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Abstract: Ceramics have become indispensable materials for a wide range of industrial applications
due to their excellent properties. However, the traditional preparation of ceramic materials is often
time-consuming and involves high sintering temperatures. These result in considerable energy
consumption and high production costs, which limit the application of these materials in some
industries. This paper focuses on the advent of polymer-derived ceramics (PDCs) technology, which
enabled the application of ceramics to fibers, composites, coatings, and films, mainly due to the
excellent design, process, and low-temperature ceramic properties. We review and evaluate the
important research progress made in polymer-derived ceramics technology in recent years and
discuss its recent development into high-entropy ceramics. The development of polymer-derived
ceramics technology in the field of high-entropy ceramics has broad research prospects, which
can greatly improve the understanding and design of high-entropy materials and accelerate their
application in the industrial field.
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1. Introduction

In the 1960s, Ainger and Chanttrell obtained non-oxide ceramics for the first time by
pyrolyzing polymer precursors [1,2]; this method laid the foundation for the development
of polymer-derived ceramics (PDCs). Later, in the early 1970s, Verbeek and colleagues
successfully produced Si3N4/SiC ceramic fibers from precursors, such as polycarbosi-
lanes, polysilanes, and polysiloxanes [3,4]. Then, in the mid-1970s, Fritz and Yajima [5,6]
pyrolyzed polycarbosilane to obtain SiC ceramics; this technique greatly promoted the
development of PDCs. Since then, PDCs have gradually been employed by scientists
and engineers due to their advantages, such as excellent oxidation, creep, ablation, and
crystallization resistances, as well as high-temperature stability [7,8].

High-entropy ceramics (HECs) are a class of novel materials with high configurational
entropy (∆Sconfig > 1.5 R) [9]. The first single-phase HECs were synthesized by Rost
and co-workers in 2015 [9], and several HECs with different crystal structures have been
produced to date [10–13]. Research on HECs has revealed their extraordinary properties,
including mechanical, electrical, and corrosion resistance [14–16], which have expanded
their application prospects. The process of preparing PDCs from polymer precursors is
referred to as PDCs technology. In recent years, several attempts have been made to prepare
high-entropy ceramics using PDCs technology, with some success [17–19]. These advances
show a new way of understanding and discovering high-entropy ceramics. Therefore,
in this paper, PDCs technology and the results that have been achieved in the field of
high-entropy ceramics will be reviewed.
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2. Polymer-Derived Ceramics Technology

At present, most of the precursors of commercial PDCs are silicon-based ceramics
precursors and their modified products, and, as PDCs technology has attracted more
attention, researchers have prepared precursors not only from polymers but also precursors
containing a variety of organic and inorganic components that require chemical reactions
to obtain ceramic products [20]. Although there are more and more types of precursors, the
characteristics and preparation procedure via PDCs technology are the same.

2.1. Characteristics of Polymer-Derived Ceramics Technology

The characteristics of the preparation process of PDCs technology and the improve-
ment of the material properties via this method can be summarized as follows:

i. The designability of the organic precursor structure can be used to tune the microstruc-
ture of ceramics; in other words, the structure, composition, and preparation process
of the organic polymer precursor are adjusted to control the phase composition and
structure of the final ceramic product [21].

ii. The polymer precursors have good moldability and can be used to achieve the prepa-
ration of ceramics with complex shapes, including one-dimensional ceramic fibers [6],
two-dimensional coatings [22], as well as three-dimensional micro-electro-mechanical
systems (MEMS) [23] and ceramic composites [24]. The preparation of fibers takes
advantage of the fusible nature of precursors [6,25]; the synthesis of the coating ex-
ploits the fluidity of the precursor to achieve a two-dimensional uniform structure
on the surface of the material [26–28]. Polymer-derived ceramics technology can
be applied in semiconductor preparation techniques, such as lithography, and in
the synthesis of ceramic micro–nano devices through the design of the functional
groups of the polymer, which provides a good processing route for the manufacture
of MEMS [23]. The solubility of the precursor can also be used to impregnate the fiber
precast [29–31]; after impregnation, the polymer is crosslinked, cured, and pyrolyzed
at high-temperature into the ceramic matrix to fill voids in the precast (this prepara-
tion process is called PIP); after repeating the PIP process, a dense fiber-reinforced
ceramic matrix composite is obtained.

