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Abstract: The purpose of this study is to investigate the healing performance of solid capsules made
of cement as a basis for manufacturing self-healing capsules that can heal cracks in cementitious
composites. The solid capsules were mixed with 5%, 10%, and 15% concentrations on the cement. The
self-healing performance of cementitious composites with solid capsules was investigated through
three evaluations. First, the mechanical strength-healing performance was evaluated through a
re-loading test. Second, the durability-healing performance was evaluated through a permeability
test. Finally, the crack-healing performance was examined by observing the crack widths. Through
evaluation of the healing performance of the solid capsules, the healing performance of the compres-
sive strength was found to be high when the capsule proportion was 10% and its size was within
the range of 300 µm to 850 µm. Furthermore, the splitting tensile strength showed a high healing
performance when the capsule proportion mixed was 15% and its size was 850 µm. In the case of the
permeability test, a capsule size of 850 µm showed a healing effect greater than 95%. Cracks with a
width of up to 200 µm tended to heal using capsules with a size of 600 µm to 850 µm.

Keywords: cementitious; composites; crack; self-healing; solid capsules

1. Introduction

Recently, various studies have been conducted on self-healing technologies in the
construction industry. Although self-healing technologies have the disadvantage of incur-
ring high initial costs, it has been shown that their economic advantage is greater in the
long term, because they can heal cracks on their own [1,2].

Cracks occur in most concrete structures due to a variety of causes, such as shrinkage
and mechanical loading, which decrease functionality, accelerate degradation, and reduce
the service life and sustainability of the structure [3]. Cracks in a concrete structure con-
structed with self-healing materials can be healed at an early stage of cracking, which can
greatly reduce the time, effort, and cost required for general structural maintenance. In par-
ticular, self-healing technology has the potential to repair mechanical damage and cracks
in concrete structures effectively, even in difficult-to-access structures [4–6]. For example,
self-healing repair methods have been applied to an existing subway tunnel to stop water
leaking from cracks [7]. Such technologies can enable structures to self-heal and are largely
divided into three categories based on the concepts used [8]. The concept of a typical
self-healing technology involves natural healing through the rehydration of un-hydrated
cement and autonomic healing using organic and inorganic materials, cement-based miner-
als, and bacteria. This technology can be classified into activated healing using capsules,
memory alloys, and glass hollow fibers.

Materials such as minerals [9], bacteria [10,11], superabsorbent polymers (SAPs) [12],
and microcapsules [8,13] are being explored for use as self-healing materials. Inorganic
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materials improve the self-healing capacities of cement-based materials through the hydra-
tion of un-hydrated cement [14], the generation of calcium carbonate via the carbonation
reaction of Ca2+ [15], or the generation of C-S-H via pozzolanic reactions of fly ash or blast
furnace slag [16].

The self-healing phenomenon of concrete using geomaterials occurs mainly due to
swelling, expansion, and re-crystallization [9]. When a crack occurs, SAPs absorb the water
that comes through the crack and expand to physically block the crack [12]. Bacteria heal
cracks through a phenomenon in which CO2 generated by their metabolic activity forms
CaCO3 crystals through a reaction with Ca(OH)2 in a hardened cement paste [10,11].

Among these various self-healing concepts, the technology using capsules can include
a large amount of self-healing material, and it has the advantage of selectively reacting to
the crack [17,18]. Self-healing capsules can be classified into solid capsules (SCs) coated
with a film, which is made via agglomeration of the powdery material [19,20], and micro-
capsules or macro capsules encapsulated using a chemical method [8,21]. Accordingly,
the capsule utilization technology can provide self-healing performance by employing a
different reaction mechanism depending on the target material, and an appropriate core
material phase can be selected [22]. In addition, many systems and techniques have been
proposed to heal concrete cracks autonomically, such as modifying concrete by embedding
microcapsules or hollow tubes with a suitable healing agent. When a crack occurs and the
shell of the capsule or the wall of the tube ruptures, the healing agent is released and reacts
in the region of damage to produce new compounds, which seal the crack and/or bond the
crack faces together [23].

