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Abstract: This paper presents a new numerical approach for the full extraction of the coupling-of-
modes (COM) parameters by stationary and eigenfrequency analyses in the finite element method
(FEM). This is a fast method extracting from the results of static analysis and eigenfrequency analysis.
It avoids the long calculation time of admittance frequency response analysis, which is commonly
used in extracting COM parameters. In addition to the usual COM parameters (velocity, reflection
coefficient, transduction coefficient and capacitance), the phases of reflection and transduction
coefficient can be also extracted with this method. The proposed method was applied to different
cutting types LiNbO3 with different types of thicknesses in a varying interdigital transducer (IDT).
These examples show that our approach has great potential in extracting all the COM parameters
of the Rayleigh SAW for all kinds of IDT structures. Therefore, it is a fast, accurate, general and full
extraction approach of COM parameters.

Keywords: surface acoustic wave; interdigital transducer; coupling-of-mode; finite element method

1. Introduction

The design of high-performance SAW devices requires accurate and efficient simu-
lation techniques. The complexity of modeling IDT or functional gradient materials [1,2]
make it difficult to obtain a rigorous analytical solution. FEM is an effective method in
designing SAW devices because it can directly describe the coupled partial differential
equations involving the electric and mechanical fields in a grating consisting of a piezo-
electric substrate with electrodes [3]. It can handle arbitrary materials and crystal cuts,
different electrode shapes and structures including multiple metal and dielectric layers [4,5].
Compared with phenomenological models, superior performances of FEM on accuracy
have been validated when considering a necessary discretization of at least 10 elements per
wavelength. That is to say, the accuracy depends on the number of grids. Consequently, it
is time-consuming to simulate the whole device, since a huge number of grids are necessary
to improve the precision, but which require intensive computation [6,7]. Therefore, it
cannot be directly used to optimize the device performance.

Compared with other phenomenological models, such as the equivalent circuit model [8],
the COM model is a more efficient model in simulating and designing SAW devices. In
addition to the acoustoelectric interactions of the electric current with the surface acoustic
waves, the COM model considers the excitation, propagation and mutual reflection of
counter-propagating waves in a continuous medium [9]. Since it is a phenomenological
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model, the heavy dependence of the COM model on the accurate COM parameters is evi-
dent. Many researchers have made much effort to acquire these parameters experimentally
and theoretically. Hartmann et al. extracted the needed COM parameters from measure-
ments [10,11]. However, this process is both time-consuming and expensive because of the
many degrees of SAW structures, such as the relative electrode thickness, the metallization
ratio and the electrode profile. Some numerical methods, such as a combination of FEM
and boundary element methods [12,13], a full FEM [14] and finite element method–spectral
domain analysis [15,16], have also been employed for COM parameters extraction.

Regarding to the reflection coefficient and transduction coefficient, most of researchers
are got only in their absolute value. To obtain the best unidirectivity for SPUDT, one must
know the accurate COM parameters, including the phases of reflection coefficient and
transduction coefficient, to find out if the length between the transduction and reflection
centers is 1/8 wavelength or not [17]. Hashimoto et al. used the input admittance to
find the two resonances and two antiresonances to extract all the absolute values of the
COM parameters except capacitance C and the phase difference between the phase of
reflection coefficient and the double phase of the transduction coefficient [15,18,19]. They
obtained capacitance C by the fitting methods, with the results of the input admittance
calculated using the MSYNC software. However, the sign of the phase difference could not
be determined. Yong’an Shui et al. used the periodic Green’s function method to extract
all the COM parameters, including the phase of reflection coefficient, but not the phase of
transduction coefficient [20].

In this paper, we will demonstrate an approach to extract all the COM parameters.
This approach makes full use of the results of static analysis and eigenfrequency analysis
obtained by the FEM. It avoids the long calculation time in the frequency response analysis.
Subsequently, we will demonstrate the results of several examples of its application. These
results show that this approach is powerful to fully extract the COM parameters of the
Rayleigh wave for all kinds of IDT structures on arbitrary materials.

