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Abstract: Continuous polishing is the first choice for machining optical elements with a large aperture.
The lubrication in the continuous polishing is an important factor affecting the surface quality of the
optical elements. In this study, the lubrication system between the optic element and polishing lap
was analyzed firstly and then was verified by the measurement experiment of the friction coefficient.
In addition, the numerical simulation model of the mixture lubrication was established. The polishing
pressure distribution and material removal distribution can be obtained by the model. The influences
of the rotating speed, optical element load, and surface roughness of the polishing lap on polishing
pressure were also analyzed. Finally, the influence rules of the lubrication on the surface shape of
optical elements were revealed by the polishing experiments.

Keywords: continuous polishing; lubrication; optical elements; surface shape

1. Introduction

Abrasive machining technologies such as grinding and polishing are the necessary
means to realize the precision machining of optical elements [1–3]. Continuous polishing
technology is a full-aperture covering method for polishing optics. The research on con-
tinuous polishing is more qualitative than quantitative. The machining instability of the
continuous polishing seriously restricts the efficiency of planar optical elements with a large
aperture. To reduce the production cycle and processing cost, it is necessary to enhance the
understanding of the continuous polishing technology and solve the key problems which
restrict the development of the continuous polishing [4–8].

The lubrication in the continuous polishing area is an important factor affecting the
surface quality of optical elements [9]. It affects the polishing pressure and material removal
rate, and has a distinct influence on the surface shape of the substrates [10,11]. Therefore,
the study on the lubrication of the machining area is of great significance to reveal the
removal mechanism of the continuous polishing technology [12,13].

Chang et al. [14] studied the thickness of the liquid film between the wafer and
polishing lap, and the results indicated that the thickness was directly proportional to
the rotational speed and Hersey number of the wafer. The film thickness had distinct
effect on the performance of the chemical-mechanical polishing (CMP) process, such as
material removal and deformation behaviors. Controlling and optimizing the slurry film
thickness were helpful to maintain the process stability. Runnels et al. [15,16] believed that
the hydrodynamic effect in CMP polishing was an important factor affecting the uniform
removal of the work materials. Revealing the hydrodynamic effect can improve the stability
and surface integrity of the polishing process. Terrell et al. [17] summarized the research on
the hydrodynamics in CMP, and the results demonstrated that the existing research results
were imperfect, and did not point out the specific impact of the hydrodynamics during the
polishing process. More in-depth research should be carried out on the hydrodynamics
effect. Waechter et al. [18] found that with the increase of the relative speed, the contact
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between the optics and polishing lap were divided into four stages, namely low-speed
solid contact friction, medium-speed solid contact, hydrodynamic mixture friction, and
high-speed hydrodynamic friction.

Suadarajan et al. [19] used the lubrication theory model to solve the thickness, pressure,
and velocity distributions of the liquid film between the polishing pad and optics. The
model did not consider the elasticity of the polishing pad, and considered that the surfaces
of the optics and polishing pad were smooth. In addition, the results showed that only
the hydrodynamic pressure of the liquid film was not enough to support the optics [20],
e.g., the protrusion of the polishing pad inevitably contacted with the optics surface.
Tichy model described a one-dimensional contact model by using contact mechanics and
lubrication theory [21]. Although this model considered the elasticity of the polishing pad
and deformation of the surface bulge, it simplified the actual situation.

In conclusion, lubrication has a significant impact on the polishing of optical elements.
However, there are few studies on the flow field in the continuous polishing process, and
the evolution law of the optic surface shape has not been revealed. To optimize the surface
accuracy of the optical substrates, this study is aimed to clarify the lubrication mechanism
in continuous polishing and reveal the influence law of flow field on the surface accuracy
of optical elements.

