabric sensor
could sense low bending strains of up to 6.2% with a gauge factor of 7.6, both higher than
that of counterpart film.

Although surface coating can produce textile-based sensors with high sensitivity and
relatively high sensing range, there remain some challenges in achieving high linearity and
cycling stability due to the potential weakness at the interface between the coating and
textile substrate. Interfacial failure is easily induced during the repeatable deformations and
causes the catastrophic failure of devices. While conductive polymer composite typically
results in a higher adhesion to the textile substrate, the overall conductivity might be
impaired due to the presence of non-conductive polymers in the coating layer [108].
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7. Applications
7.1. Human Motion Detection

Textile-based sensors are advantageous in skin affinity and integrability with human
skin, gloves, and clothes, thus enabling remote manipulations with safety and comfortabil-
ity. Zhang’s group has developed a stretchable and wearable strain sensor by carbonizing
silk [109] and cotton [110] fabrics as the electrodes (Figure 14a). It was demonstrated that
the plain-weave pattern gave rise to the best performance, showing high sensitivity, fast
response, wide sensing range, as well as excellent durability. Such superior performance
was attributed to the hierarchal network structure. The obtained fabric sensors were able to
monitor both large and subtle human motions (e.g., jumping, marching, jogging, bending,
rotation of joints phonation, pulse, facial micro-expression, and respiration), as illustrated
in Figure 14b. In addition, they developed a dry-Meyer-rod-coating process to coat graphite
flakes on the silk fibers to prepare for the fabric strain sensor [111]. The overlapping area
between the graphite flakes changed during the cyclic loading process, endowing the
as-resulted sensor with outstanding performance with fast response, long-term stability,
small hysteresis, and low drift. Furthermore, the proposed dry-Meyer-rod-coating method
was facile and versatile, which can be extended to other core fibers for the preparation of
sheath–core fibers, such as polypropylene (PP) fiber and Spandex fiber.
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Figure 14. (a) Illustration showing the hierarchical structures and the fabrication of carbonized
silk fabrics strain sensors; (b) detection of various human motions and sounds using the wearable
carbonized silk fabrics strain sensors; Reprinted with permission from Ref. [109]. 2016, Wiley-WCH.
(c) fabrication of sheath–core structured graphite and silk strain sensors through a dry-Meyer-rod-
coating process; (d) schematic illustration of the sensing mechanism; and (e) integrated rosette-shaped
GSF strain senor for multidirectional motion detection. Reprinted with permission from Ref. [111]
2016, American Chemical Society.
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7.2. Touch or Pressure Sensor

In addition to strain sensors that can monitor the body motion as discussed above,
electronic textiles have also been made into touch- or pressure-based input devices in
wearable electronics [112]. For instance, Ma et al. [113] adopted a facile and continuous
electrospinning technology to prepare an ultralight single-electrode triboelectric yarn
with helical hybridized nano-micro core-shell fiber bundles on a large scale. The fiber
consisted of PVDF/PAN hybrid shell and the core of sliver yarns, which showed high
triboelectric output (Figure 15a). The plain fabric woven triboelectric textile could deliver
electrical outputs of 40.8 V, 0.705 µA/cm2, and 9.513 nC/cm2 under pressure of 5 N
with 2.5 Hz, showing high sensitivity for monitoring subtle contacts from humans and
insects. Fan et al. [114] reported a textile-based sensor with a cardigan stitch texture, which
allowed enhanced triboelectric interaction between Nylon yarn and stainless steel yarn.
The prepared sensor exhibited a pressure sensitivity of 7.84 mV/Pa, fast response time
of 20 ms, high working stability over 100,000 cycles, wide working frequency bandwidth
up to 20 Hz, and impressive machine washability (>40 washes). It could be stitched
into garments, monitoring of arterial pulse waves and respiratory signals at the same
time (Figure 15b). Lee et al. [17] prepared a conductive fiber via coating poly(styrene-
block-butadienstyrene) (SBS) polymer and Ag nanoparticle composites on the surface of
Kevlar fiber, as shown in Figure 15c. Further coating of PDMS as dielectric layers on
surface and stacking the two PDMS-coated conductive fibers perpendicularly to each
other produced a capacitive-type pressure sensor. Such a pressure sensor featured a high
sensitivity (0.21 kPa−1) in the low-pressure region, fast response time less than 10 ms, and
high stability >10,000 cycles with insignificant hysteresis. Utilizing the weaving method,
the textile-based pressure sensor could be integrated into a multipixel array configuration
in the form of fabrics and imbedded into gloves and clothes, enabling remote control of
machines as human–machine interfaces.
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sensing; Reprinted with permission from Ref. [113] 2020, American Chemical Society. (b) triboelectric
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7.3. Energy Harvest

