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Abstract: A III-nitride red LED with an active region temperature of 835 ◦C on a Si substrate utilizing
a strain-relaxed template (SRT) is demonstrated. The peak wavelength blueshifts from 670 nm at
1 A/cm2 to 636 nm at 150 A/cm2. The on-wafer external quantum efficiency was 0.021% at 7 A/cm2

with an emission wavelength of 655 nm. The LED grown on a Si substrate exhibited a 116 nm redshift
when compared to a co-loaded LED grown on sapphire. This is attributed to the difference in strain
state for the III-nitride layers grown on Si compared to sapphire, allowing for more indium to be
incorporated in the LED grown on Si. This suggests efficient III-nitride red LEDs and µLEDs on Si
with a SRT can be realized with further material, device structure, and processing optimizations.

Keywords: strain-relaxed template; III-nitride; red light-emitting diode; InGaN

1. Introduction

Light emitting diodes (LEDs) are now widely favored over incandescent bulbs, liquid-
crystal displays (LCDs) (which employ an LED backlight), organic LEDs (OLEDs), and other
lighting sources in a plethora of applications, including displays, sensing, etc., due to their
long operational lifetime, high efficiency, chemical inertness, and wide color gamut [1,2].
Micron-sized LEDs (µLEDs) are an emerging technology for more futuristic technologies,
such as near-eye displays, portable technology, and visible light communication [2]. These
LEDs and µLEDs are comprised of either III-nitride or III-phosphide material systems,
where indium gallium nitride (InGaN) is used for blue and green, and aluminum gallium
indium phosphide (AlGaInP) is used for red.

Although they are currently much more efficient than red-emitting InGaN-based de-
vices [3–6], AlGaInP-based LEDs have several disadvantages and fundamental limitations
for use as a red µLED. They have much higher surface recombination velocity and longer
carrier diffusion length than III-nitrides [7], which leads to reduced external quantum
efficiency (EQE) as the LED dimensions decrease [8]. The opposite trend has been ob-
served in InGaN-based µLEDs, where the EQE increased with decreasing device size [9].
AlGaInP-based LEDs also have poor thermal stability at elevated current densities when
compared to InGaN-based LEDs, limiting their ability to be employed in high brightness or
high-temperature applications [10].

As mentioned previously, blue and green InGaN-based LEDs are readily obtainable,
but the performance of red InGaN-based LEDs is significantly worse and still lags be-
hind [11,12]. III-nitride red LEDs are challenging, in part, because red emission in this
material system requires the indium (In) content in the emitting quantum wells (QWs) to
be above 35% [13] and leads to increased strain and poor crystal quality due to the 11%
lattice mismatch between indium nitride (InN) and gallium nitride (GaN) [14,15]. This
increased compressive strain leads to reduced In incorporation [15]. The higher equilib-
rium vapor pressure of nitrogen over InN relative to the other III-nitrides [16,17] also
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requires lower growth temperatures for high In-content InGaN layers that are necessary
for red III-nitride-based LEDs, which tends to lead to lower crystal quality and higher
impurity concentration.

As such, many efforts exist to explore novel methods of achieving better crystal quality
InGaN pseudo-substrates and more efficient III-nitride red LEDs [18–22]. Of the methods
previously mentioned, they each require some degree of patterning and regrowth, which
from a large-scale manufacturing perspective is very expensive and time-consuming. One
novel method that has the potential to achieve efficient red III-nitride-based LEDs without
any extra patterning or regrowth on entire wafers is through the use of InGaN strain-
relaxed templates (SRT) [22,23]. In these reports, the LEDs include a 3 nm low-temperature
high-In composition InGaN decomposition layer (DL). A subsequent region called the
decomposition stop layer (DSL) is grown at a higher temperature to thermally decompose
a portion of the high In content present in this layer to form voids, metallic In, and Ga [24].
After thermally decomposing the DL, increased In incorporation and within the InGaN
buffer on the DSL with higher strain relaxation is observed. We call the DL, DSL, and InGaN
buffer a SRT. This allows for higher metalorganic chemical vapor deposition (MOCVD)
growth temperatures of InGaN layers compared to other methods, enabling a pathway to
higher crystal quality InGaN films needed for efficient red µLEDs and red III-nitride LEDs.

