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Abstract: Titanium (Ti) and its alloys are predominant choices for use as biomaterials in human
implants. Research has shown the adverse effects of using commercial Ti alloy Ti-6Al-4V in the
human body, and this presents a need for viable alternatives. In this study, Ti alloy Ti-17Nb-6Ta
was manufactured by laser cladding—a prominent additive manufacturing (AM) technology. Laser
cladded specimens were evaluated for their in vitro and electrochemical behavior. A human osteosar-
coma cell line (MG-63 cells) was used for in vitro investigations. Cell proliferation was good in the
physiological medium, and cells were alive when in contact with the laser cladded alloy, even after
two to three weeks, indicating good cell viability and compatibility with this alloy. Electrochemical
characterization was carried out in Ringer’s solution, and noticeably lower corrosion current density
and corrosion rate values were observed. The lower amounts of these parameters indicated the
passivation behavior due to multi-layer Ti, Nb, and Ta alloy oxide films. These oxide films also
enhanced osseointegration. Thus, the Ti-17Nb-6Ta alloy can be an ideal biocompatible alternative to
Ti-6Al-4V.

Keywords: Ti alloys; laser cladding; in vitro characterization; electrochemical characterization;
biomedical applications

1. Introduction

Titanium (Ti) and its alloys (Ti alloys) have shown enormous potential to be used
to make human body implants and other metallic biomaterials. A rise in patient-specific
implants has been observed in recent years due to novel inventions in technology and
increased human life expectancy [1]. However, the materials currently being used have
compatibility issues, and there has been a concurrent rise in searching for viable alternatives.
Ti-6Al-4V is a leading metallic biomaterial used in orthopedic implants and has been
standardized by the ASTM F136-13 committee [2]. It has substantial mechanical properties,
exceptional resistance to corrosion, and a good amount of biocompatibility [3,4]. However,
it also has a high Young’s modulus compared to human bone, which causes increased
stress-shielding with the surrounding bone [5]. Apart from it, the Al- and V- in Ti-6Al-4V
allegedly cause adverse tissue reactions and other neurological disorders [6–8].
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Three-dimensional printing or additive manufacturing (AM) has proven its importance
in the healthcare sector in recent years. With the use of AM, researchers are trying to increase
the research into implantable devices. Selective laser melting (SLM), electron beam melting
(EBM), and laser cladding are the leading technologies in AM and are the most commonly
used to develop healthcare devices.

Past research has explored the compatibility of Ti alloys determined by conventional
methods such as arc melting and powder metallurgy for biomedical applications [9,10].
The present study describes the manufacturing of a Ti alloy with laser cladding to analyse
its biomedical applications in the human body. Laser cladding produces net-shape parts
from a computer-generated 3D model using a layer-by-layer method with the help of laser
power [11,12]. The setup of the laser cladding unit is illustrated in Figure 1. Metallic/alloy
material in the powder form is directly supplied from the coaxial nozzle, which is then
melted, solidified, and used to create a layer with the help of laser power on the substrate.
The substrate is scanned several times with the powder feed, and multiple layers are created
to form the entire object [13,14].
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Figure 1. Setup of the laser cladding unit.

Dilution is an unavoidable phenomenon in laser cladding. Dilution is calculated from
the percentage of fused material from the substrate. Dilution is directly proportional to laser
power. Apart from laser power, the feed rate and scan speed also play a significant role
in dilution. The optimization of all of these parameters is indispensable to achieving low
dilution [15,16]. Low dilution is desired to achieve perfect metallurgical bonding between
the clad material and the substrate. However, an excess amount of it leads to poor bonding.