In light of the threats of the energy crisis and environmental pollution, the desire
for renewable and environmentally friendly energy solutions is growing for sustainable
development of human civilization. Combining electronics with textiles has provided
a revolutionizing way to harvest energy from the human body and its surroundings.
Representative examples include triboelectric nanogenerators, piezoelectric nanogenerators,
thermoelectric generators, and so forth [115,116]. Zeng et al. [98] demonstrated an all-fiber-
based piezoelectric nanogenerator for harvesting mechanical energy in textiles, consisting
of a PVDF–NaNbO3 nanofiber non-woven fabric sandwiched between two conducting
fabric electrodes. The obtained nanogenerators showed, respectively, an open-circuit
voltage and current of 3.2 V and 4.2 mA at a pulse pressure of 0.2 MPa. The power
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generation was also reliable during the cyclic testing that simulated human walking. A
washable skin-touch-actuated textile-based triboelectric nanogenerator was prepared by
Xiong et al. for harvesting biomechanical energy from both voluntary and involuntary
body motions [117]. In particular, black phosphorus encapsulated with hydrophobic
cellulose oleoyl ester nanoparticles worked as an electron-trapping coating, endowing
the textile nanogenerator with long-term reliability and high triboelectricity even under
extreme deformations, severe washing, and extended environmental exposure. Maximum
instantaneous output electricity up to 880 V and 1.1 µA/cm2 could be obtained by touching
with a small force (~5 N) and low frequency (~4 Hz). More examples of smart textiles that
were designed to harvest body heat energy, biochemical energy, solar energy, and hybrid
energy forms were comprehensively reviewed previously [115].

8. Future Perspective
8.1. Wearability

The wearability requirements typically include washability, breathability, and biocom-
patibility, which is essential to widespread marketability [118]. As textile materials are
easily damaged due to washing or sweating under high moisture [119], electronic textiles
are required to be robust enough against washing. In this regard, designing compact fabric
structures, for example by lamination, is considered as an approach to protect the textile
materials. Mounting superhydrophobic surfaces on the textiles could resist surface contami-
nation in practical situations [115]. The washability of fabric sensors may also be optimized
by PU sealing or pre-treatment with PDMS as well [120–122]. A self-cleaning coating layer
as a barrier is recommended to protect textiles as well as microcircuits by preventing water
penetration. Breathability or air permeability that refers to the ability to allow transmission
of moisture and air is another key factor to guarantee the wearing comfort of wearable
electronics, where the textile-based design plays a critical role. Controlling the volume
between the interlaced yarns to tune the porosity and modulating the size of embedding
functional materials could be potential solutions. The use of wool and cotton can help
absorb perspiration and release heat simultaneously, improving the ventilation of skin
and the ambient environment. To achieve a high breathability, Lee et al. [123] fabricated a
flexible and lightweight thermoelectric yarn based on electro-spun PAN nanofiber cores
that were coated with n-type/p-type semiconductor sheaths linked by gold interconnects.
The yarns could be knitted and woven in series or in parallel with a zigzag, garter-stitch, or
plain structure. Considering the long-term epidermal applications of wearable electronics,
biocompatibility of smart textiles has become a serious concern worthy of attention. Some
risks exist in terms of the leakage of toxic chemicals in current textile generators, especially
those containing metals or dyes [124,125]. Therefore, it is urgently required to find some
toxic-free materials as the replacement, such as natural polymers (like cellulose).

