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Abstract: A single crystal of L-phenylalanine L-phenylalanininum malonate (LPPMA) was synthe-
sized by slow evaporation and was subjected to nonlinear optical examination and physio-chemical
characterization. Studies on single X-ray diffraction confirm the arrangement of monoclinic space
group P21 which is a vital criterion for the NLO phenomenon. The assessment of functional groups
and diverse vibration modes responsible for the characteristics of the material was performed with an
FTIR analysis. The UV-visible spectral examination found the wavelength of UV-cutoff at 233 nm and
various optical parameters were evaluated. The mechanical strength and different criteria associated
with it were assessed. The electric field response of the material was examined in terms of the
dielectric constant, dielectric loss, ac conductivity and activation energy. The spectra of emission
were detailed. The efficacy of second harmonic generation was studied. The parameters of non-
linearity were investigated to analyse the third-order acentric optical response in the LPPMA by
Z-scan procedure.

Keywords: nonlinear optics; activation energy; fluorescence; SHG; Z-scan method

1. Introduction

Materials exhibiting second (SHG), third (THG) and higher harmonic generation oc-
cupy a versatile position in the area of optical data storage with information processing.
The photo–electric interface occurs in the process of nonlinear SHG, and finds promis-
ing potential in the domain of storage of data with high intensity and spectroscopy [1].
The significance of the basic types with their orientations inside the material plays a sub-
stantial part in finding or understanding the physical and chemical features of the organic
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molecules in a material. For a material to possess nonlinear optical characteristics, molecu-
lar dipoles align in a noncentric fashion, which is indispensable for materials with an SHG
property [2]. A greater number of organic compounds materialize in the space group of
Centro symmetry and do not have a nonlinear optical feature. To remedy this, various
molecular engineering approaches such as steric-hindrance, chirality, etc., have been pro-
posed [2]. The main aspect of amino acids in the nonlinear optical domain mainly solidifies
in noncentrosymmetric space groups. In the organic category, α- amino acids have distinct
characteristics [3]. Crystals grown from amino acids possess fascinating features suitable
for NLO devices, because of their zwitterionic nature which initiates the hydrogen bonding
network [4]. Among nonlinear optical materials, organic materials act as a midway between
compounds of the organic category with covalent bonds and inorganic compounds with
mostly ionic bonds [5]. The production of organic acentric crystals exposes the poor stability
of their physico-chemical features and their lower mechanical strength. Amino acid-based
crystals, with their outstanding electro-optic and NLO properties, show abundant response
in photonic applications [6,7]. Currently, organic molecules with third-order nonlinearity
are essential for widespread applications in 3D optical memory and optical communication
with information processing at high speeds [8]. Relatedly, L-phenylalanine-based complex
materials [9–13] prove to be more prospective materials for NLO applications. Reasonably,
some authors have shown interest in working with malonic acid-based crystals and report
it as an effective NLO material [14–16] suitable for optical applications. Furthermore,
the structure and certain studies of LPPMA were reported by Alagar and Prakash [17,18].
Here, we studied the growth and characterization of LPPMA samples using the slow
evaporation process. LPPMA crystals were characterized using various instrumentation
systems to check their suitability for device fabrications.

2. Experimental
Synthesis of LPPMA

L-phenylalanine L-phenylalaninium malonate (LPPMA) was produced using slow
solvent solution growth (evaporation), SSEST with deionized water, which was harvested
from the starting compound L-phenylalanine (LOBA, 99%), and malonic acid (LOBA,
99%) in stoichiometric molar (2:1). The estimated quantity of materials was systematically
dissolved in water. The mixture was stirred continuously using a magnetic stirrer for 6 h
to ensure complete miscibility. The well saturated and filtered solution was transferred
into a 250 ml beaker, covered with filter paper containing tiny pin-holes and set aside at
room temperature. Colorless transparent crystals were observed in 25 days and harvested
(Figure 1).
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3. Discussion of Results
3.1. X-ray Diffraction (Single Crystal)

The result of the XRD showed that LPPMA crystallizes in a monoclinic arrangement.
The lattice parameters revealed in the SXRD investigation are provided in Table 1, which
shows the agreement between our results and those reported in the literature [18].

Table 1. The crystallographic data (SXRD) of LPPMA.