2. Theory to Extract COM Parameters
2.1. COM Model

It is assumed that there are two counter-propagating waves which exist in a grating,
where one of them propagates toward the +x direction, whereas the other propagates
toward the −x direction. The two waves are represented as R(x) and S(x), respectively.
There are three common types of COM differential equations. These differential equations
vary depending on whether the direction of the current flow is the same or opposite to the
coordinate system and the sign of reflection coefficient κ. As shown in Figure 1, R(x) and
S(x) represent the two counter-propagating waves, and I(x) is the current caused by the
induced charges in the electrodes when the transducer is driven by a voltage V, whose
direction is opposite to x. The drive voltage V and current I are defined by their half-power
amplitude values.
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Introducing the slow varying fields R0(x), S0(x) of R(x) and S(x):{
R(x) = R0(x) exp(−ik0x)

S(x) = S0(x) exp(ik0x)
, (1)

where k0 = 2π/λ0. Moreover, defining a detuning parameter ∆ as:

∆ = k− k0 =
ω

v
− 2π

λ0
, (2)

where ω is the angular frequency, ν is the velocity and λ0 is the electric period of the
gratings. Then, the final COM equations can be written as [9,21]:

∂R0

∂x
= −i∆R0(x) + iκS0(x) + iαV

∂S0

∂x
= −iκ∗R0(x) + i∆S0(x)− iα∗V

∂I
∂x

= −2iα∗R0(x)− 2iαS0(x) + iωCV

, (3)

where velocity ν, the reflection coefficient κ, the transduction coefficient α and the static
capacitance per unit length C are the four independent COM parameters to be determined.
Generally, κ and α are complex numbers.

If we define the reflection coefficient κ = −κ, the resulting COM equations are the
second form, which has been widely used in Japan [18,22,23]. If we define I(x) = −I(x)
and introduce the thin film resistance of an interdigital transducer, the third form COM
equations would be derived. This form was also used in many papers [24–26].

No matter which kinds of COM model is used, all the four characteristic parameters
need to be extracted. In the next section, we developed a parameters extraction technique
for all four COM parameters mentioned above based on the FEM.

2.2. Extraction Technique of COM Parameters

The static capacitance is a measure of the electrostatic energy stored in an IDT and
it can be calculated from the charge distribution and electric field distribution excited by
the transducer subject to a constant voltage. When the applied voltage is 1V, the static
capacitance of one period Cp is the integral of charge distribution on the electrode.

The other parameters can be extracted from the stopband characteristics of the short-
circuited and open-circuited grating. For a short-circuited grating, the voltage will be set at
0V, and the COM equations will be reduced to the form [27] given in Equation (4).

∂R0

∂x
= −i∆R0(x) + iκS0(x)

∂S0

∂x
= −iκ∗R0(x) + i∆S0(x)

, (4)

The solution is of the form in Equation (5){
R(x) = c1 exp[−i(k0 − qsc)x] + c2 exp[−i(k0 + qsc)x]

S(x) = 1
κ {c1(∆ + qsc) exp[i(k0 + qsc)x] + c2(∆− qsc) exp[i(k0 − qsc)x]}

, (5)

and satisfies the dispersion relation [18] in Equation (6):

qsc =


−
√

∆2 − |κ|2 (∆ < −|κ|)

−i
√
|κ|2 − ∆2 (∆ < |κ|)

−
√

∆2 − |κ|2 (∆ > |κ|)