Titanium is an allotropic element with many crystallographic forms such as α,
α + β, and β phases. The metallic elements used in enhancing the α-phase are known as
α-stabilizers, and those used for enhancing the β-phase are known as β-stabilizers. In this
study, a Ti alloy comprising tantalum and niobium, Ti-17Nb-6Ta, was manufactured by AM,
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which had not been previously attempted to the best of the authors’ knowledge. Similar to
titanium, metals such as tantalum (Ta) and niobium (Nb) are also highly corrosion-resistant
and inert in body fluids, which are responsible for enhancing the β phase [17,18]. The
alloys in the β phase are more stable and have a low Young’s modulus value. In vitro and
corrosion characterization was also performed to explore possible uses of the manufactured
alloy in biomedical applications.

2. Materials and Methods
2.1. Laser Cladding

Laser cladding produces a material directly from raw powder and thus possesses the
possibility to change the composition of the alloying constituents at any given point in
time. This flexibility in material selection is not possible in any other AM technique. By
maintaining the flow rate, control is gained over the percentage of alloying elements and can
even be used for gradient manufacturing. Additionally, medium entropy (MEA) and high
entropy alloys (HEA) with refractory metals as constituents can easily be fabricated using
this technique, something that is difficult for other AM techniques [19]. Xiang et al. [20,21]
studied CoCrNiTi and CrFeNiTi MEA coatings and CoCrFeNiNbx HEA coatings on a Ti
sheet by pulsed laser cladding. They obtained a higher amount of hardness and wear
resistance than the substrate.

Powder bed techniques such as SLM require more raw material to fill the build
platform to begin the manufacturing process. Unlike SLM, laser cladding only requires a
tiny amount of the raw powder material, which is directly supplied and melted. Hence,
this technology is economically viable in comparison to others.

Titanium powder was procured from Parshvamani Metals, Mumbai, India, for this
study. Tantalum and niobium powder was procured from Aritech Chemazone Pvt. Ltd.,
Kurukshetra, India. Laser cladding was performed with a 4 KW diode laser on ABB robotic
arm at Magod Fusion Technologies Pvt. Ltd., Pune, India. The alloy powders were mixed
in preset proportions. It was poured into a laser cladding unit after sieving and thorough
mechanical shaking. To reduce cracking susceptibility, preheating is generally used. By
preheating, the temperature difference between the substrate and the clad material is
reduced, and the residual stress generation becomes negligible. A pure titanium (CP-Ti)
plate was used as the substrate and was pre-heated to 200 ◦C to obtain uniform cladding.
The cladding was performed in a closed chamber with an inert argon atmosphere to
eliminate oxidation.

For proper melting, a minimum amount of energy needs to be applied to the powder,
which is known as the laser energy density (Ed). This energy is dependent on the laser
power (P), laser spot diameter (d), and scan speed (V) [12]. The relationship is best
represented by Equation (1), as shown below.

Ed =
P

Vd
(1)

The parameters used for cladding are highlighted in Table 1. Laser cladding specimens
were ground using an ELB Optimal 4250 surface grinding machine and cut using a Charmi-
less Robofil 190 CNC wire cut spark erosion machine at the Indo German Tool Room (IGTR),
Ahmedabad, India. The sample sizes of 20 × 20 × 5 mm3 and 10 × 10 × 5 mm3 were used
for further experimentation.

2.2. In Vitro Characterization

In vitro characterization was performed at the Biotechnology Lab at Gujarat Techno-
logical University, Ahmedabad, India. A total of 6 specimens were used for in vitro tests.
Specimens were first autoclaved at 121 ◦C for 30 min. Plain human osteosarcoma cell
lines (MG-63) were used as controls. The MG-63 cells were poured onto the specimens
and placed in 6-well plates. The initial cell density was measured to be 200,000 cells per
well. A 3 mL aliquot of Dulbecco’s modified eagle medium (enhanced with 2.5 µg/mL
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amphotericin B, 50 µg/mL gentamicin, and 10% fetal bovine serum) was poured into each
well. Cultures were incubated at 37 ◦C under a 5% CO2 environment [22]. The incubation
medium was replaced every 48 h for the duration of the experiment. The specimens were
examined at 3, 10, and 21 days of incubation.

