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Abstract: The effects of droplets filling the molten pools during the double-sided laser beam welding
(DSLBW) of T-joints was established. The dynamic behavior of the keyhole and the molten pool
under different droplet filling modes were analyzed. The results indicated that compared with the
contact transition, the stability of metal flow on the keyhole wall was reduced by free transition and
slight contact transition. At the later stage of the droplet entering the molten pool via free transition,
slight contact transition, and contact transition, the maximum flow velocity of the keyhole wall was
5.33 m/s, 4.57 m/s, and 2.99 m/s, respectively. When the filling mode was free transition or slight
contact transition, the keyhole collapsed at the later stage of the droplet entering the molten pool.
However, when the filling mode was contact transition, the middle-upper part of the interconnected
keyholes became thinner at the later stage of the droplet entering the molten pool. At the later stage
of the droplet entering the molten pool via free transition, the flow vortex at the bottom of the keyhole
disappeared and the melt at the bottom of the keyhole flowed to the rear of the molten pool, however,
the vortex remained during slight contact transition and contact transition.

Keywords: laser welding; numerical simulation; droplet filling mode; molten pool

1. Introduction

In aircraft manufacturing, riveting was used to join fuselage panels [1]. However, the
riveting process increased the weight of the fuselage structure and reduced the production
efficiency. Laser welding was an advanced connection technology [2–4]. Laser welding had
concentrated heat input to the welded workpiece, narrow heat affected zone, low welding
stress, and small welding deformation. Compared with riveting technology, double-sided
laser beam welding (DSLBW) technology had a lighter structure quality and higher work
efficiency. German Airbus applied laser welding technology to replace traditional riveting
technology in the production of fuselage panel structures [5–7]. Oliveira et al. [8] and
Enz et al. [9] found that synchronous welding could obtain completely symmetrical weld
formations and small welding deformations. At present, DSLBW technology has been
applied in the manufacturing of Airbus A340 and A350, and other types of aircraft.

Many researchers mainly analyzed the influence of welding process parameters on the
microstructure and properties during DSLBW of T-joints. Han et al. [10], Zhao et al. [11],
Badini et al. [12] studied the effects of wire composition, welding speed, and heat treatment
on the microstructure and properties of welds during DSLBW of T-joints, respectively.

Porosity defect was one of the main welding defects during DSLBW of aluminum
alloy T-joints. Although welding parameters could affect porosity defects, the fluctuation
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of keyholes was the main cause of welding bubbles, and the flow of the molten pool de-
termined whether welding bubbles could escape from the molten pool [13,14]. In order
to improve the mechanical properties of the weld, filler wire must be added for DSLBW
of T-joints. However, in the current literature on the numerical simulation of DSLBW of
T-joints, filler metal was prefabricated on both sides of T-joints before welding, so the
influence of welding wire on the weld pool was not considered. Yang et al. [15–17] estab-
lished the numerical model of DSLBW of T-joints. Assuming that the workpiece surface
was a rigid surface, the relationship between the interconnectivity of two laser beams
and the porosity of weld was studied. Chen et al. [18] found that the oscillations of the
keyhole profile continuously existed in the process of DSLBW of T-joints, before and after
the keyhole coupling.

Relevant literature revealed that the stability of the keyhole and the molten pool was
greatly affected by the filler wire during plate welding [19–22]. Up to now, no literature has
been reported on the dynamic behavior of the droplet filling into the molten pool during
DSLBW process of T-joints.

In this paper, the impact of droplets filling the molten pool during double-sided laser
beam welding (DSLBW) of T-joints was established by. The dynamic behavior of the
keyhole and the molten pool under different droplet filling modes were analyzed.

2. Mathematical Modeling

In this research work, the FLUENT 19.0 software was adopted to investigate the effect
of the droplet filling mode on the molten pool and keyhole during DSLBW of T-joints. The
laser power was 1800 W, the droplet filling speed was 2.7 m/min, the droplet radius was
0.6 mm, and the welding speed was 3.8 m/min. The influence of the welding driving forces
was considered in the mathematical model. The main driven forces of the weld pool can be
obtained from the literature [23].

2.1. Numerical Model

The calculation region of the droplet filling into the molten pool was established
during DSLBW of T-joints, as shown in Figure 1.
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Figure 1. The calculation region of DSLBW of T-joints.

The welding workpiece was constantly melted under the action of the laser heat source.
The keyhole wall was a gas-liquid interface, and there were continuous dynamic changes
of the liquid phase and gas phase at the keyhole boundary. In this paper, the volume of
fluid (VOF) method was used to deal with the problem of gas-liquid conversion on the
keyhole wall [24]. The normal vector

→
n and the curvature κ of the free surface could be

calculated as follows:
→
n =

∇F
|∇F| (1)
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κ = ∇ ·→n (2)

To reduce the workload of the computer, the melting process of welding wire was not
considered. It was assumed that the front end of the filler wire was melted and entered the
molten pool in the form of a liquid droplet.