, (6)
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where c1 and c2 are arbitrary coefficients of the two eigenmodes which are determined by
the initial and boundary conditions. Each of them may be interpreted as combinations
of an incident wave and a reflected wave. It can be seen from Equations (5) and (6) that
the eigenmodes form a stopband in the frequency region, |∆| < |κ|. Here, we use the
phase ϕκ and amplitude |κ| to describe the reflection coefficient as κ = |κ|exp(iϕκ). The
amplitude of κ determines the width of the stopband. The lower and upper frequencies
of the stopband f s+ and f s− can be obtained by considering the zeros of the dispersion
relation [28,29]. Then, we have:

fs+ =

(
1 +
|κ|λ0

2π

)
fs

fs− =

(
1− |κ|λ0

2π

)
fs

, (7)

From Equation (7), the center frequency of the short-circuited grating f s and |κ| can
be represented as Equations (8) and (9).

fs =
fs+ + fs−

2
, (8)

|κ| = 2π

λ0

fs+ − fs−
fs+ + fs−

, (9)

The Rayleigh mode effective velocity ν in a short-circuited grating can be calculated
using the following equation:

v = fsλ0, (10)

The field in the grating is a combination of the two waves R(x) and S(x). At the upper
frequency of the stopband [20],

R(x) + S(x) = 2(c1 + c2) cos
(

k0x− ϕk
2

)
exp

(
−i

ϕk
2

)
, (11)

at the lower frequency,

R(x) + S(x) = 2(c1 + c2) sin
(

k0x− ϕk
2

)
exp

[
−i
( ϕk

2
+

π

2

)]
, (12)

After finding the positions of the nodes of the standing wave during the frequencies
at the stopband edges, one can get the phase of κ. In an open-circuited grating, the current
density ∂I/∂x is equal to zero, this yields the following equation

V =
2α∗

ωC
R(x) +

2α

ωC
S(x), (13)

Substituting Equation (13) into the remaining COM equations, we have
∂R0

∂x
= −i

(
∆− 2|α|2

ωC

)
R0(x) + i

(
κ +

2α2

ωC

)
S0(x)

∂S0

∂x
= −i

(
κ∗ +

2(α∗)2

ωC

)
R0(x) + i

(
∆− 2|α|2

ωC

)
S0(x)

, (14)

The general solutions of Equation (14) are the same as Equation (4), but with the
corresponding equivalent detuning parameter ∆oc = ∆− 2|α|2/(ωC) and the equivalent
reflection coefficient κoc = κ + 2α2/(ωC). The dispersion relation should be modified by
∆oc and κoc. We also use the phase ϕα and amplitude |α| to describe the transduction
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coefficient as α = |α|exp(iϕα). The upper and lower frequencies of the stopband f o+ and
f o− in an open-circuited grating can be expressed considering Equation (7) as:

fo+ =

(
1 + λ0

2π

2|α|2

ωC
+

λ0

2π

∣∣∣∣κ +
2α2

ωC

∣∣∣∣
)

fs

fo− =

(
1 +

λ0

2π

2|α|2

ωC
− λ0

2π

∣∣∣∣κ +
2α2

ωC

∣∣∣∣
)

fs

, (15)

The amplitude of a regeneration reflection term 2|α|2/(ωC) can be obtained by
Equation (16)

2|α|2

ωC
=

2π

λ0

(
fo+ + fo−
fs+ + fs−

− 1
)

, (16)

Moreover, we will get the amplitude of the reflection coefficient in an open-circuited
grating: ∣∣∣∣κ +

2α2

ωC

∣∣∣∣ = 2π

λ0

fo+ − fo−
fs+ + fs−

, (17)

According to the method mentioned above, we can obtain the phase of the reflection
coefficient in an open-circuited grating ϕκo. Making full use of Equations (9), (16) and (17),
and the phase of ϕκ and ϕκo, we can get

cos(2ϕα) =

∣∣∣∣κ +
2α2

ωC

∣∣∣∣ cos(ϕκo)− |κ| cos(ϕκ)

2|α|2

ωC

sin(2ϕα) =

∣∣∣∣κ +
2α2

ωC

∣∣∣∣ sin(ϕκo)− |κ| sin(ϕκ)

