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Abstract: Electrically driven c-plane InGaN-based blue edge emitting laser diodes on a strain-relaxed
template (SRT) are successfully demonstrated. The relaxation degree of the InGaN buffer was 26.6%,
and the root mean square (RMS) roughness of the surface morphology was 0.65 nm. The laser diodes
(LDs) on the SRT laser at 459 nm had a threshold current density of 52 kA/cm2 under the room
temperature pulsed operation. The internal loss of the LDs on the SRT was 30–35 cm−1. Regardless of
the high threshold current density, this is the first demonstrated laser diode using the strain-relaxed
method on c-plane GaN.
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1. Introduction

Visible laser didoes (LDs) have sparked plenty of research interest due to their promis-
ing application in next-generation displays such as portable pico-projectors and augmented
reality [1]. GaN-InN material alloys are of great interest because their bandgap spans from
violet to near infrared, which is perfect for a red-green-blue (RGB) full color display module.
Since the very first blue LD was demonstrated using InGaN multi-quantum wells (MQWs)
as an active region by Nakamura, S. et al. [2], progress has been made to improve InGaN-
based LDs and extend the wavelength longer. To date, InGaN-based blue LDs, as well as
some greens, have been well developed by multiple institutions including Osram [3,4],
Soraa [5,6], Nichia [7,8], ROHM [9,10], Sumitomo [11,12], UCSB [13–16], Chinese Academy
of Sciences [17,18], etc.

Despite the success of blue LDs and some of the green ones, green or longer wave-
length InGaN-based LDs remain challenging due to the following reasons. First, a lower
growth temperature is necessary for a higher indium content InGaN because indium is
considerably more volatile than GaN; however, low-temperature growth also leads to a
decrease in crystalline quality [19,20]. Second, the 10% lattice mismatch between InN and
GaN makes the growth of the high-Indium-content crystal difficult. The resulting high
strain in InGaN can lead to misfit dislocations, phase separation and the reduction of
Indium incorporation, which is also known as the composition pulling effect [21,22]. Third,
due to the strong piezoelectricity in III (Al, Ga, In)-Nitrides in the c-direction, the electron
and hole wavefunctions in the InGaN active region are separated, which is also known
as the quantum-confined Stark effect (QCSE). This spatial separation of wavefunction
overlap in turn degrades the radiative recombination efficiency and optical gain [23–25].
The requirement of an increasing indium content will exacerbate this issue due to the larger
lattice mismatch and, therefore, the more severe QCSE. Furthermore, the design of the
waveguide would become challenging because of the refractive index contrast reduction
as the wavelength increases [26]. Although AlGaN is usually applied as bottom cladding,
it suffers from the critical thickness limit and the substrate mode issue [26]. On the other
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hand, InGaN, as the waveguide layer, can provide enough confinement without degrading
the laser beam quality from the substrate mode. However, the demands of the high-quality
growth of high-Indium-content InGaN again put emphasis on solving the InGaN growth
issues, as mentioned above.

To deal with the growth issues of highly strained InGaN, growth on a strain-relaxed
template (SRT) has been proposed and developed. Growth on an SRT can mitigate the
lattice mismatch of the above InGaN layers (waveguide, active region, etc.) and hence the
reduction of the composition pulling effect; consequently, a higher growth temperature can
be used to achieve a better-quality InGaN film. Although several strain relaxation methods
have been reported so far [27–30], only a few demonstrate LED device performance grown
on top of them [31,32]. Recently, Chan et al. demonstrated a simple but effective method
for obtaining highly strain-relaxed InGaN buffers, called strain-relaxed templates (SRT),
where the growth temperature of red LEDs can be as high as 870 ◦C with a 100% relaxed
In0.07Ga0.93N buffer [33]. In addition, LEDs with 0.31% EQE at 637 nm and a low forward
voltage are reported based on SRT technology [34].

Although decent results of LEDs have been demonstrated based on this technology,
laser diodes on an SRT have not been reported yet. In this work, we successfully demon-
strate c-plane blue InGaN-based LDs grown on an SRT. A relaxation degree of 26.6% for
the InGaN buffer was obtained, and by adopting a higher temperature and a thicker GaN
growth in the SRT to reduce the defects, a smooth surface morphology of 0.65 nm root mean
square (RMS) roughness was achieved. The lasing wavelength is 459 nm, and the threshold
current density is 52 kA/cm2 under the room temperature pulsed operation. The internal
loss of the LDs on SRT was found to be 30–35 cm−1, which is more than three times the
value of the reference LDs without SRT. Regardless of the high threshold current density,
these are the first demonstrated LDs using the strain-relaxed method on c-plane GaN.