Lattice Parameter Present Work Reported Work [18]

Space group P21 P21

a (Å) 14.16 14.02

b (Å) 5.56 5.507

c (Å) 14.74 14.59

β (◦) 107.28 107.39

Volume (Å3) 1108 1075.2

3.2. FTIR Vibrational Analyses

The data regarding the structure of a material are evident from this spectroscopic
analysis. The absorption of IR radiation leads to diverse peaks in a particle, showing
stretching and bending vibration as represented in Figure 2. A strong broad absorp-
tion in the range of 3300–2300 cm−1 agrees with the NH3

+ of the amino group [18].
The strong edge at 3081 cm−1 is C-H stretching. Overtone combination appears in the
absorption region at 2090 cm−1. The peaks at 1302, 1359 cm−1 exhibit CH2 wagging
and CH2 deformation [19,20]. The wavenumber positioned at 1210 cm−1 is C-CH in a
sharp bending vibration. C-C and C-N stretching are identifiable in wavenumbers 1140,
1183 cm−1 [18]. The vibration of C-H out of plane (bending) initiates peaks at 953 and
914 cm−1. The wavenumber at 701 cm−1 exhibits the presence of a benzene ring. Thus,
peaks which appear at 853 cm−1, 748 cm−1 establish C-H (out of) plane deformation [17].
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3.3. Optical Studies

The optical spectrum of LPPMA was established in the 200–700 nm wavelength range.
From the UV-visible spectrum (Figure 3a), it is clear that ultraviolet absorption includes
electronic transitions from an unexcited state to an excited one [21]. The lower cutoff
wavelength of LPPMA at 233 nm with extremely good transparency proves its applicability
in second and third harmonic generation. The absorption coefficient (α) was assessed
utilizing the following Formula

α =
2.3026 log(1/T)

d
(1)
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Here, d represents material thickness. The absorption coefficient represented as (α)
was evaluated using Tauc’s concept:

α = A
(hυ− Eg)

2

hυ
(2)
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where A symbolizes the constant and Eg, h and v represent the energy gap, the value
of the Planck constant (6.63 × 10−34 Jsec), and frequency of photons. The energy gap
Eg of LPPMA was estimated using Tauc’s plot (Figure 3b) and its value is 5.58 eV. Thus,
the organic LPPMA crystal with an enhanced optical band gap is a potential aspirant in the
field of nonlinear optics.

3.3.1. Optical Constants Calculation

The optical nature of a material is very important in determining its usefulness in NLO
application devices. The diverse optical constants were evaluated utilizing the subsequent
formulae [21]. Extinction coefficient (K) can be estimated by

K =
λα

4π
(3)

Reflectance (R) and linear refractive index (n0) are assessed using [4]

R = 1±
√

1− exp(−αt) + exp(αt)
1 + exp(−αt)

(4)

n0 = −
{

(R + 1)±
√

3R210R− 3
2(R− 1)

}
(5)

Figure 4a,b, depict that R and K fully rely on incident photon energy [21]. Figure 4c,d
depicts (R) and (K) versus the absorption coefficient (α). The device internal efficacy mainly
relies on this absorption coefficient (α) [21]. Figure 4e displays the dependence of linear n0
(refractive index) versus incident energy (photon). The minimum value of n0 highlights
that LPPMA has a regular dispersion nature. The high optical transparency of LPPMA in
the Ultraviolet-visible section illustrates it as a good optical behavior candidate for use in
device applications.
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The optical conductivity (σop) is,

σop =
αn0c

4π
(6)

and also the electrical conductivity (σele) can be evaluated using the following formula,

σele =
2λσop

α
(7)

Figure 4e describes the elevation of optical conductivity with the increase in hυ, for
which a large value confirms the elevated photo-tunable feature of crystal [4]. Figure 4f
concludes that the value of electrical and optical conductivity depends on the photon
energy. Hence, this potential material is suitable in the ultrafast data transmission process
(optical) [21].