2. Lubrication Method in Continuous Polishing
2.1. Lubrication Status Classification in Continuous Polishing

The continuous polishing machine uses a large substrate platen made from granite [22],
as shown in Figure 1. An annular pitch layer is prepared on the granite plate surface as the
grooves are cut into different shapes on the polishing lap surface to improve its fluidity
and the slurry transmission. There are two work rings on one side of the annulus, and the
inner diameter is equal to the annulus width. The plane optical elements to be polished
are placed in these rings. There is a large circular truing tool called the ‘conditioner’ on
the remaining portion of the annulus, which is substantially wider than the radius of the
polishing pad. During the continuous polishing processes, the polishing lap, work rings
and conditioner are driven by a servo motor. Abrasive slurry is sprayed on the surface
of the polishing lap through the nozzle, and it transported to the bottom of the element
through the groove. The surface finishing can be realized by the mechanical action of the
polishing particles.
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Figure 1. Continuous polishing machine.

Different contact modes between the optical element and polishing lap directly de-
termine the different lubrication characteristics, as shown in Figure 2. As a result, the
polishing fluid has different flow characteristics between the element and polishing lap.
Different polishing fluid flow characteristics affect the removal mechanism, removal rate
and accuracy of continuous polishing.
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Figure 2. Contact modes between the optical element and polishing lap.

The transformation between lubrication state and several kinds of states is the basis
of theoretical analysis of the fluid lubrication. According to the formation mechanism
and characteristics of the fluid lubrication film, the lubrication state can be divided into
boundary lubrication, fluid film lubrication and mixture lubrication.

(1) Boundary lubrication refers to the transition of the lubricant between the friction pairs
from the internal friction between molecules to direct contact between two friction
surfaces. In this lubrication state, the viscosity characteristics of the lubricant do not
have effect on the lubrication. The lubrication function of the fluid film is weak and
can be ignored, and there is more contact between the micro-convex bodies on the
friction surface. The surface friction and wear characteristics are determined by the
interaction among the lubricant, friction surface and properties of the boundary film.
The load between the friction pairs is provided by the surface micro-convex body.

(2) Fluid lubrication refers to the lubrication state in which the friction surface is separated
by a continuous fluid film. In this state, the surface of the friction pair does not directly
contact with each other and the contact wear does not occur.

(3) Mixture lubrication refers to the coexistence of the boundary lubrication and fluid
lubrication. In this state, the lubricating film is discontinuous, and is divided into
fluid lubricating film and boundary lubricating film. On the one hand, the fluid
lubrication film bears part of the load and produces viscous friction. On the other
hand, the boundary lubrication film and the micro-convex body on the contact surface
bear another part of the load, resulting in the dry friction on the contact surface. In
addition, the mixture lubrication state is often unstable and fluctuates between the
fluid film lubrication and boundary lubrication.

2.2. Judgment Method of Lubrication State of Continuous Polishing

In the state of the fluid film lubrication, when the load increases and the relative
motion speed of the friction pair and lubricant viscosity decrease, the bearing capacity of
the fluid film, thickness of the lubrication film and spacing between the friction surfaces
decrease. If there is a certain amount of the micro-convex contact in the friction, this state
may be transformed into the mixture lubrication. A judgment method is introduced below.

The calculation formula of the film thickness ratio is given in Equations (1) and (2).

ψ = hm/Rq (1)

Ra = 4
(

R2
a1 + R2

a2

) 1
2 /3 (2)

where, hm is the minimum lubricating film thickness, Rq is the comprehensive surface
roughness. Ra1, and Ra2 are the average deviations of the arithmetic contour of the
surface roughness.
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According to the calculation formula, when ψ ≤ 1, it is in the boundary lubrication
state, and there are many micro-convex contacts in the friction pair. When 1 < ψ < 3, the film
thickness ratio increases within this range, the fluid transits from the boundary lubrication
to fluid lubrication, and the fluid film thickness increases. When ψ ≈ 3, for the high pair
contact with a large load, it is in the state of full elastic hydrodynamic lubrication. When
ψ > 3, it is in the state of complete fluid film lubrication. The thickness of the liquid film
and roughness of the polishing lap are approximately 25 and 10 µm, respectively [23].
Therefore, the film thickness ratio of the continuous polishing ψ is equal to 2.5, which
belongs to mixture lubrication. The numerical simulation model of the mixture lubrication
will be established, and, then, the accuracy of the model will be verified by the experiments.