The use of mineral admixtures as self-healing agents in cement-based composites
has been studied extensively. However, if minerals are added directly to the cementitious
matrix without any protection, they can immediately react, leading to a decrease in self-
healing efficiency with additional side effects on the mechanical properties of cementitious
composites. In order to overcome such a problem, several kinds of methods have been
proposed. Choi et al. [19] fabricated crack self-healing solid capsules encapsulated with
cement powder which can react with water in the event of breaking. Kishi et al. [24]
investigated the crack-healing capability of concrete incorporating granules of pozzolanic
materials, Portland cement, and some specific admixtures and its feasibility in practice.

Pan pelletization was used to produce pellets from three different powdered miner-
als as potential healing agents: reactive magnesium oxide (MgO), silica fume, and ben-
tonite. Prototype pellets were then encapsulated in a polyvinyl alcohol (PVA)-based film
coating [25]. The impregnation of lightweight aggregates using a liquid self-healing mineral
and their subsequent encapsulation in a polymer-based coating layer was suggested as a
method for improving the self-healing performance of concrete composites [13].

In recent years, self-healing capsules have been developed that can react to sunlight
or moisture without the use of a separate catalyst [26]. Most materials investigated for
self-healing technologies are organic materials [27,28], and since the capsule is mixed
with the surface coating material, the healing range is limited to the surface layer of the
structure. In order to achieve effective self-healing performance, it is advantageous to have
the same characteristics as the structure and to be mixed with the cementitious composites
constituting the structure. Most cementitious composites are based on inorganic materials.
It is therefore expected that the use of inorganic-based materials will have a greater healing
effect. Studies on self-healing using inorganic material have been extensively conducted
based on expansion-, swelling-, and crystallization-promoting chemicals; however, it is
difficult to find examples of encapsulation applications in the literature [29].

Therefore, in this study, a solid-state capsule encapsulating cement powder was
prepared as an inorganic material. The solid capsules were prepared at seven different
sizes (2400, 1200, 850, 600, 300, 150, and 75 µm) [30]. Furthermore, the solid capsules were
mixed with 5%, 10%, and 15% SHC on the cement mass. To investigate the self-healing
performance of the solid capsules, three evaluations were conducted. The mechanical
characteristics were evaluated through a re-loading test and the durability was evaluated
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through a permeability test. Finally, the self-healing performance was examined through
observations of cracks. The results of this study can be used as a reference for producing
solid capsules using other inorganic materials.

2. Experiment Outline
2.1. Experimental Materials
2.1.1. Binder

The cement used in the experiment was ordinary Portland cement (OPC) with a
density of 3.15 g/cm3 and a surface area of 3540 cm2/g. Table 1 shows the chemical
composition and physical properties of the cement used in the experiment.

Table 1. Chemical composition and physical properties of ordinary Portland cement.

Item CaO
(%)

SiO2
(%)

Al2O3
(%)

MgO
(%)

Fe2O3
(%)

SO3
(%)

L.O.I
(%)

Surface Area
(cm2/g)

Density
(g/cm3)

OPC 61.40 21.60 3.40 2.50 3.10 2.50 0.03 3540 3.15

2.1.2. Fine Aggregate

The fine aggregate used in the experiment was a river sand (RS). Table 2 shows the
physical properties of the aggregate used in the experiment.

Table 2. Physical properties of fine aggregate.

Item Density (g/cm3) Absorption (%) F.M. Unit Mass (kg/m3)

RS 2.58 2.32 2.78 1619

2.1.3. Chemical Admixture

The chemical admixture (ad) used in the experiments was a polycarboxylic acid high-
performance water-reducing agent. Table 3 shows the physical properties of chemical
admixtures.

Table 3. Physical properties of chemical admixture.