The below relation depicts electric susceptibility (χc),

εr = ε0 + 4πχc = n0
2 −K2 (8)

(Or)

χc =
n0

2 −K2 − ε0

4π
(9)

The electric susceptibility χc is 0.1314 for the wavelength 390 nm (Figure 4g).
The dielectric constants can be estimated using the following:

ε = (n0 + iK)2 (10)

ε = n0
2 −K2 + 2in0K = εr + iεi (11)

εr = n0
2 − K2 and εi = 2n0K (12)

At the wavelength of 390 nm, the real (εr) and imaginary (εi) parts were estimated as
1.6235 and 6.7139 × 10−7. Hence, the low magnitude of the dielectric constant with a broad
energy gap of the L-phenylalanine L-phenylalaninium malonate crystal suggests its fitness
for optoelectronic devices.
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3.3.2. Determination of Urbach Energy (Eu)

The dependence of α on hυ in the Urbach relation is [22],

α(hυ) = α0 exp
(

hυ
Eu

)
(13)

The slope is 1.0817. Figure 5 illustrates the logarithm of (α) with the incident energy
of the photon (hυ). The inverse of the linear plot measures the Urbach energy (Eu), which
was evaluated as 0.9244 eV. The lower calculated value of Eu indicates less flaws in LPPMA
which validates its usage in nonlinear optics.
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3.4. Mechanical Stability Analysis

The hardness of the material determines its features, including its mechanical strength
and its properties [23]. The mechanical stability of an optical crystal plays a key role in
the fabrication of the device. The mechanical hardness of the LPPMA sample was tested
utilizing an MH-112 Vickers hardness tester. The application of the load is (25 g, 50 g, 100 g)
on the surface of LPPMA. The Vickers hardness number Hv of LPPMA was premeditated
using the following expression (Table 2):

Hv = 1.8544
P
d2

(
kg/mm2

)
(14)

Table 2. Mechanical parameters of LPPMA.

Load P (g) Hv (kg mm−2) Hk (kg mm−2) σy (GPa) C11 (GPa)

25 8.76 0.067 11.99 68.99

50 13.30 0.102 18.19 104.66

100 19.15 0.147 26.19 150.71

200 25.5 0.196 34.88 200.72

The plot (Figure 6a) revealed that the elevation in Hv (hardness number) with load
(25 g, 50 g, 75 g) emphasizes the reverse-indentation-size effect [23]. As can be observed
from Figure 6b, the hardening coefficient is 3.71. Hence, the Meyer’s index magnitude (n)
infers that LPPMA possesses the feature of a soft nature.
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The yield strength of LPPMA (Figure 6c) can be found using [24] Table 2,

σy =
Hv

3
(0.1)n′−2 (15)

Here, the value of n′ = n + 2.
The stiffness constant C11 is calculated using the following [25] Table 2 (Figure 6d):

σy =
Hv

3
(0.1)n′−2 (16)

The Knoop hardness number (Hk) is determined by [24] Table 2,

Hk = 14.229
P
d2

(
kg/mm2

)
(17)

3.5. Determination of Dielectric Studies

The dielectric measurement provides details about the electrical response parameter
of a periodic solid [26]. The dielectric constant and loss in LPPMA was performed across
diverse temperature ranges using an LCR meter. This was calculated by:

ε′ =
Ct

Aε0
(18)

and
ε” = ε′ tan δ (19)

Here, C represents the capacitance specified by micro farad, t the thickness specified
in mm, ε0 is the dielectric constant in vacuum (ε0 = 8.854 × 10−12 Fm−1) and A indicates
the area of the testing material in mm2. Figure 7a,b shows variations of ε′ and ε” with
log frequency and it reduces with a rise in frequency. The higher values of ε′ at smaller
frequencies is a result of all polarization mechanisms. The lower range of (ε′) at the domain
of a higher range of frequency may possibly originate with respect to the electric field
applied [26]. The lower measure of ε′ and ε” at a high frequency range indicates the
enhanced optical nature with the minimal amount of defects in LPPMA, which furthermore
fulfills the requirements for use in the opto-electronic sector and in nonlinear optical
devices [26].
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The ac conductivity σac (Ω m)−1 was evaluated using the following relation (23):

σac = 2πfε0ε
′ tan δ (20)

The variation of conductivity with logω at diverse temperatures is depicted in Figure 7c.

Energy of Activation

Ea (activation energy) estimated using the formula,

σ = σ0 exp
(
− Ea

kBT

)
(21)

where σac represents conductivity and kB signifies the Boltzmann constant. Figure 7d
displays the relation of logarithm of ac conductivity with 1000/T which is found to be
nearly linear in nature and Ea is evaluated using the following expression,

Ea = −slope * 1000 * kB (22)

The Ea values are 0.3733, 0.055 and 0.093 eV at the frequency of 30 KHz, 900 KHz
and 5 MHz. Its lower value indicates that the LPPMA contains a lower number of defects,
which is suitable for device fabrication [23].
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3.6. Fluorescence Analysis