3. Numerical Model of Mixture Lubrication for Continuous Polishing
3.1. Load Sharing Theory

When the mixture lubrication is formed through continuous polishing, it is necessary
to consider both the rough peak and liquid film in the contact area. According to the
Johnson load thought [24], the total contact load FN is shared by the liquid film pressure Fh
and rough peak force Fa on the contact surface, as given in Equation (3). The friction Ff is
composed of the lubricating liquid film friction Ffh and rough peak friction Ffa, as shown in
Equation (4).

FN = Fh + Fa (3)

Ff = Ff h + Ff a (4)

Introducing the scale factor r, the liquid film bearing ratio is 1/r1, and the micro-convex
body bearing ratio is 1/r2. The bearing ratio of the liquid film refers to the proportion of
the pressure carried by the whole liquid film in the total optic load. The relation between
these parameters can be expressed by Equations (5) and (6).

Fh = FN/r1, Fa = FN/r2 (5)

1
r1

+
1
r2

= 1 (6)

On the contact interface, different micro-convex bodies have the same friction coeffi-
cient, and the friction of micro-convex bodies is expressed by Equation (7).

Ff a = µcFa =
1
r2

FNµc (7)

The polishing fluid of the continuous polishing can be regarded as Newtonian fluid
at a low speed [25]. The shear stress of the fluid is known from the Newton law of fluid
viscosity, as shown in Equation (8).

τ =
ηu
h

(8)

where τ is the shear stress, η is the viscosity of polishing solution, and u is the sliding speed.
Therefore, the friction coefficient of mixture lubrication can be calculated by Equation (9).

u f =
FC
FN

=

N
∑

i=1

s

ACi

τCi
( .
r
)
dACi +

1
r2

FNµc

FN
=

ηuAH
hFN

+
1
r2

µc (9)

where µc is the boundary friction coefficient, lubrication area is AH = Amon − Ar, Amon is the
nominal contact area, Ar is the actual contact area, and h is the average liquid film thickness.

3.2. Calculation Method of Liquid Film Thickness

The basic concept of the lubrication is to solve Reynolds equation to reveal the distri-
bution of the pressure in fluid lubrication film. The temperature difference in the annular
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polishing lubrication system is very small, so it is unnecessary to consider the change of
the lubricant viscosity and density with the temperature. In addition to the isothermal
conditions, the following assumptions should be used in the derivation:

(1) The effect of the volume force, such as gravity or magnetic force is ignored. In addition
to the theory of the electronic fluid or magnetic fluid lubrication, this assumption is
usually reasonable.

(2) The fluid has no sliding on the solid interface, that is, the velocity of the fluid particle
attached to the interface is the same as that of the point on the interface.

(3) In the direction along the thickness of the lubricating film, the change of the pressure
is ignored. Because the film thickness is only less than one micron to tens of microns,
in such a thin range, the pressure cannot change significantly. From this hypothesis,
it can be inferred that the viscosity and density of the fluid do not change in the
direction of film thickness.

(4) Compared with the film thickness, the radius of the curvature of the support surface
is large, and, accordingly, the change of velocity direction caused by the surface
curvature can be ignored.

(5) The lubricant is Newtonian fluid.
(6) The flow is laminar, without vortex and turbulence.
(7) Compared with the viscous force, the influence of inertial force can be ignored,

including the inertial force of the fluid acceleration and centrifugal force of the fluid
film bending.

Based on the above assumptions, the Reynolds equation under the isothermal condi-
tions is given in Equation (10).