iii. The process temperature is relatively low. Traditional non-oxide ceramics, such as SiC
and Si3N4, require a high sintering temperature, usually above 1600 ◦C, while PDCs
can be sintered at temperatures as low as 900 ◦C [32].

iv. Sintering aids are not needed. Due to the slow atomic diffusion caused by the prop-
erties of covalent bonds, sintering additives are often required in the preparation of
non-oxide ceramics [33]. These additives form a liquid phase at high temperatures
and accelerate the diffusion of atoms, thereby promoting the sintering of non-oxide
ceramics [34,35]. However, the sintering additive residues at grain boundaries will im-
pair the oxidation resistance [36,37] and the high-temperature mechanical properties
of non-oxide ceramics (such as the high-temperature creep resistance) [38]. In contrast,
PDCs technology can achieve the sintering of ceramic materials without sintering ad-
ditives [39,40], and the resulting materials exhibit good resistance to high-temperature
oxidation [41], as well as high-temperature creep properties [42].

v. Excellent high-temperature performance. Since no sintering additives are required in
the preparation of polymer-derived ceramics, a high-purity matrix is obtained after
sintering; thus, the prepared material has good high-temperature properties, such as
creep [42–44], oxidation [41,45], and corrosion [46,47] resistances.

2.2. Procedure of Polymer-Derived Ceramics Technology

The most commonly used commercial precursors are silicon-based polymers, which
include polycarbosilane, polysiloxane, polysilazane, and polyborosilazane and their modi-
fied products [20]. Thus, taking organosilicon as example, the processes of polymer-derived
ceramics technology are as follows (Figure 1):
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i. Synthesis: various small organic molecules are used as raw materials to obtain precur-
sors with specific molecular weights by organic synthesis methods [20]. The precursor
can be varied by selecting suitable small molecules and optimizing the synthesis
process. Ceramics with different microstructures can be obtained by using different
precursors, as well as different curing and cracking systems [45–49].

ii. Shaping: polymers can be shaped directly with a variety of methods, such as injection
molding, blow molding, extrusion molding, coating, electrospinning, 3D printing,
etc., which further enable one-step molding of polymer-derived ceramics [50].

iii. Crosslinking/curing: the main purpose of crosslinking is to make the polymer back-
bone connected [20]. Crosslinking methods include light and thermal curing processes.
Thermal-curing crosslinking generally relies on curing agents to polymerize polymer
precursors into a mesh structure at a certain temperature, forming a non-molten
polymer [51]. In light-curing crosslinking, a polymer is doped with a curing agent
and polymerized under illumination at a specific wavelength to obtain a non-molten
polymer [52].

iv. Pyrolysis/caramelization: these processes complete the transformation of the material
from organic to inorganic, inducing qualitative changes in its internal structure and
properties [20]. During the process, the organic groups of the precursor gradually
vanish, and the polymer transforms into amorphous ceramics, with a typical py-
rolyzing temperature of 900–1000 ◦C [50]. The phase composition, structure, and
properties of amorphous ceramics obtained by pyrolysis are strongly dependent on
the caramelization process.