2|α|2

ωC

, (18)

So far, we have solved the four COM parameters including the phases of κ and α. We
can get another relation from the edge frequencies of the stopband in a short-circuited
grating and an open-circuited grating

cos(ϕκ − 2ϕα) =
( fo+ − fo−)

2 − ( fs+ − fs−)
2 − ( fo+ + fo− − fs+ − fs−)

2

2( fs+ − fs−)( fo+ + fo− − fs+ − fs−)
, (19)

The Equation (19) is similar to (7.154) of reference [18], and it can be used to verify the
phase difference between the phase ϕκ and the double phase ϕα.

2.3. FEM Model Description and Simulation

The wave of the Rayleigh-type SAW propagates on the surface of the substrate with
its amplitude exponentially decaying. This feature enables us to build a model with only
a few wavelength depths of the substrate. The waves, excited by infinite numbers of the
IDT fingers with the same grating shape on a piezoelectric substrate, are spatially periodic.
Therefore, simulating a periodic structure of the device might suffice. With the use of
periodic boundary conditions (PBC) in x- and y-directions, this model is reduced to one
period λ0 in the x-direction and λ0/10 in the y-direction. Static analysis and eigenfrequency
analysis are conducted in the FEM to extract the COM parameters. Here, we build the FEM
model of a standard EWC SPUDT cell on a substrate to demonstrate the approach to extract
the COM parameters.

As shown in Figure 2, a three-dimensional model with a period of λ0 = 50 µm, in
which the IDT structure is a standard EWC SPUDT, is built. This standard EWC SPUDT
has three fingers, with two λ0/8 narrow fingers and one λ0/4 wide finger, and the gaps
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between the fingers are λ0/8 and 3λ0/16. The first finger is active. In our model, we set the
origin at the center of the period structure. A perfectly matched layer (PML) is applied to
suppress the spurious resonances caused by the bottom reflection [30]. The thickness of
electrodes is denoted by h and the thickness of the substrate and the PML are set as 5λ0 and
λ0, respectively. Two electrodes on the right in the model are grounded, while the terminal
one is 1V voltage or 0C charge, according to the request of the model analysis.
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Figure 2. FEM model of a unit cell.

In Equation (3), the COM parameters can be interpreted as parameters for a unit
length. Actually, the parameters for a unit period of length λ0 are more practical. Instead, it
is convenient to define the normalized parameters listed in Table 1.

In static analysis, a voltage 1V is applied on the terminal electrode. After the model is
solved, we can get the surface charge density σs(x1) and the tangential component of the
electric field on the substrate surface E1(x1) and the surface potential Φ(x1), as shown in
Figure 3.

The capacitance can be calculated by summing the electrostatic charges on the elec-
trodes connected to the terminal of voltage.

The other COM parameters can be obtained from the results of the eigenfrequency
analysis. In this analysis, the edge frequencies of the stopband f s+, f s−, f o+, f o− can be
obtained. The two frequencies (f s+ and f s−) correspond to two eigenfrequencies (symmetric
frequency and antisymmetric frequency) of the eigenfrequency analysis by setting the
terminal voltage to 0V. Here, we also donate the lower of the two eigenfrequencies as f s−
and the higher one as f s+, and they are 77.646 MHz and 78.079 MHz for 128◦ YX LiNbO3,
respectively. The displacement distributions at the lower and upper stopband edges also
can be obtained from the postprocessing of the eigenfrequency analysis in the FEM, and
the normalized displacements are shown in Figure 4.

Table 1. Normalized COM parameters.