∂

∂x

(
ρh3

η
· ∂p

∂x

)
+

∂

∂y

(
ρh3

η
· ∂p

∂y

)
= 12

∂

∂x
(ρUh) + 12

∂

∂y
(ρVh) + 12

∂(ρh)
∂t

(10)

where, ρ is the fluid density. U and V are the speeds of the optic and polishing lap, respectively.

U = (U1 + U2)/2, V = (V1 + V2)/2 (11)

The pressure P is integrated in the whole lubricating film range, and the result is the
bearing capacity of the lubricating film. For optical elements in the ring polishing, the
bearing capacity is given in Equation (12).

W =
x

pdxdy (12)

Two dimensionless parameters are defined as Equation (13).

W =
W

E′R
, U =

η0U
E′R

(13)

where W is the load parameter, and U is the speed parameter. In the definition of W, E′ is
the equivalent elastic modulus, and it can be calculated by the elastic modulus E1, E2 and
Poisson’s ratio υ1 and υ2 of the two surfaces, as given in Equation (14).

1
E′

=
1
2

(
1− υ2

1
E1

+
1− υ2

2
E2

)
(14)

In the definition of U, R is the equivalent radius of curvature, and it can be calculated
by the radii R1 and R2 of the two contact surfaces, as given in Equation (15).

1
R

=
1

R1
+

1
R2

(15)
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The schematic diagram of the liquid film is show in Figure 3, where the fluid density
ρ is assumed as a constant. The Reynolds equation can be derived from Equation (10) by
assuming that the viscosity and density of the fluid do not change in the direction of film
thickness, as shown in Equation (16).

dp
dx

= 12η0U
h− h0

h3 (16)

where h0 is the actual film thickness at x = 0.
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When h = h/R, p = p/E, x = x/b, Equation (16) can be rewritten into Equation (17).

dp
dx

= 48

(
W
2π

)1/2

U
h− h0

h
3 (17)

The film thickness can be expressed by Equation (18).

h0 = 1.95
(
E′U

)8/11/W1/11 (18)

The dimensional form is given in Equation (19).

h0 = 1.95(aη0U)8/11R4/11(E′/W
)1/11 (19)

Equation (19) is the empirical formula of the average thickness of the liquid film in the
contact area.

In the mixture lubrication problem, the actual thickness of the liquid film should also
consider the elastic deformation and surface roughness of the polishing lap. Note that the
sum of the elastic deformation of the two surfaces is δ and the roughness function is S(x).
The calculation of the liquid film thickness is given in Equation (20).

h = h0 +
x2

2R
+S(x)+δ (20)

It is known from the elasticity that, for a semi-infinite body, when a concentrated force
P uniformly distributed in the Y direction acts on the z-axis, the normal elastic deformation
δ(x) at any point M with abscissa x is given in Equation (21).

δ(x) = −1− v2

πE
P ln x2 − 1 + v

πE
p + C0 (21)

where E is the elastic modulus, v is the Poisson’s ratio, and C0 is the constant. C0 and H0
are combined into one term, and the liquid film thickness h is obtained in Equation (22).

hc = h0 +
x2

2R
− 1− v2

πE
P ln x2 − 1 + v

πE
P (22)
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When two rough surfaces come into contact with each other, Greenwood and Trip [26]
deduced the equation of the total load by the micro-convex body, as given in Equation (23).

Fh =
8
√

2
15

πn2β1.5σs
2.5E′F(H) (23)

where n is the number of micro-convex bodies per unit area, β is the radius of micro-convex
body, σ is the root mean square value of the surface roughness. F(H) can be calculated by
Equation (24).

F(H) = 4.4086× 10−5(4− H)6.804 (24)

H =
hc − dd

σs
(25)

where dd is the distance between the average surface of the micro-convex body and plane
of the polishing lap, which is about 1.15 σs.