Table 1. Cladding parameters.

Parameters Values

Power 1200 watt
Cladding powder flow 12 g/min
Cladding travel speed 30 mm/s

Bed temp (preheat) 200 ◦C
Powder carrier gas 15 lpm

Nozzle shielding gas 15 lpm
Focusing lens 300 mm

Spot size (diameter) 3 mm
Pass layer distance around 1.5 mm

MTT Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) test was
performed to evaluate the toxicity of the samples. Under beneficial conditions, MTT is
transformed into formazan by the mitochondrial dehydrogenases and is a good indicator
of mitochondrial activity and cell viability. A 100 µL aliquot of MTT was poured into the
wells containing each specimen for this study. The supernatant was removed in a CO2
atmosphere after 4 h of incubation, and 100 µL of dimethyl sulfoxide was added to dissolve
the formazan crystals. An absorption reading was taken at 570 nm with a microplate
reader after shaking the mixture for 10 min. The results were obtained as corrected optical
densities (OD).

2.3. Electrochemical Characterization

The electrochemical characterization of the laser cladding samples was carried out
at the MEMS Lab, Indian Institute of Technology-Bombay, Mumbai, India. The working
setup was a 3-electrode setup with the specimen as a working electrode, platinum as the
counter electrode, and saturated calomel as the reference electrode [23]. Potentiodynamic
polarization readings were obtained from −745 mVSCE to 75 mVSCE with a 1 mV/s scan rate
in the Potentiostat (PARSTAT 3000A). Current (I) and voltage (VSCE) values were measured,
and Tafel curves were plotted using Origin Pro software. Triplicate analysis was performed
to minimize errors in the readings. The specimens were immersed in Ringer’s solution
to simulate a human body-like environment. Ringer’s solution was made by adding 9 g
NaCl, 0.43 g KCl, 0.2 g NaHCO3, and 0.24 g CaCl2 to 1 L of distilled water followed by
autoclaving at 121 ◦C for 15 min [24].

3. Results

Laser cladding specimens as-cladded and cut to the required sizes, are shown in
Figure 2. An SEM-EDX analysis was conducted to analyze the metal proportion and
microstructures of the manufactured alloy. Figure 3 illustrates the SEM images, wherein
the cladding layer and unmelted Ta are visible. Additionally, the pass-layer distance could
be verified from the measurements. Some porosity was also observed in the SEM images,
which could indicate residual gases entrapped at cladding. The partial boiling of Ti particles
may also be another reason for the porosity, as there was no significant difference between
the boiling point of titanium (3287 ◦C) and the melting point of tantalum (3017 ◦C) [25].
The EDX result of the manufactured alloy is provided in Figure 4.
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3.1. In Vitro Characterization

The MTT assay results exhibited an increased proliferation of MG-63 cells on the
specimen samples. The cell densities on the specimens evaluated after 3, 10, and 21 days
are illustrated in Figure 5a. Initially, there was less proliferation, possibly due to there being
lower attachment with the alloy chemistry. Over time, the cells were possibly habituated to
the new alloy material and gradually differentiated. After 21 days, noticeable cell growth
and proliferation were seen, as shown in Figure 5b.
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3.2. Electrochemical Characterization

The corrosion resistance of the cladded alloy was examined from the Icorr (corrosion
current density) and Ecorr (corrosion potential) values [26]. The obtained Icorr and Ecorr
values are highlighted in Table 2. The Tafel plots for the values are illustrated in Figure 6.
The rate of corrosion (CR) can be obtained using Equation (2) (ASTM standards G01) [27,28].

CR =
K1(Icorr ∗ EW)

ρ
(2)

where Icorr = the corrosion current density (µA/cm2), K1 = 3.27 × 10−3 (mm g/µA cm yr),
ρ = the material density (g/cm3), EW = the equivalent weight, and CR = the corrosion rate
in mmpy.