8.2. Functionality

Soft polymers and 2D materials used for smart textiles are susceptible to various
types of damage, including fatigue, overloads, interfacial debonding, and cuts, tears,
and perforations by sharp objects [126]. One economic and ecological solution is to con-
struct fiber or fabric out of self-healing polymers, incorporating the intrinsic ability to
heal microscopic and macroscopic damage, either fully autonomously without the need
of any external intervention or by means of an external stimulus, for example, heat or
light [127]. Shuai et al. [128] developed a continuous dry-wet spinning method to manufac-
ture stretchable, conductive, and self-healing hydrogel fibers. The physically crosslinked
poly (NAGAco-AAm) (PNA) hydrogel precursor presented a thermally reversible sol-gel
transition that ensured the success of the spinning process. The self-repairability came from
the existence of abundant dynamic hydrogen bonding and the healing efficiency could
be improved by heating. It was demonstrated that a healed net could be generated when
splicing short PNA hydrogel fibers into a network and kept for a while at 45 °C, which
was robust to carry an object of 20 g. With the elastomeric poly (methyl acrylate) (PMA)
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coatings, the core–sheath fiber was prepared featuring a high strain sensing capability,
which could be further weaved into triboelectric nanogenerator for energy harvesting. On
the other hand, shape memory effect has been deemed as an effective approach to heal
the irreversible deformation, which enables the electronics to recover to their original state
from a deformed shape, greatly extending their service time. Yang et al. [129] prepared an
anisotropic conductive knitted fabric-based composite by encapsulation of polyurethane
(PU). Specifically, a shape memory PU substrate was used to respond to the human body
temperature as a thermal stimulus. The conductive knitted fabric and PU-sensing device
exhibited a good repeatability and could be spontaneously healed during routine wear-
ing without any special care. Moreover, self-healable PDMS elastomers also offers the
opportunity to address such an issue if they are made into fibers and fabrics [130].

Magnetic fabric materials have been gradually explored for wearable electronics in
recent years [131–133]. Magnetoelastic effect, commonly found in metals or alloys, was
discovered in soft materials by Chen’s group [134]. This can be leveraged for the design
of wearable electronics based on a new biomechanical-to-electrical energy conversion
mechanism. In principle, magnets (e.g., NdFeB) were uniformly distributed in the polymer
matrix, which can be polarized under an impulse magnetization, to form a wavy chain-like
arrangement. Upon applying an external pressure, magnetic particles were driven to
move and rotate so that the magnetic flux density of the soft material was changed. By
merging such a soft magnetoelastic system with a coil, a magnetoelastic generator was
developed to convert the magnetic flux density variation into electricity. For instance,
Chen et al. [135] fabricated a textile-based magnetoelastic generator by sewing a soft
magnetoelastic film with a textile coil. The expansion and contraction of the chest caused
by breathing deformed the magnetoelastic generator and distorted the magnetic field,
inducing a current output. Accordingly, the prepared breath sensor exhibited a high
sensitivity of 0.27 mA/kPa, a signal-to-noise ratio of 61.8 dB, and a response time of 15 ms.
Different from the layer-stacking configuration, the same group later invented a textile
magnetoelastic generator via weaving the magnetoelastic fibers with conductive yarns to
couple the observed magnetoelastic effect with magnetic induction (Figure 16a–c) [136]. The
textile magnetoelastic generator presented a short-circuit current density of 0.63 mA/cm2

and an internal impedance of 180 Ω. Furthermore, the design parameter of weaving pattern
was found to impact the electric performance of the sensor. Specifically, the textile with
the plain-weave pattern showed the highest electrical output, followed by that of the
satin-weave-patterned textile, while the twill-weave pattern gave the lowest output current
and voltage (Figure 16d,e) because of their different structure-induced deformation degree
in response to a fixed mechanical stress.