2. Materials and Methods

The epi structure was grown by metal−organic chemical vapor deposition (MOCVD)
on a c-plane freestanding bulk GaN substrate commercially available instead of sapphire,
since the former provides less threading dislocation density in the substrate. Trimethylgal-
lium (TMGa), triethylgallium (TEGa), trimethylindium (TMIn), ammonia (NH3), disilane
(Si2H6) and bis(cyclopentadienyl)magnesium (Cp2Mg) were used as the precursors and
dopants. A 2.6 µm n-GaN layer was first grown at 1150 ◦C, and then a 3 nm InGaN
decomposition layer (DL) was grown at 770 ◦C, followed by a low temperature GaN cap.
After that, the temperature was ramped up to 1100 ◦C for a 700 nm thick n-GaN growth
acting as a decomposition stop layer (DSL). During the growth of the DSL, the DL will be
decomposed and form voids [35,36], providing the relaxation for the InGaN buffer which
will be grown thereafter. We call the structure composed of decomposed DL, a GaN cap
and DSL a strain-relaxed template (SRT). A 200 nm n-InGaN buffer of 20 periods of 5 nm
InGaN and 5 nm GaN was then grown on top of the SRT. Next, a 60 nm n-InGaN consisting
of 3 periods of 16 nm InGaN and 4 nm GaN was grown as the waveguide layer, followed by
4-period MQWs as the active region with a 2.5 nm low-temperature (LT) InGaN quantum
well, 2 nm LT AlGaN and a 9 nm high-temperature (HT) GaN barrier in each period. After
the MQWs growth, a 10 nm p-AlGaN electron blocking layer (EBL) was grown, followed
by a 60 nm p-waveguide layer with the same structure and doping as the n-waveguide.
Then, 210 nm p-GaN was grown as the p-cladding, and, finally, 15 nm p + GaN was grown
as the p-contact layer. For comparison, a reference LD structure was also grown. Instead of
growing a DL, a low-temperature (LT) GaN was grown while all the other layers were kept
the same for fair comparison. The schematics of both LD structures are shown in Figure 1.

A high-resolution X-ray diffraction (HRXRD) reciprocal space map (RSM) was per-
formed to analyze the relaxation of the InGaN buffer for both designs using the

(
1124

)
off-axis peak. Atomic force microscopy (AFM) was carried out to characterize the surface
morphology of the samples. An on-wafer quick test was performed by putting indium dots
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on the sample, and the electroluminescence (EL) spectrum was collected by an optical fiber
and Ocean-Optics spectrometer.

Ridge stripe laser structures were fabricated in this work. The device process started
with ridge etching by reactive ion etching (RIE) and a self-aligned liftoff process of the oxide
insulator, followed by the deposition and etch of Indium Tin Oxide (ITO) as the p-contact
and cladding layer. Due to its lower refractive index and resistance compared to GaN and
its lower absorption loss compared to metal, ITO can provide a better confinement factor
without significantly increasing the absorption loss and operating voltage [37]. A Ti/Au
metal stack was then deposited as the metal pad for probing. Finally, both facets were
formed by chemically assisted ion beam etching (CAIBE) with an Ar ion beam in a Cl2
atmosphere [38], and backside Ti/Al/Ni/Au metal was deposited as the n-electrode.

The fabricated LDs were tested under pulse mode using a pulse generator with a pulse
width of 500 ns and a duty cycle of 0.5%. The electroluminescence (EL) spectrum of LDs
was collected by the same equipment mentioned above. The applied voltage and current
were measured by the oscilloscope, and the light output power of the LDs was measured
by an integrating sphere. The segmented contact method performed to measure the optical
loss utilized the amplified spontaneous emission (ASE) spectra; the method and principles
can be found in [39,40].
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note that, compared with our previous structure, the GaN DSL was grown much thicker 

Figure 1. Schematic epi structure of (a) laser diodes on a strain-relaxed template (SRT) and (b) refer-
ence laser diodes. Instead of a decomposition layer, a low-temperature GaN was grown in reference
LDs, while all other layers were kept the same.