As the second-most abundant element in Earth’s crust behind only oxygen, cost-
effective, scalable, large, and high-purity wafers of silicon (Si) are readily available. Si has
a small bandgap that absorbs the emitted light [25], and as a result, LEDs are typically
grown on optically transparent substrates, such as sapphire, due to their higher light
extraction efficiency. Furthermore, Si has a diamond cubic crystal structure, whereas
the conventional III-nitrides have the wurtzite crystal structure. This lattice mismatch,
in conjunction with different thermal properties [26,27], has made realizing high crystal
quality GaN on Si templates difficult until recently [28], and recently, high-efficiency III-
nitride-based yellow, orange, and red LEDs have been grown on Si substrates [29,30]. In
fact, so much progress has been made that commercially available GaN on Si templates
are available. GaN layers grown on Si are under biaxial tensile strain, while they are
under compression when grown on sapphire [31,32]. Furthermore, there are established
and advanced processing techniques for Si due to its widespread use in the photonics
and electronics industries. As such, developing and improving LED performance on Si
is especially interesting and worth exploring to allow III-nitride LEDs to penetrate even
further into the general illumination market.

In this work, the first III-nitride red LED with a SRT grown on a Si substrate is demonstrated.

2. Materials and Methods

LEDs were grown by MOCVD on 1
2 2” (0001) patterned sapphire substrate (PSS) and

13 by 13 mm (111) Si. The epitaxial structure is shown in Figure 1. The device structure of
the processed LEDs on Si is the same as that depicted in Figure 1 of [23]. The GaN template
was 8 and 7 µm thick for the PSS and Si substrates, respectively. A 2.6 nm unintentionally
doped (UID) InGaN DL was grown at 720 ◦C on these templates. The DL was capped by
4 nm GaN at a relatively low temperature to prevent the InN in the DL from desorbing. A
DSL consisting of a 10-period 7 nm n-InGaN/3 nm n-GaN superlattice (SL) was grown at
965 ◦C to decompose the DL, as described previously, and serves as a pseudo-substrate
for subsequent LED growth. A 5-period 20 nm n-InGaN/2 nm n-GaN SL buffer grown at
935 ◦C served as the n-contact layer. The active region consisted of 5 nm UID GaN grown
at 915 ◦C, an 8-period 2.5 nm InGaN/7 nm GaN multi-quantum well (MQW) structure at
835 ◦C, and a 5 nm UID GaN grown at 875 ◦C. Lastly, the p-side of the devices subsequently
consisted of a 12 nm p+-AlGaN electron blocking layer (EBL), a 4-period 20 nm p-InGaN/2
nm p-GaN SL, and a 12 nm p++-InGaN contact layer grown at 935 ◦C. After growth, the
LEDs were annealed at 600 ◦C for 20 min in air to activate the p-type layers.
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Figure 1. Schematic of the epitaxial LED structure.

After the MOCVD growth, In metal dots were pressed on the p-type layers and
soldered on the sidewall of the wafers to allow for electrical probing of both LEDs grown
on Si and PSS as a quick test. The PSS LEDs were probed at approximately the half-radius.
Samples were then placed in aqua regia at 120 ◦C to etch the In metal off. A total of 110 nm
of ITO was deposited using electron beam evaporation. Photolithography was used to
pattern the samples. ITO was etched using CH4/H2/Ar reactive ion etching. A 0.1 mm2

mesa was formed by SiCl4 reactive ion etching to etch through the p-type and active regions
and stop in the buffer region to create an n-contact. Lastly, 700 nm Al, 100 nm Ni, and
700 nm Au were deposited by electron beam evaporation to create a common metal n-
and p-contact.

The LEDs were electrically probed under direct current (DC) conditions on-wafer
underneath a 6-inch diameter Labsphere integrating sphere to obtain electrical and optical
properties. A Horiba Jovin Yvon iHR320 series monochromator using a thermoelectrically
cooled Synapse CCD was used to measure the EL spectra. The topside collection angle
is approximately 180◦ normal to the substrate top surface, which, in conjunction with a
fiber-coupled blackbody source HL-3P-INT-CAL radiometric calibration source from Ocean
Insight, was used to calibrate the system. The method for calculating EQE is similar to
the procedure reported in [33]. Pulsed measurements were made using a pulse generator
with a pulse width of 5 µs and a 5% duty cycle. The EL spectrum was collected with an
Ocean-Optics spectrometer connected to an optical fiber.