More recently, Dong et al. [137] proposed that 3D fabrics outperformed 1D fibers and
2D fabrics in terms of electromechanical conversion performance, providing a powerful
combination platform for multifunctional integration. The 3D fabrics with tunable stacking
layer in thickness direction can not only realize efficient acquisition and synchronous
storage of multiple energy forms but also give rise to real-time response and self-powered
sensing of multi-mode pressure signals. It is capable of making full use of the energies
around the human body, such as mechanical energy and temperature gradient. In this case,
3D printing can enable facile, inexpensive, and rapid fabrication of complex composite
structures with heterogeneous functional properties without the use of molds [7].

8.3. Scalability

Despite significant progress achieved in the development of textile-based sensors,
more and more attention in this field has been turned to the fast industrialization and
commercialization, beyond the simple demonstration of conceptual devices. While high-
performance unit textile-based sensors have been extensively fabricated in the laboratory,
it is of great concern to develop cost-effective processes for the large-scale fabrication in
industry. Some large-scale productions of conductive fibers have been realized to enable
the fabrication of functional fabrics for sensing applications. For instance, a high-speed
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rope braiding machine was utilized to fabricate core–shell triboelectric braided fibers with
uniform thickness and continuous length, which could be further expanded to power
textiles based on different fabric forming techniques, to realize energy harvesting and self-
powered sensing functions (Figure 17a) [138]. In addition, Seyedin et al. [100] developed
a wet-spinning line equipped with a pressure-controlled formulation vessel, a 100-hole
spinneret connected to a high precision metering pump, temperature-controlled coagulation
bath (1 m long) and washing baths (∼1.2 m long), a heating column, and a winding unit,
as shown in Figure 17b. It allowed the continuous production of conductive elastomeric
multifilament in a kilometer scale.
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Figure 16. (a) Schematics of the soft magnetic fibers created by extrusion via an adjustable noz-
zle; schematic of the (b) design and (c) working mechanism of textile magnetoelastic generator;
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cal signals of the textile magnetoelastic generator [136].
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set-up and a representative spool containing a few kilometers of the continuous PU/PEDOT:PSS
multifilament. Reprinted with permission from Ref. [100]. 2018, Elsevier 2018.
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Although the machine weaving technology is mature for the production of textile
materials on an industrial scale, the mass and cost-effective production of conductive
materials with high quality as well as the integration technology of the unit devices are
urgently required for practical applications. For example, in terms of graphene produc-
tion, liquid-phase exfoliation appears promising for “laboratory to industry” translation.
Specifically, high-shear mixing of graphite was shown to be more efficient than sonication
which can be scaled-up to an industrial level [139]. The exfoliation can be achieved in liquid
volumes up to hundreds of liters. In fact, many companies involved in the carbon business
have already claimed the production capabilities of thousands of tons per year [140]. On
the other hand, fully printing technique, which can be used to fabricate large-scale sensor
arrays, represents a promising method for flexible sensors [115,141].

8.4. Stability or Durability

Long-term working stability or durability is always a concern of textile-based sen-
sors when working in a harsh condition [142–144] because they are constantly subjected
to mechanical deformation, including stretching, bending, twisting, pressing, scratching,
and so on, which may cause damage and malfunction. As discussed above, a compact
fabric structure design would be helpful to protect the textile materials from destructions.
In addition, the use of wear-resistant coating and packaging can also enhance the long-
term stability and durability, through different approaches including thermal drawing,
wet-spinning, melt-spinning, spray coating, and screen printing have been adopted. Im-
proving the surface roughness of fabric structures facilitates larger loading areas, favoring
coating functional material via a solution process. The interfacial adhesion also plays
a vital role during the packaging process, wherein interface engineering via physical or
chemical strategies can provide an alternative freedom to tailor the overall performance
of textile-based sensors, especially considering its hierarchical structures [145]. On the
other hand, computational or simulation tools comprise another efficient pathway for the
fabrication of mechanically robust fabrics as they can predict the fabric properties and
quantitatively guide the structural design. Ideally, given the hierarchical structures of
the fabric, key parameters including internal geometries, bending or torsional curvature,
friction, and interlacements on different structural levels should be taken into account in
fabric models [146].