Parameters Symbol Dimension (SI)

Velocity in short-circuited grating ν m/s
Reflection coefficient κp = κλ0 %

Transduction coefficient αp = αλ0 Ω−
1
2

Normalized transduction coefficient αn αp/
√

ωCp %
Capacitance Cp = Cλ0 F

Normalized capacitance Cn= Cp/W F/m
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It can be seen that there is a π/2 phase difference between the two displacements
distribution. One can get the phase ϕκ after finding the position of the displacement
distribution at the lower edge frequency. Then, the COM parameters of ν, |κ| and ϕκ can
be derived using Equations (8)–(12). Table 2 gives the calculated COM parameters for EWC
SPUDT on 128◦YX LiNbO3 with h = 0.

Table 2. COM parameters for EWC SPUDT on 128◦YX LiNbO3 for h = 0.

Parameters Values

Normalized capacitance (pF/m) 546.33
Velocity in short-circuited grating (m/s) 3892.7

Reflection coefficient |κp| (%) 1.73
Phase of reflection coefficient −157.56◦

Normalized transduction coefficient αn (%) 14.68
Phase of transduction coefficient −37.84◦
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We have extracted the COM parameters [31] for EWC SPUDT on YZ-LiNbO3, bidi-
rectional IDTs on 128◦YX LiNbO3 and Y-Z LiNbO3. Moreover, these results are compared
with those of well-known researchers in the field of surface acoustic waves (SAW), and that
shows this approach is powerful to fully extract the COM parameters of the Rayleigh-type
SAW for all kinds of IDT structures on arbitrary materials [20,32,33].

We modify the directivity D given in reference [18], which can be simplified to
Equation (20):

D =

∣∣∣∣∣∣∣∣∣∣
1 + i exp(iϕ)tanh

(
N
∣∣κp
∣∣

2

)

1 + i exp(−iϕ)tanh

(
N
∣∣κp
∣∣

2

)
∣∣∣∣∣∣∣∣∣∣
, (20)

where ϕ = ϕκ − 2ϕα, we call it unidirectional angle, and N is the number of electrodes.
In Equation (20), the defined directivity is the ratio of the excitation efficiency of

the IDT in positive x to the excitation efficiency in negative x. This means that the wave
excitation in direction of positive x is favored over the negative x if D > 1, and the wave
excitation in positive x is weaker than the negative x if D < 1, or else the period of an IDT
cell on a given substrate is bidirectional. When fixed for the value N|κp|, one can find that
the condition of the best right directivity is ϕ = −π/2. The sign of ϕ is important to decide
the direction of the wave excited by the drive voltage is applied on IDTs. Definitely, one
can get the sign of ϕ since all the COM parameters, including the phases of ϕκ and ϕα, can
be calculated by our method.

3. Results and Discussions

In this section, we compute the COM parameters versus the thickness of the electrode
for the bidirectional IDT on the 128◦YX LiNbO3, bidirectional IDT on Y-Z LiNbO3, EWC
SPUDT on 128◦YX LiNbO3 and EWC on Y-Z LiNbO3, respectively. The material constants
of LiNbO3 are obtained from reference [34], and the metal electrodes are assigned with
aluminum (Al) material with a Young’s modulus of 70 GPa, a Poisson’s ratio of 0.33 and a
density of 2700 kg/m3.

Figure 5a–d illustrates the results of the COM parameters for the bidirectional IDT
on the 128◦YX LiNbO3. As shown in Figure 5a, with an increase of h/λ0, the velocity
ν decreases, while the capacitance Cn has almost no change. Figure 5b shows the amplitude
and the phase of κ. It is easy to see that |κ| decreases at first and then increases with
the increase of h/λ0, and it becomes zero at h/λ0 ≈ 2.76%. This is due to the fact that the
electrical reflection by the short-circuited grating has the opposite sign to the mechanical
reflection [18]. The corresponding experiment results [35] verified its correctness. This
phenomenon can be deduced from the phase ϕκ. When h/λ0 is small, ϕκ = π, namely, κ < 0,
and when h/λ0 > 2.76%, ϕκ = 0, namely, κ > 0. This is to say that κ increases monotonically
with an increase in h/λ0. Figure 5c shows αn and the phase ϕα. We can see that the value of
αn has a slowly increasing trend and that the phase remains the same at zero. The directivity
and the unidirectional angle versus the thickness of the electrode are displayed in Figure 5d.
It can be seen that the directivity has stayed at 1, indicating that the IDT is bidirectional and
there is no natural unidirectionality in the material orientation. In Figure 5d, we can see the
unidirectional angle is 0 or 180◦. Substituting the unidirectional angle into Equation (20),
the directivity of 1 also can be deduced.