2.2. Heat Source Model

The rotary Gaussian heat source model was written as follows [25]:

qlaser =
9αabsQ

πR2
0H(1− e3)

exp

[
−9
(
x2 + y2)

R2
0 log(H/z)

]
(3)

where Q and H represent the heat source energy and the heat source height, respectively;
R0 is the effective radius of the laser beam.

2.3. Mathematical Model of Droplet Filling

The thermal interaction after the liquid droplet fell into the molten pool was treated
as the change of the periodic enthalpy of melt in the molten pool. The heat formula of the
droplet was expressed as [26]:

Qa = ρπr2
ww f Hd (4)

where w f is the droplet velocity; ρ is droplet density; rw is the droplet radius.
The effective heat formula of the droplet entering the molten pool was expressed as [26]:

Qd = ρπr2
ww f Cpl(Td − Tl) (5)

where Td is the liquid droplet temperature; Cpl is specific heat of liquid droplet; Tl is the
liquidus temperature of liquid droplet.

According to the fixed grid numerical calculation method [27], the double-focus laser
welding process of T-joints in a Cartesian coordinate system should satisfy the following
equations [28]:

Mass conservation equation:

∂(ρ)

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
+ Sm = 0 (6)

Energy conservation equation:

∂(ρH)
∂t + ∂(ρuH)

∂x + ∂(ρvH)
∂y + ∂(ρwH)

∂z = ∂
∂x

(
k ∂T

∂x

)
+ ∂

∂y

(
k ∂T

∂y

)
+ ∂

∂yz

(
k ∂T

∂z

)
+ SH

(7)

Momentum conservation equation:

∂(ρu)
∂t + ∂(ρuu)

∂x + ∂(ρuv)
∂y + ∂(ρuw)

∂z = ∂
∂x

(
u ∂u

∂x

)
+ ∂

∂y

(
u ∂u

∂y

)
+ ∂

∂z

(
u ∂u

∂z

)
− ∂P

∂x + Sx
(8)

∂(ρv)
∂t + ∂(ρuv)

∂x + ∂(ρvv)
∂y + ∂(ρvw)

∂z = ∂
∂x

(
u ∂v

∂x

)
+ ∂

∂y

(
u ∂v

∂y

)
+ ∂

∂z

(
u ∂v

∂z

)
− ∂P

∂y + Sy
(9)

∂(ρw)
∂t + ∂(ρuw)

∂x + ∂(ρvw)
∂y + ∂(ρww)

∂z = ∂
∂x

(
u ∂w

∂x

)
+ ∂

∂y

(
u ∂w

∂y

)
+ ∂

∂z

(
u ∂w

∂z

)
− ∂P

∂z + Sz
(10)

where u, v, and w are velocity components; H, k and µ are the enthalpy, thermal conductivity,
and viscosity, respectively; Sm, Sx, Sy, Sz and SH are the source terms of the governing equation.
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The thermophysical parameters of 6056 aluminum alloy are described in [29] (Table 1).

Cp

(
Jkg−1K−1

)
=


−0.001× T2 + 1.1609× T + 267.71 300 < T ≤ 573
0.0009× T2 − 0.3901× T + 514.45 573 < T ≤ 913
−0.0009× T2 + 0.5832× T + 435.14 913 < T ≤ 2740

(11)

k
(

Wm−1K−1
)
=


−0.0001× T2 − 0.0697× T + 95.334 300 < T ≤ 860
−0.0048× T2 + 9.2812× T − 4275.6 860 < T ≤ 917
−0.00001× T2 + 0.0582× T + 148.74 917 < T ≤ 2740

(12)

µ
(

kgm−1K−1
)
=


1× 10−7 × T2 − 0.0002× T + 0.1202 897 < T ≤ 937

2× 10−11 × T2 − 5× 10−7 × T + 0.0038 937 < T ≤ 2650
−6× 10−8 × T2 + 0.0003× T − 0.4151 2650 < T ≤ 2720

(13)

where Cp, k, and µ are specific heat, thermal conductivity and dynamic viscosity, respectively.

Table 1. The thermophysical parameters of 6056 aluminum alloy.