8.5. Cost-Effectiveness

A successful product design should deliver a balance between working performance
and manufacturing cost. The cost-effectiveness, related to the material production, device
manufacturing, maintenance, recycling, and disposal, is key to embracing a smooth indus-
trial shift [147]. In terms of the economic viability, some emerging functional materials
such as carbon nanomaterials may face the principal challenge for industrial-scale manu-
facturing due to the high process cost. In particular, compared to the CVD method, the use
of cheap feedstock and straightforward operation endows liquid-phase exfoliation with
higher cost-effectiveness. Furthermore, the coating process that enables the solution-based
deposition, such as spray coating, offers rapid assembly times and is amenable to automa-
tion, which is beneficial for cost reduction. In this context, conductive polymer excels in the
relatively lower production costs and sufficient availability.

Every textile-based sensor is evaluated with respect to its target application. It is
crucial to test the wearability, scalability, functionality, stability, and cost-effectiveness of
sensors to get reliable detection results (Figure 18). These parameters are influenced by
the types of material and fabrication strategies. Evaluation results may help to develop
application standards for textile-based wearable electronics.
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9. Conclusions

With the rapid development of electronic skin, wearable sensors have been widely
investigated and tremendous advances have been achieved, demonstrating great potentials
for practical wearable electronics. Wearable sensors with high sensitivity, excellent flexi-
bility, acceptable stretchability, and good stability can be mounted on the human body or
clothing to provide long-term detection of human activities and physiological information.
To satisfy the requirements, the selection of active materials and the structural design of
sensors are crucial.

Considerable progress has been achieved in flexible and wearable strain sensors based
on textile materials. One of the biggest advantages of textile-based sensors is its pro-
grammability to have a delicate design in structure and configuration by conventional
manufacturing processes, applying twist to transform fibers into coils and yarns with hier-
archical structures, which could be further fabricated into fabrics by sewing, weaving, and
knitting techniques. According to the demand of performance and functionality, various
constituent materials can be selected as the building blocks. In addition to conventional
metals and conductive polymers, the recently developed carbon nanomaterials, especially
CNT and graphene, as well as emerging 2D materials such as MXene, have opened new
opportunities to the construction of high-performance wearable sensors. Considering the
limited stretchability of single fibers and yarns, more delicate microstructures have been
introduced to fibers and different yarn configurations have been designed to improve
the elasticity and extendibility. (1) On the fiber level, some microstructures such as the
core–sheath structure, twisted structure, and buckling structure have been demonstrated
to be effective to enhance the stretchability while maintaining high conductivity. (2) On
the yarn level, increasing the order of structure hierarchy from single helix to multiply
coiled and entangled configuration has been found to result in elevated stretchability and
conductivity. (3) On the fabric level, various patterns such as weaving, knit, braiding,
and non-woven structures can be selected to tune the elasticity and strength of the fabric
while meeting diverse demands of applications. All in all, it is efficient to design desired
textile sensors by a combination of materials selection, fiber microstructure control, yarn
configuration engineering, and fabric pattern design.

Funding: This research was funded by the Anhui Provincial Key Natural Science Research Project
(wjmk [2017] No. 12 KJ2016A0510) and Anhui Provincial Quality Project—Massive Open Online
Courses (MOOC) demonstration project: Modern spinning techniques (2018mooc007).
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