Table 2. Values of Icorr, Ecorr, and CR obtained from the Tafel curve.

1 2 3 Avg

Icorr (µA/cm2) 3.75 × 10−1 2.99 × 10−1 5.18 × 10−3 2.26 × 10−1

Ecorr (VSCE) −2.867 × 10−1 −2.771 × 10−1 −3.348 × 10−1 −3.00 × 10−1

CR (mmpy) 3.30 × 10−3 2.64 × 10−3 4.57 × 10−5 2.00 × 10−3
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From the calculations, the corrosion rates for this Ti-17Nb-6Ta alloy were found to be
0.002 mm/year, which is well under the outstanding corrosion category (0.02 mm/year) [29].
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4. Discussion

In this work, a Ti-17Nb-6Ta alloy was fabricated using the laser cladding technique.
In vitro and electrochemical characterization were performed to evaluate the behavior
of the fabricated alloy when exposed to an artificial human body environment. In the
vitro tests, the cell attachment to the fabricated alloy was increased with increased culture
time. Significant cell growth was observed after two weeks. No adverse effects from the
specimens were observed on the culture growth, as indicated by the third week’s cell
density. This indicates the biocompatible nature of the newly fabricated alloy.

In electrochemical characterization, current density, and potential values were deter-
mined after testing. Tafel plots were plotted, and the Icorr and Ecorr values were found.
The Icorr values evaluated from the Tafel curves were low (in the magnitude of 10−5 to
10−7), which depicts the passive behavior of the Ti-17Nb-6Ta alloy. This passivity is mainly
due to the formation of an oxide film on the alloy surface. The surface oxide films inhibit
the release of the alloying component into the human body, thus inhibiting the ions from
immersing in the bloodstream. Passivation is a natural phenomenon that occurs on the
titanium alloy surface. It prevents the further oxidation of the alloy by making a protective
layer on the surface. Titanium has a high affinity to oxygen according to which the oxide
layer is built on the titanium and its alloy surface, and it enhances the corrosion resistance
and osseointegration [30]. The inclusion of alloying elements such as Nb and Ta improves
the passivation by forming Nb2O5 and Ta2O5, respectively, which are super stable in the
human body and provide superior corrosion resistance [31]. The Ti-17Nb-6Ta alloy forms
multi-layer oxide films such as TiO2, Nb2O5, and Ta2O5 on the material surface, which
additionally help in increasing corrosion inhibition [32–34]. Additionally, the oxide layers
also enhance osseointegration [35]. A low CR in the biomaterial is desirable, as it lowers
the discharge of metallic ions into the human body, thus reducing the chance of allergic
reactions and adverse events due to ionic contamination [27].

5. Conclusions

There has been an increased requirement for human body implants in recent years.
The number of revision surgeries has also increased due to the incompatibility of the
material that is into the body. Additive manufacturing offers the fastest route for making
customized implants compared to any other manufacturing process. Titanium alloys have
long been promising candidates for making customized biocompatible implants. Therefore,
a titanium alloy Ti-17Nb-6Ta was manufactured in this study using laser cladding, one of
the prominent AM techniques for metal fabrication. During post-manufacturing, the alloy
was ground and cut into the required sizes for in vitro and electrochemical characterization.
No adverse effect was found in the presence of the Ti-17Nb-6Ta alloy, with good cell growth
being observed even after two to three weeks. A meager corrosion rate (0.002 mm per year)
was observed, along with a low Icorr (0.226 µA/cm2) value. The lower values can mainly be
attributed to the multi-layer oxide films (TiO2, Nb2O5, and Ta2O5) generated on the alloy
surface, which inhibit metallic ions release into the human body. Hence, the alloy does not
cause any cytotoxic symptoms. It can be concluded that the new Ti alloy fabricated using
laser cladding possesses good biocompatibility, which is the prime requirement for human
body implants.
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