Property Symbol Unit Value

Solid density ρs kg/m−3 2720
Liquid density ρl kg/m−3 2590

Solidus temperature Ts K 860
Liquidus temperature TL K 917
Boiling temperature Tg K 2740

Thermal expansion coefficient βk K−1 1.92 × 10−5

Convective heat transfer
coefficient h0 W/K−1m−2 15

Surface tension δ0 N/m−1 0.914
Surface tension gradient Aδ N/m−1K−1 −3.5 × 10−4

Radiation emissivity ε — 0.08
Ambient temperature Tref K 300

3. Results and Discussion
3.1. Numerical Model Validation

Figure 2 shows the comparison of the weld profiles obtained by experiment and
numerical simulation during DSLBW of T-joints.
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Figure 2. Comparison of the weld profiles obtained by experiment and numerical simulation during
DSLBW of T-joints.

The experimentally determined weld cross sections were compared with the corre-
sponding calculated geometries as shown in Figure 2. In the experimental results, the W
was about 1.9 mm and the D was 0.8 mm. It was found that the weld profiles were in
agreement between the experiment and numerical simulation.
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3.2. Dynamic Behavior of the Keyhole

The 3D simulation model of droplet filling position during DSLBW of T-joints is
presented in Figure 3. L represents the distance between the stringer and the center of
the droplet. M represents the distance between the skin and the center of the droplet. N
represents the distance between the center of the keyhole and the center of the droplet. In
this paper, N1 = 1 mm, N2 = 1 mm.

Crystals 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. The 3D simulation model of droplet filling position during DSLBW of T-joints: (a) the 3D 
simulation model, (b) the front view of Figure 3a, (c) the vertical view of Figure 3a. 

Figure 4 shows the three-dimensional morphology of the droplet filling mode during 
DSLBW of T-joints. As shown in Figure 4a, L1 = L2 = 1.0 mm, M1 = M2 = 1.1 mm, and the 
droplet filling mode was a free transition. As shown in Figure 4b, L1 = L2 = 0.8 mm, M1 = 
M2 = 0.9 mm, and the droplet filling mode was a slight contact transition. As shown in 
Figure 4c, L1 = L2 = 0.7 mm, M1 = M2 = 0.8 mm, and the droplet filling mode was a contact 
transition. 
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Figure 4 shows the three-dimensional morphology of the droplet filling mode during
DSLBW of T-joints. As shown in Figure 4a, L1 = L2 = 1.0 mm, M1 = M2 = 1.1 mm, and
the droplet filling mode was a free transition. As shown in Figure 4b, L1 = L2 = 0.8 mm,
M1 = M2 = 0.9 mm, and the droplet filling mode was a slight contact transition. As shown
in Figure 4c, L1 = L2 = 0.7 mm, M1 = M2 = 0.8 mm, and the droplet filling mode was a
contact transition.

Figures 5–7 show the three-dimensional transient behavior of the keyhole with droplet
filling modes of free transition, slight contact transition, and contact transition, respectively.

The different transition methods of the droplet entering the molten pool affected the
stability of the keyhole in different ways. The free and slight contact transition filling
modes had a greater impact on the keyhole than contact transition; the middle-upper part
of the interconnected keyholes became thinner, as shown in Figures 5c and 6c. At the later
stage of the droplet entering the molten pool, the keyhole collapsed at the position where
the keyhole became thinner, as shown in Figures 5d and 6d. However, during contact
transition, at the later stage of the droplet entering the molten pool, the middle-upper part
of the interconnected keyholes became thinner but did not collapse, as shown in Figure 7d.
The droplet impacted the keyhole after entering the molten pool, affected the stability
of the keyhole, and even caused the collapse of the interconnected keyholes. After the
keyhole collapsed, the generated bubbles did not escape from the molten pool before the
solidification of the molten pool, resulting in porosity defects in the weld. At present, the
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relevant literature only studied the reason for the high porosity of DSLBW of T-joints from
the perspective of the molten pool flow field, without considering the influence of the
dynamic fluctuation of the keyhole under droplet filling on weld porosity defects [30].
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Figures 8–10 show the three-dimensional flow fields of the keyhole with droplet filling
modes of free transition, slight contact transition, and contact transition, respectively. As
shown in Figures 8–10, the flow direction at the opening of the keyhole was from the center
of the keyhole to the outside of the keyhole, which was mainly caused by the Marangoni-
driven flow [31–33]. The melt flow direction of the droplet entering the molten pool was
opposite to the flow direction at the opening of the keyhole, which affected the melt flow
velocity and the stability of the keyhole wall. At the later stage of the droplet entering
the molten pool, the maximum flow velocity of the keyhole wall was 5.33 m/s, 4.57 m/s,
and 2.99 m/s, when the droplets entered via free, slight contact, and contact transitions,
respectively. This also shows that compared with contact transition, the free transition and
slight contact transition filling modes reduced the stability of the keyhole.