v. Crystallization: typically, the polymer transforms into amorphous ceramics at a
temperature between 900 and 1000 ◦C [38]. As the heat treatment temperature in-
creases, the amorphous phase is gradually crystallized in the temperature range of
1200–1800 ◦C, and the crystalline ceramic material is finally obtained [20,38]. Sev-
eral structural transformations are triggered by the amorphous→ crystalline tran-
sition [20,29]: the amorphous disordered structure is rearranged with the relevant
chemical bonds broken, and the structure gradually turns into crystalline as the
temperature is increased; then, the rupture of chemical bonds and the atomic rear-
rangement cause the separation of the ceramic and carbon phases to form a multiphase
ceramic system, which, in turn, promotes nucleation; the formed crystal nuclei gradu-
ally grow with increasing temperature and time. Take the C-enriched SiC produced
by PDCs technology as an example; the amorphous→ crystalline transition can be
schematically drawn in Figure 2 [53]. Meanwhile, the amorphous→ crystalline tran-
sition is usually accompanied by a decomposition reaction, along with the formation
of a small amount of gaseous products.
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Figure 2. (a) Schematics of a detailed model describing the temperature-dependent evolution of
nanodomains comprised of SiC, free carbon, and residual amorphous matrix in polymer-derived
C-enriched SiC ceramics. (b) the average NC–SiC particle size varied with temperature, from 2 nm
(1200 ◦C) to 15 nm (1500 ◦C). (c) the in-plane crystallite diameters (La) of the NC-G phase and the
average defect distances of a single graphene sheet (Ld) grow trend varied with temperature, both
remained nearly constant [54].

In addition, in order to introduce metallic elements into the backbone of the precursor
to improve the thermal stability of PDCs, some researchers have also developed inorganic
precursors [55]. For example, the most common inorganic precursor is metal chlorides,
which are often used to synthesize polymetallosiloxanes with silicic acid and partially
hydrolyzed tetraethoxysilanes [56]. After the synthesis of polymetallosiloxanes, taking
the SiZrOC ceramics precursor as an example, the subsequent crosslinking process can
retain the metal atoms in the backbone structure of the final product and then pyrolyze
to obtain PDCs containing metal elements [57]. The formation of Si–O–Zr bonds occurs
during crosslinking, as shown below [55]:

≡ Si−H+ ≡ Zr−OPr→≡ Si−O− Zr ≡ +C3H8
≡ Si−H+ ≡ Zr−OH→≡ Si−O− Zr ≡ +H2

Ceramics prepared by PDCs technology undergo a unique phase evolution process
with increasing temperature, and the performance of the final product is directly affected
by the pyrolyzing process, precursor composition, and molecular structure (a comparison
with the traditional manufacturing procedures is displayed in Table 1). Therefore, PDCs
technology can provide control of the ceramic microstructure and properties, and it rep-
resents an innovative preparation process that will play an important role in industrial
applications of ceramics in the future.

Table 1. Main processing parameters for manufacturing ceramics via conventional route and PDC
route [58].

Processing Parameters Conventional Route PDC Route

Ceramic Raw Material
Ceramic powders, such as alumina,

zirconia, silicon carbide,
or aluminum nitride

Precursor polymers, such as polysiloxanes or
polysilazanes, with passive or active fillers
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Table 1. Cont.

Processing Parameters Conventional Route PDC Route

Mixing/Milling

Powders are mixed, generally in a ball
mill, to liquid + dispersant for breaking

up agglomerates; binders and plasticizers
are added homogenized

Synthesis: solid or liquid are dissolved, with the aid
of different equipment, in a solvent; fillers,

crosslinkers, and others are added and homogenized

Shaping Cutting or press into desired shapes

Thermal Treatments Debinding at middle temperatures and
sintering at high temperatures are needed

Crosslinking at low temperatures (as low as
room temperature) and pyrolysis at high

temperatures are needed; eventually,
crystallization at higher temperatures is

accomplished; composite materials may be
produced with partial pyrolysis of precursors

Ceramic Products

Dense parts with a residual porosity and
controlled shrinkage, or, less often,

macroporous parts; all kinds of oxide and
non-oxide ceramics may be fabricated

Near net shape parts with the use of active/passive
fillers, or controlled porosity with the aid of
pore formers; mostly silicon-based ceramics

are fabricated (SiC, SiOC, SiOCN...)