3. Results and Discussion

The RSM of the
(
1124

)
off-axis peaks are shown in Figure 2a,b, which correspond

to SRT LDs and reference LDs, respectively. From the results, we can extract the Indium
content and the degree of relaxation in the InGaN layers on the SRT, where the buffer is
26.6% relaxed and contains 1.5% Indium, while the waveguide is 16.1% relaxed and has
4.3% Indium. In contrast to SRT LDs, the reference LDs show no relaxation, as shown
in Figure 2b. The EL spectrum of the on-wafer quick test was also measured for both
samples at a current density of 20 A/cm2, as demonstrated in Figure 2c, where SRT LDs
and reference LDs show an emission at 502.4 nm and 485.5 nm, respectively. The LD
structure grown on SRT exhibits a red shift of 16.9 nm because of the relaxation of the
InGaN layers underneath, enabling more Indium incorporation into the active region. It is
important to note that, compared with our previous structure, the GaN DSL was grown
much thicker and at a much higher temperature. There are two reasons behind this change.
First, we found that, although a lower growth temperature of the DL and DSL can allow
for a higher degree of relaxation, it is also accompanied by a higher defect density and a
poor surface morphology, which are detrimental to lasers [36]. Hence, before optimizing
the structure design to minimize defects and the poor morphology, we chose to grow at a
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higher temperature for both the DL and DSL to reduce these issues but with a lower degree
of relaxation. As shown in the atomic force microscopy (AFM) scan of the epi surface
in Figure 2d, no v-pits are observed, and the surface morphology is smooth, with a root
mean square (RMS) roughness of 0.65 nm. The second reason is because we found that the
decomposed DL is highly absorbent due to phase separation and the formation of metallic
Indium, which can be further confirmed by the sample picture in [36]. It is hence critical to
grow a thick DSL to prevent the mode leaking into the DL and thus reduce the optical loss.
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Figure 2. RSM of (a) SRT LDs: a 26.6% relaxed InxGa1−xN buffer and a 16.1% relaxed InyGa1−yN
waveguide, with x = 0.015 and y = 0.043, respectively; and (b) reference LDs: the InGaN buffer and
waveguide are both strained to GaN. (c) EL spectra at 20 A/cm2 for SRT LDs and reference LDs,
where the former show a 16.9 nm red shift. (d) A 5 by 5 µm2 AFM scan on the top surface of the epi
structure, showing a smooth morphology with an RMS roughness of 0.65 nm.

The schematic device structure of the processed SRT LD is shown in Figure 3a.
Figure 3b presents the EL spectra before and after lasing. As the injected current reached
the threshold condition, a sharp and narrow lasing peak at 459 nm was observed, and
the far field pattern could be clearly seen, as shown in the inset of the figure. Figure 3c
demonstrates the single facet light–current–voltage (L–I–V) characteristics of an 1800 µm
cavity length and 1.5 µm ridge stripe width device. The threshold current is quite high at
around 1405 mA, which corresponds to a current density of 52 kA/cm2. Under the same
testing setup, the reference LDs with the same laser ridge stripe configuration were also
tested and already have a high threshold current density of 20 kA/cm2 compared to other
c-plane blue LD results, which implies that the non-optimized LD structure is one of the
reasons for the high threshold of the LDs grown on the SRT. The lasing wavelength of the
reference LDs is 456 nm, which is only 3 nm shorter than that of the SRT LDs. Note that the
redshift of the SRT LDs is much smaller compared to the on-wafer quick test. The reason
for this is the much higher threshold of the SRT results in more band filling effects and field
screening, hence causing more of a blueshift of the lasing wavelength.
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The segmented contact method was carried out to measure the gain and loss for both
the SRT LDs and reference LDs. To have a fair comparison, the same ridge width (8 µm)
was measured for both structures. The amplified spontaneous emission (ASE) spectra for
Γg−〈αi〉 and −Γα−〈αi〉 under various injection current densities of SRT LDs and reference
LDs are shown in Figure 4a,b, respectively, where Γ is the confinement factor, g stands for
gain, α stands for absorption and 〈αi〉 is the internal loss. As can be observed, the gain and
loss curves merge well in the region below the band edge, where the internal loss 〈αi〉 of the
material can be extracted. From the figure, it can be seen that the 〈αi〉 of the SRT lasers is
30–35 cm−1, while for the reference lasers, it is about 10 cm−1, which is less than one-third
of the value. The much higher loss in the SRT LDs is the main reason why the threshold is
much higher than that of the reference LDs. There are two possible reasons for the high
internal loss in the SRT lasers: first, the threading dislocation density in the SRT template is
still much higher than the reference sample, where a high density of threading dislocation
can cause a significant amount of scattering loss [41]. Second, the tail of the optical mode
might leak into the DL, which is highly optically absorbent. To confirm the loss from DL, a
transmission measurement needs to be conducted to obtain the absorption coefficient of
DL as well as the optical mode simulation. Future work on lowering 〈αi〉 is required to
reduce the threshold current density and hence improve the device performance.
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Figure 4. Results of the segmented contact measurement of (a) SRT LDs, (b) reference LDs. A
three−times−higher internal loss is observed in the SRT lasers.

4. Conclusions

In summary, a c-plane blue laser diode grown on an SRT is demonstrated. The
relaxation in the InGaN buffer is controlled within a small range before we can minimize
the defects in it. The thickness of GaN DSL is designed to minimize the optical mode leaking
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into the highly light-absorbent DL. The device demonstrates a threshold current density of
52 kA/cm2 at a wavelength of 459 nm. From the segmented contact measurement, a more-
than-three-times-higher loss in the SRT LDs compared to the reference LDs is identified,
which is believed to be the main reason for the high threshold current density. Future work
on optimizing the laser structure and minimizing internal loss is necessary to achieve a
decent lasing threshold and extend the lasing wavelength.
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