3.3. Melt Flow of the Molten Pool

Figure 11 shows the intercept position of the longitudinal section flow field during the
DSLBW process for T-joints. The gray surface was a section, as shown in Figure 11.

Figure 12 shows the longitudinal section flow field during the DSLBW process for
T-joints with the droplet transition in the form of free transition, slight contact transition,
and contact transition, respectively.

When a droplet enters the molten pool, it affects the flow field of the molten pool. In the
early stage of the droplet entering the molten pool, the melt at the bottom of the keyhole flowed
from the rear to the front of the molten pool, as shown in Figures 12a,b, 13a,b and 14a,b. At
the later stage of the droplet entering the molten pool, the melt flowed from the front to the
rear of the molten pool, as shown in Figures 12d, 13d and 14d.
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during DSLBW of T-joints: (a) t = 12.0 ms, (b) t = 13.4 ms, (c) t = 14.0 ms, (d) t = 14.2 ms.
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At the early stage of the droplet entering the molten pool, the flow vortex caused by
the Marangoni-driven flow appeared in the front and the rear of the keyhole opening in
the longitudinal section of the molten pool, as shown in Figures 12a,b, 13a,b and 14a,b.
At the later stage of the droplet entering the molten pool, the flow vortex caused by the
Ma-rangoni-driven flow disappeared in front of the keyhole opening in the longitudinal
sec-tion of the molten pool, as shown in Figures 12d, 13d and 14d.

At the later stage of the droplet entering the molten pool via free transition, the flow
vortex at the bottom of the keyhole disappeared, and the melt at the bottom of the keyhole
flowed to the rear of the molten pool. When the droplet filling mode was a slight contact
transition or contact transition, the vortex at the bottom of the keyhole remained.
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Table 2 shows the schematic representation of the flow field in the longitudinal section
of the molten pool when the droplets entered the molten pool via the three different
filling modes.

The pressure on the keyhole wall during the DSLBW process for T-joints is shown
in Figure 15. The pressures acting on the wall of the keyhole included friction force (Ff),
hydrostatic pressure (Pm), recoil pressure (Pv), surface tension (Fs), and hydrodynamic
pressure (Fv). In the process of the DSLBW, the keyhole was relatively stable when it
was in dynamic equilibrium. By using a high-speed camera, Tao et al. [34] studied the
influence of the welding wire on the weld pool during the DSLBW process for T-joints.
They found that the mode by which the filler wire entered the molten pool after melting
had an effect on the weld porosity. When the front end of the filler wire was melted and
the liquid metal entered the molten pool via contact transition, the porosity of the weld
was low. In our paper, during the later stage of the droplet entering the molten pool via
contact transition, the middle-upper part of the interconnected keyholes became thinner
but did not collapse. When the keyhole was less prone to collapse, the weld porosity was
lower. However, when the droplet entered the molten pool via free transition or slight
contact transition, the keyhole collapsed at the later stage. This was because free transition
and slight contact transition had a greater impact on the front wall of the keyhole than
contact transition. Furthermore, the uniformity of the laser energy density distribution in
the keyhole irradiated by the laser beam was affected, which in turn further affected the
evaporation of metal elements in the keyhole. In the area irradiated by the laser beam, the
vapor recoil force of metal vaporization increased. In the area that could not be irradiated
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by the laser beam, the vapor recoil force of the metal vaporization would be reduced, which
would further cause severe fluctuation of the keyhole.

Table 2. Schematic representation of the flow field in the longitudinal section of the molten pool
when the droplets entered the molten pool via the three different filling modes.

Filling Mode Early Stage of Droplet Entering the
Molten Pool

Later Stage of Droplet Entering
Molten Pool

Free transition
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4. Conclusions

When droplets entered the molten pool via free transition or slight contact transition,
the stability of metal flow on the keyhole wall was reduced. At the later stage of the droplet
entering the molten pool, the maximum flow velocity of the keyhole wall was 5.33 m/s,
4.57 m/s and 2.99 m/s for free transition, slight contact transition, and contact transition,
respectively.

The keyhole collapsed at the later stage of the droplet entering the molten pool via
free transition or slight contact transition. However, when the droplet entered via contact
transition, the middle-upper part of the interconnected keyholes became thinner but did
not collapse.

When a droplet enters the molten pool, it affects the flow field of the molten pool. We
found that the melt at the bottom of the keyhole flowed from the rear to the front of the
molten pool in the early stage of a droplet entering the molten pool, and that the reverse
occurred in the later stage.

A greater impact on the longitudinal section flow field of the molten pool was observed
during free transition of droplets into the molten pool. At the later stage, the flow vortex at
the bottom of the keyhole disappeared, and the keyhole flowed to the rear of the molten
pool. The vortex remained during contact and slight contact transition of the droplets into
the molten pool.
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