3. Structure and Properties of Polymer-Derived Ceramics

PDCs are prepared by pyrolysis of ceramic precursor polymers. At lower temper-
atures, the PDC lattice exhibits an amorphous structure, with many unique properties,
such as high-temperature stability [20,49], excellent semiconducting [50] and piezoresis-
tive [53,54] properties, oxidation and corrosion resistance [20], as well as light transmission
and luminescence [4,59]. At higher heat treatment temperatures, PDCs are gradually
crystallized, and single- or complex-phase crystalline nanoceramics can be obtained by
controlling the process parameters. By taking advantage of the gradual structural evolution
of PDCs at high temperatures, the structure and distribution of ceramic nanoparticles can
be adjusted to effectively improve their mechanical properties, such as strength, modulus,
and hardness [45].

3.1. High-Temperature Stability

Thermal stability is the ability of a material to resist thermal decomposition [60].
Traditional SiC materials have good strength and thermal stability in high-temperature
environments; however, Si3N4 is usually decomposed into Si and N2 above 1400 ◦C;
decomposition leads to volatilization and weight loss, limiting the application of the
material in high-temperature environments [61]. Additionally, the Si3N4 ceramic prepared
by PDCs technology can remain in the amorphous state in the temperature range of
1000–1800 ◦C; hence, its lattice structure is stable, volatilization and weight loss are rare,
and the material has outstanding high-temperature stability [61].

Riedel et al. [62] reported that polymer-derived SiCN ceramics remain amorphous
at 1500 ◦C. The thermal weight loss curves of β-Si3N4, Si1.7C1.0N1.6, and Si3.0B1.0C4.3N2.0
in a 0.1 MPa helium environment were compared in a later study [63]; it was found that
the thermal stability of Si1.7C1.0N1.6 is higher than that of Si3N4, whereas the lattice of
Si3.0B1.0C4.3N2.0 remains stable up to ~2000 ◦C without significant degradation. Riedel [64]
and his team further investigated the relationship between the PDC’s ability to retain its
amorphous structure and its high-temperature stability. They found that the ability of PDCs
to remain amorphous is closely related to the carbon content (Figure 3): when the carbon
content in the system is high, the carbon phases are distributed in a continuous network
structure, with the amorphous Si3N4 embedded in it, thus inhibiting the crystallization
process. On the other hand, a continuous layer of graphite inhibits the outward diffusion of
nitrogen and thus reduces volatilization. The combined effect of the two factors improves
the high-temperature stability of SiCN. Studies have shown [20] that SiCN ceramics with
higher carbon content have better high-temperature stability than their lower-carbon
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counterparts. Moreover, molecular dynamics simulations showed that the addition of
boron can increase the activation energy for breaking Si–N bonds in the system so that
Si–N bonds in SiBCN do not easily react with C to form SiC and N2; at the same time, the
added B reduces the diffusion coefficient of carbon and nitrogen in the material so that the
SiBCN system shows enhanced high-temperature stability [65].
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Figure 3. Thermogravimetric curves of polymers S1–S4 and S5−(SiMe2−NCN)n− up to 1400 ◦C [64]. S1–S4
represent polymers with the structures of −(PhSiR−NCN)n−, R = Phenyl(S1), Methyl(S2), H(S3),
and Vinyl(S4). The ceramic compositions of pyrolyzed S1–S4 are Si1C12.14N1.81H10.07Cl0.19O0.14,
Si1C7.93N1.83H8.71Cl0.12, Si1C6.81N1.96H6.68Cl0.03O0.03, and Si1C8.75N1.37H8.63Cl0.54O0.08, respectively.