The luminescence spectrum of LPPMA was measured to emphasize its emission
nature and its spectra are presented in Figure 8a, using a wavelength of excitation of
233 nm. The highest peak in emission occurred at 535 nm (2.31 eV), in the visible range
spectrum. The peaks at 454 nm (2.73 eV) and 511 nm (2.42 eV) were attributed to defects
existing in the material.
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3.7. NLO Characterization

The proficiency of SHG was established using Kurtz’ and Perry’s analysis [27,28] in
comparison with KH2PO4 (KDP). Here, LPPMA was illuminated using a Neodymium:YAG
laser (1064 nm) with a specified pulse width (10 ns). The conversion efficiency in SHG of
LPPMA was 0.38 times that of KH2PO4.

3.8. Z-Scan Measurements

The third-order acentric nonlinearities likely have a nonlinear refractive index (n2)
nonlinear absorption coefficient (β) and III-order optical susceptibility (χ(3)), which were
assessed using the Z-scan method [29]. β and n0 values were measured by the closed and
open aperture Z-scan method.

The difference in transmittance (peak and valley) (∆TP−V) along with on-axis phase
shift |∆Φ0| is,

∆TP−V = 0.406(1− S)0.25|∆Φ0| (23)

S = 1− exp
(
−2ra

2

ωa2

)
(24)

Here, S and ra, denote aperture transmittance and aperture radius.
The third-order nonlinear refractive index is [21],

n2 =
∆Φ0

KI0Leff
(25)

The imaginary portion (χ(3)) is calculated by β (nonlinear absorption), which is ob-
tained using the following formula,

β =
2
√

2∆T
I0Leff

(26)

Reχ(3)(esu) =
10−4(ε0C2no

2n2)

π

(
cm2

W

)
(27)

Imχ(3)(esu) =
10−2(ε0C2n0λβ)

4π2

(
cm2

W

)
(28)

∣∣∣χ(3)∣∣∣ = √(Re(χ(3)))2
+ (Im(χ(3)))

2 (29)

The closed aperture plot for LPPMA is specified in Figure 9a. The peak followed
by a valley in the curve (normalized transmittance) is a sign of negative non-linearity
and the self-defocusing effect [29,30] which makes it a suitable candidate in the optical
sensor domain [31]. The curve in open aperture is presented in Figure 9b.The magni-
tude of β is premeditated, which shows a positive measure that indicates the absorption
processes [21]. The materials that demonstrate two photon practices are broadly applied
in light-based power limiting uses [32–35]. The calculated data of Z-scan visibly specify
that LPPMA displays excellent third-order acentric characteristics, which are presented
in Table 3. The value of χ(3) has a higher magnitude in comparison to other NLO materials
in Table 4. Thus, the excellent NLO characteristics of LPPMA prove it to be suited to optical
limiting applications.
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Table 3. Nonlinear optical parameters for LPPMA.

Parameters Measured Values for LPPMA

(n2)—Nonlinear refractive index 7.06 × 10−8 cm2W−1

(β)—Nonlinear absorption coefficient 0.21 × 10−4 cmW−1

[Re (χ3)]—Real part of susceptibility 2.90 x 10−6 esu

[Im (χ3)]—Imaginary part of susceptibility 1.31 × 10−6 esu

(χ3)—Third-order NLO susceptibility 3.19 × 10−6 esu

Table 4. χ(3) values of LPPMA comparison with new NLO materials.

Crystal Third-Order Susceptibility χ(3) Reference

LPPMA 3.19 × 10−6 esu Present Work

LMSA 6.34 × 10−6 esu [32]

LAPA 5.24 × 10−7 esu [33]

VMST 9.69 × 10−12 esu [34]

4. Conclusions

LPPMA were efficiently produces using a slow evaporation process with water as
the solvent at a constant temperature. The lattice parameters were estimated using single-
crystal XRD. The existence of functional groups in the material was established with an
FTIR analysis. The UV-visible spectrum study revealed good transmittance in the area of
the visible spectrum, which indicates a cut-off wavelength at 233 nm and energy-gap value
of 5.53 eV from which various optical parameters were evaluated to analyze its suitability in
optical processing. LPPMA belongs to the soft material group which was identified during
the hardness analysis. The dielectric studies prove the presence of a flawless material.
The second harmonic generation was observed through the Kurtz Perry procedure, which
revealed SHG efficiency of 0.38 times that of KDP. The third order acentric parameters were
estimated and attest to its reliable usage in future photonics applications.
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