3.3. Numerical Simulation Method of Mixture Lubrication

In order to calculate the friction coefficient of the mixture lubrication, it is necessary
to obtain the liquid film thickness h and bearing ratio of the micro-convex body 1/r2. The
liquid film pressure is calculated according to the liquid film bearing ratio, and the liquid
film thickness is calculated according to the liquid film pressure. Calculation steps are
as follows.

(1) The initial parameters are set, including the viscosity η of the polishing solution and
the characteristic values of the surface roughness of the polishing lap (n, β, σ).

(2) The initial values of the liquid film bearing ratio r1 and micro-convex body bearing
ratio r2 are set, and h0 is calculated according to the empirical formula.

(3) The liquid film load W and dimensionless parameter in Equation (1) are calculated.
(4) Calculate the liquid film thickness hc and load on the micro-convex body Fh according

to Equation (3).
(5) Calculate the load on the micro-convex body Fh1 according to Equation (23).
(6) Judge whether the difference between the two ends of the load on the micro-convex

body is less than 10−4.
(7) If the friction coefficients r1 and r2 are substituted into the balance condition, the

friction coefficient µ is obtained by substituting it into Equation (9). Otherwise, repeat
steps (2)–(6) until the error converges.

3.4. Numerical Simulation Results of Mixture Lubrication
3.4.1. Calculation Results of Liquid Film Thickness

The relationship between the liquid film thickness and relative speed of the polishing
lap is shown in Figure 4a. When the surface roughness of the polishing lap is constant, the
thickness of the liquid film increases with the increase of the rotating speed of the polishing
lap. This occurred because the increase of the polishing lap speed increases the flow rate of
the polishing liquid. The relationship between the liquid film thickness and relative speed
of the polishing lap is shown in Figure 4b. When the rotating speed of the polishing lap is
constant, the thickness of the liquid film between the element and polishing lap increases
with the increase of the surface roughness of the polishing lap. This occurred because the
increase of the surface roughness of the polishing lap will make more polishing liquid flow
between the element and polishing lap, resulting in the increase of the thickness of the
liquid film.
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The Influence of the total load on liquid film thickness is shown in Figure 5. When
the roughness of the polishing pad is a constant, the thickness of the liquid film decreases
with the increase of the optic load. This is because the contact area between the element
and polishing lap becomes larger, which squeezes the flow space of the polishing liquid.
When the roughness increases and the total load is a constant, the liquid film thickness still
maintains an increase trend.
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3.4.2. Calculation Results of Liquid Film Bearing Ratio

The relationship between the liquid film bearing ratio and polishing lap speed is
shown in Figure 6, which indicates that, when the rotating speed is constant, the proportion
of the liquid film load increases with the increase of the surface roughness of the polishing
lap. This is because the rough surface increases the thickness of the liquid film.

When the surface roughness of the polishing lap is a constant, the proportion of the
liquid film load will increase with the increase of the lap rotating speed. This is because the
probability of the direct contact between the element and micro-convex body on the surface
of the polishing lap decreases with the increase of the thickness of the liquid film. When
the rotating velocity increases to a certain extent, the proportion of the liquid film load
increases slowly and is close to 1. It indicates that the lubrication state is in hydrodynamic
lubrication mode at this time. The element and polishing lap are completely separated by a
continuous liquid film, and the load is completely borne by the liquid film.
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The relationship between the liquid film bearing ratio and polishing load under
different roughness is shown in Figure 7. When the rotating speed of the polishing lap is a
constant, the proportion of the liquid film decreases with the increase of the total load, and
gradually approaches zero. This is because when the contact area between the element and
polishing lap increases, it squeezes the flow space of the polishing liquid and reduces the
thickness of the liquid film. When the total load is a constant and the roughness increases,
the liquid film thickness still increases.
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3.4.3. Calculation Results of Pressure Distribution

