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Abstract: In this study, III-nitride red micro-light-emitting diodes (µLEDs) with ultralow forward
voltage are demonstrated on a strain relaxed template. The forward voltage ranges between 2.00 V
and 2.05 V at 20 A/cm2 for device dimensions from 5 × 5 to 100 × 100 µm2. The µLEDs emit
at 692 nm at 5 A/cm2 and 637 nm at 100 A/cm2, corresponding to a blueshift of 55 nm due to
the screening of the internal electric field in the quantum wells. The maximum external quantum
efficiency and wall-plug efficiency of µLEDs are 0.31% and 0.21%, respectively. This suggests that
efficient III-nitride red µLEDs can be realized with further material optimizations.

Keywords: red micro-light-emitting diodes; strain relaxed template; III-nitride

1. Introduction

Due to the rapid advancements in micro-light-emitting diodes (µLEDs) for next-
generation display applications, significant research attention has been devoted to develop
full-color µLED displays [1–3]. Moreover, monolithic III-nitride-based µLEDs are especially
interesting for near-eye display applications, since this approach offers advantages in terms
of fabrication and mass transfer [4–6].

Among the three required colors, III-nitride red µLEDs remain a critical challenge
due to the increased strain in the active region attributed to the 10% lattice mismatch
between InN and GaN [7]. Therefore, several novel methods have been demonstrated to
reveal the possibility of III-nitride red LEDs by employing strain engineering in the active
region, such as semi-relaxed InGaN substrates and porous GaN pseudo-substrates [8–13].
However, most of the proposed techniques require patterning and regrowth, which can be
problematic for scalability and manufacturing perspectives. Recently, novel planar InGaN
strain relaxed templates (SRTs) with more than 85% biaxially relaxation have been realized,
and red LEDs using this type of template have been demonstrated [14,15]. In these reports,
the SRTs consist of a thin layer with a high indium composition of InGaN decomposition
layer capped with GaN. The decomposition layer is then thermally decomposed to form
voids during the high-temperature growth of either GaN or InGaN. After void formation,
the subsequently grown InGaN layers show high levels of relaxation.

In this work, III-nitride red µLEDs on SRTs with the forward voltage of 2.05 V at
20 A/cm2 are demonstrated. The red LED epitaxial structure employs a 3 nm of InGaN
decomposition layer and eight periods of InGaN/GaN quantum wells grown at 835 ◦C.
The red µLEDs emit at 657 nm with a full width at half-maximum (FWHM) of 70 nm
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at 20 A/cm2, where they exhibit 55 nm of blueshift in the peak wavelength from 5 to
100 A/cm2. The maximum external quantum efficiency (EQE) and wall-plug efficiency
(WPE) are 0.31% and 0.21%, respectively.

2. Materials and Methods

Similar growth of the LED epitaxial structure on SRTs has been reported previously [14,15].
The LED epitaxial structure on SRT is shown in Figure 1. The epitaxial structure was grown
on patterned sapphire substrate with a 7.5 µm thick GaN template. First, a 3 nm InGaN
decomposition layer was grown at 720 ◦C and this layer was capped with a 2.5 nm UID
GaN at 720 ◦C, and 2.5 nm UID GaN at 825 ◦C. After that, two sets of InGaN superlattices
(SLs) were grown. The two sets of SLs consisted of five periods of 18 nm n-In0.04Ga0.96N
or n-In0.06Ga0.94N and 2 nm GaN at 930 ◦C and 920 ◦C, respectively. During the higher
temperature growth of 930 ◦C, the decomposition layer thermally decomposed to form
voids. The first set of SLs was referred to as the decomposition stop layer (DSL) and the
second set of SLs served as the InGaN buffer. The developments and the corresponding
relaxations of the decomposition layer, DSL, and SLs have been reported [14,15]. The active
region was grown at 835 ◦C with eight periods of 2.5 nm InGaN/6 nm GaN quantum
wells. Lastly, 5 nm of p-Al0.1Ga0.9N electron blocking layer (EBL), 60 nm p-GaN, and 15 nm
p+-GaN were grown at 920 ◦C. The relatively thin p-Al0.1Ga0.9N EBL was attributed to the
potential relaxation of the thicker AlGaN layer by growing on a higher lattice template.
After the epitaxial growth, seven device sizes ranging from 5 × 5 to 100 × 100 µm2 were
fabricated with 110 nm indium–tin oxide (ITO) contact and atomic layer deposition (ALD)
for sidewall passivation; the details of the device fabrication and device designs have been
reported in the literature [16,17]. On-wafer measurements were performed to obtain the
electrical characteristics and packaging was executed to determine the optical and efficiency
performances [18].
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Figure 1. Schematic of the LED epitaxial design.