Item Phase Color Density (g/cm3) Total Solids (%)

ad Liquid Lemon Yellow 1.04 ± 0.01 34

2.1.4. Solid Capsules

The self-healing solid capsule (SHC) used in the experiments was prepared at seven
different sizes (2400, 1200, 850, 600, 300, 150, and 75 µm) [31]. Figure 1 shows the SHC used
in the experiment and Figure 2 shows the size and extent of SHC. The healing and core
material of SHC is OPC. OPC goes through a granulation process by adding a urethane-
based coagulant. After that, in order to mix directly with the mortar formulation, it is
essential to coat the core material in order to prevent a prior reaction with the mixing water
during the mixing process. In this study, mixing water was blocked by applying liquid
rubber on the surface of the core material [31]. Figure 3 shows the state before and after
surface coating of the core material. Afterwards, SHC was finally classified according to
size. SHC sorted by size was mixed when mixing the mortar. Cementitious composites
mixed with SHC were molded to suit each re-load test and water permeability test.
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2.2. Experimental Plan

SHC blended 4 levels (0, 5, 10, 15%) for cement. The healing performance of the solid
capsules was examined using a re-loading test, a permeability test, and observations of
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cracks. The re-loading test was carried out for compressive strength and splitting tensile
strength. Table 4 shows the test variables and evaluation method, and Table 5 shows the
mix table.

Table 4. Experimental parameters and evaluation contents.

Type Variable Evaluation Contents

Step 1 Mechanical-healing performance Re-loading test
(compressive strength and split tensile strength)

Step 2 Durability-healing performance Water permeability test

Step 3 Crack-healing performance Observe hydration products

Table 5. Mix of SHC.

No. Note
Mix Proportion

SHC Size (µm)
SHC ad

W C RS (C × vol., %) (C × vol., %)

1 Plain 0.35 1 1.5 - - 0.9–1.1
2 May-00 0.35 1 1.5 2400 5 0.9–1.1
3 Oct-00 0.35 1 1.5 2400 10 0.9–1.1
4 2400-15 0.35 1 1.5 2400 15 0.9–1.1
5 1200-5 0.35 1 1.5 1200 5 0.9–1.1
6 1200-10 0.35 1 1.5 1200 10 0.9–1.1
7 1200-15 0.35 1 1.5 1200 15 0.9–1.1
8 850-5 0.35 1 1.5 850 5 0.9–1.1
9 850-10 0.35 1 1.5 850 10 0.9–1.1
10 850-15 0.35 1 1.5 850 15 0.9–1.1
11 600-5 0.35 1 1.5 600 5 0.9–1.1
12 600-10 0.35 1 1.5 600 10 0.9–1.1
13 600-15 0.35 1 1.5 600 15 0.9–1.1
14 300-5 0.35 1 1.5 300 5 0.9–1.1
15 300-10 0.35 1 1.5 300 10 0.9–1.1
16 300-15 0.35 1 1.5 300 15 0.9–1.1
17 150-5 0.35 1 1.5 150 5 0.9–1.1
18 150-10 0.35 1 1.5 150 10 0.9–1.1
19 150-15 0.35 1 1.5 150 15 0.9–1.1
20 May-75 0.35 1 1.5 75 5 0.9–1.1
21 Oct-75 0.35 1 1.5 75 10 0.9–1.1
22 75-15 0.35 1 1.5 75 15 0.9–1.1

2.3. Experimental Method
2.3.1. Re-Loading Test

(1) Compressive strength

The compressive strength test and the re-load test were conducted according to ASTM
C349. Figure 4 shows the re-loading test conducted to evaluate the compressive strength.
The specimen was a 50 mm × 50 mm × 50 mm cube. The compressive strength test and
the re-load test were conducted using a universal testing machine (UTM).

Since there is no special regulation for the re-load test, various cases were analyzed and
evaluation was conducted according to its own standards [32–36]. The first was destroyed
by applying up to the maximum load of the specimen at 28 days of age, as shown in
Figure 3a. Afterwards, the destroyed specimens were cured in water. Then, as shown in
Figure 3b, a re-loading test was performed after a three-day healing period.
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Figure 4. Compressive strength re-load test: (a) fracture specimen for re-load test, (b) re-load test of
fractured specimens after the healing period.

(2) Splitting tensile strength

The splitting tensile strength test and the re-load test were used according to ASTM
C496. A cylindrical specimen of Ø50 × 100 mm was used. Figure 5 shows the splitting
tensile strength re-loading test. The splitting tensile strength test and the re-load test
were conducted using the same universal testing machine (UTM) for compressive strength
evaluation. The splitting tensile strength test and the re-load test were conducted under
the same conditions as the compressive strength test and the re-load test.
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of fractured specimens after the healing period.