In continuous polishing, the optical element is removed by the friction with the
polishing particles on the surface of the polishing lap. It is assumed that the load of the
element is borne by the micro-convex body on the polishing lap and polishing fluid. The
actual material removal is only related to the contact pressure on the surface of the polishing
lap. Therefore, the actual polishing pressure of the element in the mixture lubrication mode
is obtained by subtracting the liquid film pressure from the load of the optic. According to
the simplified Reynolds Equation (16), the liquid film pressure distribution under different
total loads is shown in Figure 8a. The micro-convex body bearing pressure distribution
under different total loads is shown in Figure 8b. It can be seen from the figure that the
distribution of the liquid film pressure is symmetrical around the center of the element,
and the pressure in the center of the element is the highest. The maximum liquid film
pressure increases with the increase of the external load. This is because, on the one hand,
the increase of the overall pressure of the element leads to the increase of the liquid film
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pressure. On the other hand, due to the increase of the external load of the element, the
thickness of the liquid film decreases and the bearing capacity of the liquid film is weakened.
As a result, the maximum liquid film pressure increases slowly when the external load
becomes large.
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The distribution curve of the liquid film pressure along the horizontal direction is
shown in Figure 9. It can be seen that the liquid film pressure increases with the roughness
increase. This is because the roughness of the polishing lap surface enhances the flow of
polishing liquid and increases the thickness of the liquid film. Thus, the loading force of the
liquid film is increased, and the bearing capacity of the polishing liquid film is increased.
At the same time, it can be seen that when the roughness increases, the maximum liquid
film pressure increases faster, but at the same time, the liquid film pressure distribution
becomes nonuniform, so the appropriate surface roughness of the polishing lap should be
selected for polishing.

Crystals 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 

increase. This is because the roughness of the polishing lap surface enhances the flow of 
polishing liquid and increases the thickness of the liquid film. Thus, the loading force of 
the liquid film is increased, and the bearing capacity of the polishing liquid film is in-
creased. At the same time, it can be seen that when the roughness increases, the maximum 
liquid film pressure increases faster, but at the same time, the liquid film pressure distri-
bution becomes nonuniform, so the appropriate surface roughness of the polishing lap 
should be selected for polishing. 

  
(a) (b) 

Figure 9. Liquid film pressure distribution along the radial direction of the element under different 
roughness. (a) Liquid film pressure distribution; (b) Polishing pressure distribution. 

The liquid film pressure distribution under different lap rotating speeds is shown in 
Figure 10. It can be seen that the liquid film pressure is symmetrically distributed around 
the center of the element. The maximum liquid film pressure increases with the increase 
of the rotating speed of the polishing lap. It shows that higher polishing speed is not con-
ducive to the uniform distribution of the liquid film pressure. When the polishing speed 
is large, the material removal rate of the optic is also larger, which is easy to damage the 
surface of the optical element. In order to ensure the surface quality, it is necessary to 
improve the roughness of the polishing pad and increase the average liquid film thickness 
to protect the surface of the optic. 

  
(a) (b) 

Figure 10. Relationship between liquid film pressure distribution and rotating speed. (a) Liquid film 
pressure distribution; (b) Polishing pressure distribution. 

3.4.4. Friction Coefficient Calculation Results and Experimental Verification 
To verify the accuracy of the numerical simulation results, the friction coefficient 

measurement experiments were carried out. Fpt-f1 friction stripping tester was used for 
the friction coefficient measurement test. The friction pair is fused quartz glass and asphalt 

Figure 9. Liquid film pressure distribution along the radial direction of the element under different
roughness. (a) Liquid film pressure distribution; (b) Polishing pressure distribution.