Figure 6a–d illustrate the results of the COM parameters for the bidirectional IDT on
the Y-Z LiNbO3. The COM parameters of C and ν have the same change trends compared
with the bidirectional IDT on 128◦YX-LiNbO3, while the value of αn has an opposite trend.
From Figure 6b, the reflection coefficient increases without an inflection point and the phase
ϕκ is offset by 0 slightly and increases slowly with h/λ0. These features demonstrate that
directivity is inherent in Y-Z LiNbO3 despite being very small. Additionally, the directivity
can be adjusted slightly by changing the thickness of the electrode. It also can be seen
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from Figure 6d that the unidirectional angle is offset by 180◦ when h/λ0 increases, and the
directivity increases as h/λ0 increases.
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Figure 5. COM parameters versus thickness of electrode for bidirectional IDT on 128◦YX LiNbO3:
(a) Normalized capacitance and velocity; (b) Reflection coefficient and its phase; (c) Normalized
transduction coefficient and its phase; (d) The unidirectional angle and directivity.
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Figure 6. COM parameters versus thickness of electrode for bidirectional IDT on YZ-LiNbO3:
(a) Normalized capacitance and velocity; (b) Reflection coefficient and its phase; (c) Normalized
transduction coefficient and its phase; (d) The unidirectional angle and directivity.

Figures 7a–d and 8a–d illustrate the results of the COM parameters for the EWC
SPUDT on 128◦YX LiNbO3 and Y-Z LiNbO3, respectively. These COM parameters of C, ν
and αn have the same change trends in two cutting types of LiNbO3. The same is seen in
the bidirectional IDT, where the |κp| has a zero [36] value in 128◦YX-LiNbO3 when h/λ0 is
approximate to 2.47%, but such a zero value does not exist in YZ-LiNbO3. In relation to the
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|κp|, it is relatively small in the EWC SPUDT structure compared with the bidirectional
IDT structure. From Figures 7d and 8d, we can see that the unidirectional angles are close
to −90◦ or 90◦, but not −90◦ or 90◦ exactly. This means that the standard EWC SPUDT
structure on 128◦YX LiNbO3 and Y-Z LiNbO3 do not obtain the best directivity. From the
directivity curve in Figure 7d, the wave excitation in the right direction is favored over the
left wave when h/λ0 is small, while when h/λ0 is larger than 2.76%, this is reversed. This
phenomenon has not appeared in previous research and is not found in YZ-LiNbO3.
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Figure 7. COM parameters versus thickness of electrode for EWC SPUDT on 128◦YX-LiNbO3:
(a) Normalized capacitance and velocity; (b) Reflection coefficient and its phase; (c) Normalized
transduction coefficient and its phase; (d) The unidirectional angle and directivity.
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4. Conclusions

A novel method is proposed to extract all the COM parameters, especially for the
phases ϕκ and ϕα. This method fully utilizes the static and eigenfrequency characteris-
tics computed by the FEM. The corresponding relationships between the characteristics
obtained by the FEM and the characteristics in the COM theory are established. All the
COM parameters for a bidirectional IDT cell on 128◦YX LiNbO3, a bidirectional IDT cell
on Y-Z LiNbO3, an EWC SPUDT cell on 128◦YX LiNbO3 and an EWC SPUDT cell on Y-Z
LiNbO3 are calculated, respectively. These examples show that this is an effective method
to extract the COM parameters quickly, accurately, generally and fully.
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