2.3.2. Water Permeability Test

The water permeability test was carried out by attaching a measuring cylinder to the
upper part of the specimen where an artificial crack was induced. Then, the measuring
cylinder was filled with water and the amount of permeated water was measured. Figure 6
shows the water permeability test. The specimen was a disk Ø50 × 5 mm in size. Specimens
with artificial cracks were cured in a water bath for 3 days. After that, the amount of water
passing through the crack was measured through a water permeability test. For the water
permeability test, the appropriate SHC mixing proportion was selected according to the
results of re-loading test.
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2.3.3. Observation of Cracks

Observation of cracks was performed by making specimens of thin plate type, followed
by artificially cracking, and then by observing the crack surface using Video Microscope
EGVM 35B. Figures 7 and 8 show the manufacturing process and observation method of the
specimen for crack surface observation. The specimen was a disk 50 mm × 50 mm × 5 mm
in size.
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The small plate-shaped mold used for crack monitoring was made by hand using
3D printing. Specimens with artificial cracks were cured in a water bath for 3 days. After
that, the crack surface of the specimen was monitored. The crack surface was observed at
3 levels (850, 600, and 300 µm) of SHC which showed a large healing effect through the
permeability test.

3. Experimental Results and Discussion
3.1. Re-Loading Test
3.1.1. Compressive Strength

Figure 9 shows compressive strength re-loading test results according to the mixing
proportion of SHC, and Figure 9d shows the recovery rates of initial strength and re-
loading strength. As a result of compressive strength test, the compressive strength tended
to decrease with SHC mixing, and then decreased sharply with increasing SHC mixing
proportion. This is because the area where the SHC was placed is fragile and cannot
sustain the load. Moreover, as the mixing proportion increases, the fragility of this area
increases, further decreasing the compressive strength. The compressive strength decreased
with decreasing SHC size. The compressive strength of 5% SHC decreased proportionally
from 5% to 10% in the range of 2400 µm to 850 µm, and decreased by more than 10% in
the case of less than 600 µm. The compressive strength of 75 µm was reduced by up to
30%. The compressive strength of 10% and 15% SHC were similar to those of 5%. The
re-loading strength was found to restore strength by approximately 80% in all mixtures
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containing SHCs compared with the plain specimen, where approximately 30% of the
original strength was restored. The healing effect was shown to increase with increasing
SHC mixing proportion; however, the healing effect of SHC 15% was equivalent to that
of SHC 10%. These results suggest that SHC with a mixing proportion of 10% and a size
equal to or greater than 600 µm is more effective in terms of healing efficiency. When
considered alone, the healing efficiency was high when SHCs with sizes of 300–850 µm
were used. In addition, it was confirmed that there is a natural healing performance even
in the plain specimen without SHC. This is because the healing effect is expressed by the
un-hydrated cement. In addition, it is expected that the natural healing performance of the
plain specimen can be improved through the use of SHC.
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3.1.2. Splitting Tensile Strength

Figure 10 shows the splitting tensile strength re-loading test results according to the
amount of SHC mixed, and Figure 10d shows the recovery rate of the initial strength and
re-loading strength. The splitting tensile strength test showed that the splitting tensile
strength was equivalent to that of the compressive strength test. It is considered that the
splitting tensile strength decreases for the same reason as the decrease in the compression
strength. The splitting tensile strength of specimens at sizes equal to or greater than 600 µm
did not show a significant difference. However, the reduction after 300 µm increased by
approximately 15% and decreased by approximately 30% at 75 µm. The re-loading strength
was restored to approximately 50% only at 850 µm, 600 µm, and 300 µm. At 850 µm with a
15% mixing proportion, the maximum strength recovery was 60% and the Plain was not
restored. However, unlike the re-loading test results of the compressive strength, recovery
ratios at 5% and 10% SHC were equivalent. The 15% SHC was approximately 20% higher
than that of 10%. From these results, it can be concluded that the splitting tensile strength
is high at specimens with sizes of 850 µm, 600 µm, and 300 µm and with a mixing ratio
of 10% or more. In the case of splitting tensile strength, it was confirmed that the plain
specimen also had a natural healing performance, which was same as the compressive
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strength analysis result. In addition, in the case of compressive strength, there was no
significant difference between SHC 10% and SHC 15%. However, unlike the compressive
strength, in the case of splitting tensile strength, the recovery level of SHC 15% was large.
The reason for this is that the splitting tensile strength depends on the interface, so the
recovery level increases.
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3.2. Water Permeability