3. Results and Discussion

The EL-normalized spectra at 20 mA obtained by the quick test are shown in Figure 2
for the co-loaded LEDs. The black curve corresponds to the LED grown on PSS, while the
blue curve was from the Si. The PSS had a peak wavelength of 519 nm. Its FWHM was
42 nm. Interestingly, Si had a peak wavelength of 635 nm. This is at least a 116 nm redshift
when compared to the peak wavelengths of the co-loaded LEDs grown on PSS. The FWHM
was 66 nm. The fringes present on the Si substrate spectra are attributed to the presence of
a standing wave at the GaN/Si interface and are artifacts of the measurement setup, which
is verified below when discussing the processed LEDs. Not only does utilizing a SRT lead
to a redshift compared to reference LEDs grown without a SRT [23], but growing the SRT
LEDs on a Si substrate leads to an additional redshift compared to PSS.
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Figure 2. Normalized EL spectra of co-loaded SRT LEDs grown on (111) Si and (0001) PSS.

The on-wafer calibrated spectral flux of SRT LEDs on Si after the device processing at
different current densities ranging from 1 to 150 A/cm2 is shown in Figure 3a. There are
no fringes with this measurement setup because of the use of an integrating sphere. The
LEDs turned on at 0.4 A/cm2 with a peak wavelength of 679 nm. The peak wavelength
blueshifted 34 nm from 670 nm at 1 A/cm2 to 636 nm at 150 A/cm2. This blueshift is
due to the polar c-plane orientation of the LEDs and is due to polarization screening
of the MQW electric field or band-filling effects of the localized state [34–36]. The peak
wavelength (WL) of the red LEDs grown on the Si substrate was measured under pulsed
and DC operation as a function of current density to study thermal effects, as shown in
Figure 3b. The blueshift from 5 to 100 A/cm2 under pulsed and DC operation is 12 and
18 nm, respectively. Thus, the redshift caused by the thermal effects under DC operation
should be small. The large compositional fluctuations in the active layer of the red LED, as
mentioned in Figure 3a, form localized states that contribute to longer wavelength emission
at low current densities. With increasing current density, the blueshift of the peak WL is
a result of band-filling effects of these localized states. The blueshift observed over this
current density range is less than previous SRT demonstrations [12,23] and similar to other
red III-nitride LED demonstrations [4,30,37]. The FWHM ranged from 64 nm at 1 A/cm2

to 84 nm at 150 A/cm2. At 20 A/cm2, the peak wavelength and FWHM were 645 and
69 nm, respectively. These FWHM values are comparable to previous demonstrations of
red LEDs using SRT technology [12,23] but relatively high compared to other red III-nitride
LEDs [30,37,38] and an indication that further growth optimizations must be looked into.
The large FWHM for red III-nitride LEDs is due to indium compositional fluctuations in
the active region, and the increase in FWHM as current density increases is attributed to
heating effects that lead to the filling of higher energy states [37,39].