The liquid film pressure distribution under different lap rotating speeds is shown in
Figure 10. It can be seen that the liquid film pressure is symmetrically distributed around
the center of the element. The maximum liquid film pressure increases with the increase
of the rotating speed of the polishing lap. It shows that higher polishing speed is not
conducive to the uniform distribution of the liquid film pressure. When the polishing
speed is large, the material removal rate of the optic is also larger, which is easy to damage
the surface of the optical element. In order to ensure the surface quality, it is necessary to
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improve the roughness of the polishing pad and increase the average liquid film thickness
to protect the surface of the optic.
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3.4.4. Friction Coefficient Calculation Results and Experimental Verification

To verify the accuracy of the numerical simulation results, the friction coefficient
measurement experiments were carried out. Fpt-f1 friction stripping tester was used
for the friction coefficient measurement test. The friction pair is fused quartz glass and
asphalt block, and the polishing fluid is used for the lubrication. The friction coefficients
of the friction pair at different rotating speeds are obtained. The numerical calculated
and experimental results of the friction coefficient are as shown in Figure 11. The abscissa
of the friction coefficient curve is the relative speed between the element and polishing
lap, and the ordinate is the friction coefficient between the element and polishing lap.
It can be seen that the friction coefficient curves obtained by the numerical calculation
and experimental measurement are similar to the Stribeck curve. The friction coefficient
decreases first and then increases with the increase of the relative speed. The numerical
values of the two curves are also approximately equal in different lubrication zones, which
verifies the correctness of the numerical results. At the same time, for the ring polishing
process, the relative speed of the element and polishing lap is 0.3–0.5 rpm. In the figure, it
belongs to the mixture lubrication area, which further proves that the lubrication mode of
the annular polishing belongs to mixture lubrication.
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4. Numerical Model Verification Experiment of Mixture Lubrication
4.1. Experimental Method

The surface shape measurement experiments before and after the surface shape ma-
chining of the annular polishing element are carried out, the material removal distribution
in the process of the element polishing is obtained, and the accuracy of the pressure distri-
bution calculated by the numerical model is verified. First, the liquid film pressure and
bearing pressure distribution of the polishing lap are obtained through the calculation of
the mixture lubrication numerical model. The material removal distribution is obtained
according to Preston material removal equation of Equation (26) [27,28]. A fused quartz
optical element with a size of 430 mm × 430 mm × 80 mm is selected for the experiment,
and the distance between the element center and center of the polishing lap is 1.6 m. The
average polishing pressure of the optical element is about 2.0 KPa. Material removal co-
efficient in Preston equation is equal to k = 4.73 × 10−13/Pa, and polishing time is t = 3 h.
Different process parameters are selected for rotating speed and polishing lap roughness.

MRR = K · P ·V (26)

4.2. Experimental Result
4.2.1. Influence of Different Rotating Speeds on Material Removal Uniformity

When the rotating speed of the polishing lap is changed, the result distribution of the
material removal rate calculated according to the numerical simulation model is shown in
Figure 12. When the rotating speed is 0.3 rpm, the difference of the material removal rate
between the optic center and optic edge is 2.26× 10−11 m/s. When the polishing time is 3 h,
the material removal is 0.23 µm, which is about 0.36 λ (1 λ = 0.6328 µm). When the rotating
speed is 0.7 rpm, the difference of the material removal rate between the optic center and
optic edge is 9.6 × 10−11 m/s. When the polishing time is 3 h, the material removal is
1.03 µm, which is about 1.64 λ. When the polishing time is 3 h, the material removal is
0.23 µm, which is about 0.36 λ. When the rotating speed is 0.7 rpm, the difference of the
material removal rate between the optic center and optic edge is 9.6 × 10−11 m/s. When
the polishing time is 3 h, the material removal is 1.03 µm, which is about 1.64 λ.
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In the experiment, two optics with concave initial surface shape were polished at
0.3 and 0.7 rpm, respectively. Then, the surface shapes of the elements were measured
after polishing for 3 h. The lowest point of the element is taken as the reference, and the
difference of the material removal amount between the center and edge of the element is
the subtraction of the surface shape before and after polishing. The initial surface shape
and the processed surface shape of the elements are shown in Figure 13. It can be seen
that when the rotating speed is 0.3 rpm, the optic edge material is removed by 0.33 λ more
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than the center, which is close to the simulated result. When the rotating speed is 0.7 rpm,
the edge material of the optic is removed by 1.56 λ more than the center, which is also
approximately equal to the calculated result. Thus, for the optical elements with concave
shape, increasing the rotating speed can improve the surface flatness.
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0.7 rpm before polishing and (d) rotating speed is 0.7 rpm after polishing.