Figure 11 shows the results of the permeability test using SHC 10%. The permeability
of general test specimen without cracks was measured to be 8 g, and the crack test specimen
plain was measured to be 159 g. When SHC was mixed into the specimens, a healing effect
was not observed above 1200 µm. The decrease in permeability owing to the healing effect
occurred only when the size was less than 850 µm. The results showed that the healing
effect of 850 µm was the most effective for decreasing the permeability. Although the
healing effect was relatively small, it was also observed at 600 and 300 µm.
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These results suggest that there is no curative effect if the SHC is too small or too large.
In other words, when the SHC is too small, when the SHC is broken along the interface,
the SHC cannot be destroyed and may stick to the interface. Conversely, when the SHC
is too large, the volume of the SHC present in the cross-section may be relatively small.
Therefore, it was confirmed that there is an optimal size of SHC when only the healing
effect is considered.

3.3. Observation of Cracks

Figure 12 shows the observation result of the crack surface. In the plain specimen,
the formation of hydrates from cracks at an average crack width of about 40 to 50 µm was
observed. However, the cracks were not completely restored. These results show that
cement composites have a natural healing effect because they have un-hydrated cement
particles. In the case of SHC with a size of 850 µm, crack healing was observed for all
cracks except for those with a width of approximately 200 µm. The healing area of the crack
surface is similar according to the size, but the healing efficiency of 850 µm and 600 µm
is considered to be high. However, these results seem to be related to the natural healing
effect rather than the sole effect of SHC. In other words, SHC is expected to improve natural
healing performance. However, further analysis is necessary to consider the healing effects
of SHC alone. Furthermore, in the case of crack monitoring results, it was confirmed that
there was an optimal size of SHC in the results of water permeability.
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Figure 12. Results of observation of crack: (a) plain (initial crack) (b) plain (crack healing), (c) SHC
10%—850 µm (initial crack) (d) SHC 10%—850 µm (crack healing), (e) SHC 10%—600 µm (initial crack)
(f) SHC 10%—600 µm, (crack healing), (g) SHC 10%—300 µm (initial crack), (h) SHC 10%—300 µm
(crack healing).

4. Conclusions

The results of the healing performance evaluation of solid capsules for the self-healing
of crack in cementitious composites were as follows:

(1) The mechanical-healing performance of cement composites according to the different
mixing proportions of solid capsules showed that the compressive strength healing
efficiency was high when the capsule proportion was 10% and its size was in the range
of 300 µm to 850 µm. In case of splitting tensile strength, the healing performance was
high when the capsule proportion was 15% and its size was 850 µm.

(2) The decrease rate of the permeability of cement composites according to different
proportions of solid capsules was more than 95% when the capsule size was 850 µm.
It was also found that healing effects can be expected even at 600 and 300 µm.

(3) It was confirmed that the cracks were healed by the reaction products of the self-
healing solid capsules. When using capsule sizes of 850 µm to 600 µm, the crack width
tended to heal up to approximately 200 µm.

These results suggest that the optimal capsule healing efficiency can be obtained by
selecting an appropriate capsule proportion and size in consideration of the characteristics
of the object to which the capsule has to be applied. The solid capsule used in this study
needs moisture for the healing reaction. Therefore, the use of solid capsules is suitable for
members related to moisture. Therefore, SHC is expected to reduce cracks when added
to the mix of structures such as the foundations and piers of offshore structures, tank
structures, and waterways. However, it is thought that verification in many fields should
be additionally accompanied for practical use.
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