Figure 4a shows the EQE and peak WL as a function of current density, while Figure 4b
shows the J-V characteristics. The on-wafer peak EQE was 0.021% at 7 A/cm2 and emitted
at a wavelength of 655 nm. The peak EQE is low compared to those devices grown on
transparent sapphire substrates [12,37,38,40] because Si is a highly absorbing substrate,
and the DL has metallic In and Ga that also strongly absorb emitted light; a cross-sectional
schematic of the fully processed LED is shown in Figure 4c. Most of the light absorption is
due to the 1-mm thick Si substrate [41,42]. The presence of In and Ga metallic clusters is
expected to be the primary source of light absorption in the DL, but since the DL is only
2.6 nm thick, this contribution should be small. TEM images show that these In and Ga
metallic clusters are, in fact, present in our LEDs [22]. Other red LEDs epitaxially grown
on Si with better EQEs employ a film transfer technique with a reflective backside coating,
which prevents the Si substrate from absorbing light, thus greatly enhancing the light
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extraction efficiency [30,43]. Additionally, SRT LEDs have dislocations formed during the
growth of the DSL, which is what allows for the relaxation of the InGaN layers. These
dislocations act as nonradiative recombination centers for carriers, further reducing the
EQE. Droop is observed at higher current densities and is attributed to carrier overflow [44]
or Auger recombination [45]. To improve the EQE, a flip-chip architecture with reflective
contacts and Si substrate removal can be incorporated. At 0.4, 1, and 5 A/cm2, the voltage is
1.9, 2.1, and 2.9 V, respectively. These values are lower or comparable to other red III-nitride
LEDs [30,46,47], an indication that LEDs utilizing a SRT may be ideal for µLEDs, which are
expected to have operating current densities in this range. The voltage at a high current
density of 20 A/cm2 is a relatively high 4.1 V, but it turns on at a much lower current
density [4]. These high voltages at this high current density can be attributed to poor
current spreading and hole injection into the active region due to low p-InGaN conductivity
and a large device size [48].
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High-resolution X-ray diffraction (XRD) reciprocal space maps (RSMs) of the (10–15)
off-axis peaks for samples on sapphire and Si substrates were taken with a Rigaku Hypix
2000 to measure and analyze the strain state and estimate the equivalent In composition
of the InGaN/GaN SL buffer region, which is depicted in Figure 5. As shown, the In-
GaN buffer peak is offset in Qx relative to the GaN peak for both samples, indicating
that the InGaN buffer is not coherently strained to the GaN template and the in-plane
lattice constants of these two regions are different. This reduces the compositional pulling
effect [17], allowing the LEDs to be grown at hotter temperatures than other methods
while still incorporating enough In for red emission in the QWs. The equivalent buffer
composition and relaxation for the LEDs grown on Si and sapphire were 138% relaxed
In0.06Ga0.94N and 104% relaxed In0.034Ga0.966N, respectively. Relaxation values calculated
to be over 100% indicate that the nominally compressed buffer region is actually under
biaxial tensile strain. This biaxial tension allows for more In to be incorporated in the
epitaxial structure of the LED grown on Si than the one grown on sapphire. As mentioned
previously, heteroepitaxial GaN on sapphire is compressively strained while GaN on Si
is tensile strained [28–32]. This tensile GaN grown on Si will have a longer in-plane a
lattice parameter than the compressive GaN on sapphire. When leveraging this with SRT
technology, the InGaN buffer grown on Si is more relaxed and then tensile strained (138%),
while the InGaN buffer grown on PSS is less relaxed (104%), as shown in Figure 5. The
increased relaxation allows for more indium incorporation into InGaN during MOCVD
growth by minimizing the compositional pulling effect [17]. This accounts for the larger
redshift of the red LEDs grown on Si than those on PSS. The mechanism responsible for the
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presence of tensile strain in typically compressive InGaN layers is hypothesized to be the
result of inclined threading dislocations that have a misfit component when projected onto
the growth plane and to the best of the authors’ knowledge, has only been observed in the
III-nitride material system when growing aluminum gallium nitride (AlGaN) films [49–53]
and not InGaN layers. Further analysis involving more in-depth XRD and transmission
electron microscopy (TEM) will need to be conducted to verify this hypothesis.
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Figure 5. RSM aligned to the (105) peak of red SRT LEDs grown on (a) Si and (b) PSS. The InGaN
peak corresponds to 138% relaxed In0.06Ga0.94N and 104% relaxed In0.034Ga0.966N buffers grown on
Si and PSS, respectively.

The surface morphology of the LEDs grown on Si and PSS was characterized by atomic
force microscopy (AFM) with a Bruker Dimension Icon in peak force tapping mode and is
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shown in Figure 6. The root mean square (rms) roughness was determined by Gwyddion
software and found to be 13 and 25 nm for the 3 × 3 µm scans on the Si and sapphire
samples, respectively. Compositional and strain fluctuations originating from the different
regions present in the DL in conjunction with surface roughnesses this high can explain
why the InGaN peaks in the RSM of Figure 5 are not as sharp as the GaN peak. The rms for
LEDs on Si is less than those grown on PSS, indicating that the increased In content and
116 nm redshift of the LEDs grown on Si relative to PSS is not due to a rougher surface,
which would lead to increased In incorporation at step edges [54,55]. This confirms the
difference in strain state of the two underlying substrates shown in Figure 5 leads to the
different emission spectra of the co-loaded LEDs.
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for the LEDs on Si and PSS, respectively.

4. Conclusions

In conclusion, an InGaN-based red LED utilizing a SRT grown on a Si substrate is
demonstrated. The peak EQE of the on-wafer LED was 0.021% at 7 A/cm2. This EQE is so
low compared to other red LEDs because it was grown on a strongly absorbing Si substrate
instead of optically transparent sapphire and did not use a film transfer onto a reflective
coating technique. The device emitted at 670 nm at 1 A/cm2 and was blueshifted due to
QCSE or band-filling effects of localized states to 636 nm at 150 A/cm2, with an FWHM
between 64 and 84 nm. The LED grown on a Si substrate had a 116 nm redshift compared
to a co-loaded LED grown on a PSS due to the longer lattice constant of the InGaN buffer.
Further optimizations in material quality, processing, and packaging are needed to realize
high-efficiency red InGaN LEDs and µLEDs grown on Si using the SRT technique.
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