3. Results and Discussion

The emission spectra of a 100 × 100 µm2 device at different current density ranges and
the corresponding peak wavelengths and FWHMs are shown in Figure 2a,b. The device
yielded a blueshift of 55 nm in the peak wavelength, varying from 692 nm at 5 A/cm2

to 637 nm at 100 A/cm2. The blueshift in the peak wavelength was due to the quantum-
confined Stark effect (QCSE) attributed to the charge screening of the polarization-related
electric field in the quantum wells, where the degree of blueshift is similar to other c-plane
GaN red LEDs [19,20]. The blueshift in the peak wavelength was also due to the large
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polarization-related electric field; c-plane polar orientation has the highest polarization-
related electric field and lessens in semipolar and nonpolar crystal orientations [21,22].
To reduce or mitigate the effects of the polarization-induced electric field in the c-plane
polar orientation, the use of polarization screening in the quantum wells by employing
doped barriers is a promising option [23]. The peak wavelength variation was 15 nm
across the two-inch wafer, from 639 nm to 654 nm, at 100 A/cm2. Additionally, the spectra
did not show a separated blue emission at about 430–475 nm, suggesting that the InGaN
active region did not show detrimental phase separation or alternately hole injection into
the underlying InGaN/GaN SLs [10,24]. Nevertheless, the FWHM was very broad for
display applications, and decreased from 90 nm at 5 A/cm2 to 66 nm at 35 A/cm2 and
increased gradually to 70 nm at 100 A/cm2. For InGaN-based LEDs, the FWHM generally
increased with wavelength emission due to indium fluctuation in the active region [9]. The
reduction in electroluminescent FWHM from 5 to 35 A/cm2 could be due to emission from
delocalized band states, while the increase in FWHM at higher current densities could be
attributed to bandgap normalization due to an increase in junction temperature or excited
states [24,25]. When increasing the current density, the color quality was affected by the
screening of the internal electric field in the quantum wells, which drove the emission color
from deep red towards red. One way to reduce the FWHM is to employ various color filters
or reflectors to improve the InGaN red color quality, compared to the emission spectrum
of AlGaInP red emitters [26,27]. Therefore, further growth optimizations are required to
reduce the FWHM and to suppress the wavelength blueshift due to QCSE in c-plane InGaN
red µLEDs.
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Figure 2. (a) Emission spectra from 5 to 100 A/cm2 from a 100 × 100 µm2 device and (b) the peak
wavelength and FWHM with current densities from the 100 × 100 µm2 device.

The InGaN red devices yielded exceptional electrical and optical performances, in-
cluding low forward voltage and relatively high light output power (LOP) characteristics.
Figure 3a shows the current density–voltage characteristics of the µLEDs. All the devices
yielded a low forward voltage, showing voltage values between 2.00 V and 2.05 V at
20 A/cm2, which is the lowest voltage characteristic compared to other InGaN red emit-
ters in the literature [9,15,19,28–30]. The low voltage could be attributed to the better
hole injection via v-defects in the active region, where the v-defects could be generated
from the buffer layer surface with deep pits [14,15,19]. As the current density increased,
the voltage performance was dominated by the current spreading in the devices, where
larger devices resulted in higher resistive characteristics due to greater p-GaN areas [31].
Figure 3b presents the LOP–current density characteristics of the red devices. Although
the LOP remained lower compared to the conventional planar growth approaches, the
performance was better when comparing to the other relaxation methods, suggesting
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that the SRT method is promising to realize biaxially relaxed templates for red InGaN
µLEDs [19,24,29,30].
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Figure 3. (a) Current density–voltage characteristics and (b) LOP–current density characteristics of
the packaged red InGaN devices.

The EQE and WPE characteristics are shown in Figure 4. The peak EQE and WPE were
0.31% and 0.21%, respectively, and the efficiency performance was weakly dependent on
the device dimensions. The EQE and WPE curves were low and did not show significant
droop behavior, indicating the efficiency performance was constrained by the material
quality in the active region [32]. Efficiency limitation was likely due to the trap-assisted
Auger recombination (TAAR), since the EQE was low and the curves did not reach a peak
value. The internal quantum efficiency could be limited by the ratio of TAAR and the
radiative recombination if TAAR plays a significant role, resulting in low efficiency without
droop [32,33]. In addition to the low efficiency, the devices did not show detectable light
emission for applied current densities less than 5 A/cm2. This indicates that the device
performance was hindered by the defects in the active region; the Shockley–Read–Hall
non-radiative recombination reduced radiative recombination at low current densities and
TAAR prohibited the optimal efficiency at high current densities [6,32]. Hence, further
optimizations in the active region should be performed, such as incorporating an AlGaN
capping layer in the active region [24].
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4. Conclusions

In conclusion, InGaN red µLEDs with low forward voltage characteristics were demon-
strated in this study by employing the SRT method. The forward voltage values ranged
between 2.00 V and 2.05 V at 20 A/cm2, which are the lowest among all red InGaN devices
reported in the literature. The devices emitted at 692 nm at 5 A/cm2 and shifted to 637 nm
at 100 A/cm2 due to the QCSE. The devices yielded higher LOP performance than other re-
laxation methods. Since the devices showed low efficiency due to defects and non-radiative
centers in the active region, further material improvements are needed to create red InGaN
µLEDs with high efficiency using the SRT method.
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