In conclusion, the use of low-speed process parameters is conducive to the uniformity
of the material removal distribution, but is not conducive to the processing efficiency. High
rotating speed will increase the material removal rate and make the surface shape of the
element become more convex, which is suitable for the element whose initial surface shape
is concave. Therefore, in the actual processing, it is necessary consider the surface shape of
the initial element and select the appropriate speed parameters [29–31].

4.2.2. Influence of Different Polishing Lap Surface Roughness on Material Removal Uniformity

According to the calculation by the simulation model, when the surface roughness
of the polishing lap is 10 µm, the difference of the material removal on the surface of the
component after machining for 3 h is about 0.35 µm, which is about 0.53 λ. When the
surface roughness of the polishing lap is 20 µm, the difference of element surface removal
is about 0.49 µm, which is about 0.8 λ.

The surface roughness Ra of the polishing lap selected in the experiment is about 9.8
and 19.4 µm respectively. When the surface roughness of the polishing lap is 9.8 µm, the
material removal difference between the optic edge and optic center is 0.33 µm, which is
about 0.52 λ. When the surface roughness of the polishing lap is 19.4 µm, the material
removal difference between the optic edge and optic center is 0.48 µm, which is about
0.76 λ. The surface shapes of the optic before and after polished are shown in Figure 14.
Thus, when it is necessary to improve the material removal rate at the center, the polishing
lap roughness should be increased [32].
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Figure 14. Influence law of roughness on element surface shape. (a) Lap roughness is 9.8 µm before
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4.2.3. Optic Surface Shape Optimization Experiment

The final surface shape of the element can be actively controlled by adjusting the
process parameter according to above experiments. A fused quartz optical element with
a size of 430 mm × 430 mm × 80 mm is selected in the experiment, and its initial surface
shape is 0.97 λ, as shown in Figure 15a. According to the calculation, when the material
removal required for the element edge is 0.97 λ more than the center, the rotating speed of
the polishing lap is selected as 0.5 rpm, and the surface roughness of the polishing lap is
controlled to be 9.8 µm. The surface shape of the element obtained after polishing for 3 h is
shown in Figure 15b. The material removal amount of the optic center is 0.88 λ, which is
approximately equal to the calculated result, and the final surface shape PV is better than
0.1 λ.
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5. Conclusions

Three possible contact modes between the optical elements and polishing lap in the
annular polishing were analyzed. The lubrication mode in the continuous polishing belongs
to mixture lubrication judged by calculating the film thickness ratio.

Based on the hydrodynamics theory, a numerical calculation model of the mixture
lubrication in continuous polishing was developed. The influences of the polishing lap
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roughness, polishing speed and external load on the liquid film thickness, bearing ratio of
the liquid film and polishing pressure distribution were revealed. The numerical simulation
results indicated increasing the surface roughness of the polishing lap, polishing speed and
optic load was not conducive to the uniformity of the pressure distribution. The numerical
calculated and experimental results of the friction coefficient indicated that the friction
coefficient decreased and then increased as rotating speed was increased.

The continuous polishing experiments of the fused quartz were carried out, and the
influences of the surface roughness of the polishing lap and rotating speed on material
removal rate of the optics were analyzed. The shape evolution rule of the optical element
during the continuous polishing process was revealed. For fused silica elements, the
material removal amount was calculated according to its initial surface shape. The surface
shape accuracy was improved by selecting appropriate process parameters, such as the
surface roughness and rotating speed of the polishing lap. By optimizing the process
parameters, the surface PV of optical elements can be better than 0.1 λ.
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