3.2. Semiconducting and Electrical Properties

Yajima [66] found that the conductivity of amorphous SiC ceramics derived from
polycarbosilane varies with the pyrolyzing temperature. Specifically, the ceramic exhibits a
DC conductivity of less than 10−10 Ω−1·cm−1, as well as electrical conductivity properties
similar to that of an insulator when the heat treatment temperature is below 600 ◦C; then,
when the temperature exceeds 800 ◦C, the polymer precursor is fully transformed into
an inorganic amorphous ceramic whose conductivity increases with the heat treatment
temperature, resulting in semiconducting electrical properties [66]. In addition to the
pyrolyzing temperature, the DC conductance of PDCs varies with the series, composition,
and sintering atmosphere of the precursor and usually ranges from approximately 10−10 to
1 Ω−1·cm−1 [67]. For example, when the carbon phase content in the ceramic is high under
high-temperature conditions, the continuous phase formed by carbon induces a tunneling
effect, which increases the conductivity (from 0.1 to 1 Ω−1·cm−1) and results in electrical
properties similar to those of a conductor [67].

The current research on the electrical properties of amorphous PDCs is mainly focused
on SiCN and SiCO systems. Wang et al. [68] studied the relationship between DC conduc-
tance and carbon phase structure in SiCO ceramics and found that the DC conductivity
activation energy of the material is similar to that of various carbon phases. This indicated
that the DC conductance of SiCO ceramics is affected by the evolution of the carbon phase;
moreover, the DC conductance and heat treatment temperature of the material are con-
sistent with the Arrhenius equation. Furthermore, the authors studied the effect of the
carbon phase evolution on the conductivity of SiCO ceramics under different heat treatment
temperatures and found that the conductivity of the material increases with the pyrolyzing
time; however, the trend changes around 1200 ◦C, indicating that the conductivity mecha-
nism changes as the carbon phase structure varies at different temperatures: at 1100 ◦C, the
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carbon phase is rearranged in the matrix, new carbon clusters are formed, and the spacing
between the carbon phases is reduced, resulting in an increase in the hopping conductivity
and in the overall conductivity of the material. At 1300 ◦C, the amorphous carbon phase
nucleates and transforms into a microcrystalline phase whose continuous growth results in
an increasing conductance [69].

Another electrical property of amorphous PDCs is the change in piezoresistive resis-
tivity with applied pressure, see Figure 4 [53,70]. The reported piezoresistive coefficient
of polymer-derived SiCN ceramics ranges from 1000 to 4000 [20], which is much higher
than that of any existing ceramic material. Some researchers have pointed out that the
piezoresistivity of PDCs is affected by the structure and content of free carbon; under
applied pressure, the continuous phase formed by the carbon phase in the ceramic matrix
triggers a local tunneling effect, which, in turn, causes a change in resistance [53].
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3.3. Oxidation and Corrosion Resistance

Several comprehensive and in-depth studies have focused on the oxidation behavior
of SiC, SiCO, SiCN, and SiBCN. For crystalline SiC, the oxidation behavior in the temper-
ature range of 800 to 1400 ◦C shows a parabolic trend; the activation energy remains at
~120 kJ·mol−1 and the oxidation rate is very low, close to or slightly higher than that of pure
silicon carbide or silicon nitride ceramics [38]. Reidel et al. [71] studied the relationship be-
tween the silica protective layer on the surface of SiCN ceramics and the solid-state reaction
of the matrix and found that the latter is inhibited by the very low diffusion coefficient of
nitrogen in the SiO2 protective layer. In addition, the diffusion coefficient of oxygen atoms
in the dense silica layer is also very low, with values around 10−11–10−16 cm2/s in the
temperature range of 900–1400 ◦C, which effectively inhibits the further oxidation of the
SiCN matrix [41]. The combination of the above two mechanisms leads to good oxidation
resistance of SiCN ceramics. An [47] and Wang [72] prepared SiCN-based SiAlCN ceramics
in which Al atoms were doped to form an effective blocking structure in the oxidized SiO2
lattice structure, which further reduced the oxygen diffusion coefficient in the SiO2 layer
and greatly improved the oxidation resistance.

Two reactions occur when silicon-based ceramics are exposed to high-temperature
aqueous vapors [38]: (1) silica is generated (oxidation), and (2) it continues to react with
water vapor to form volatile products (corrosion), such as Si(OH)4. Oxidation causes
thickening and mass increase in the oxide layer, but corrosion causes the oxide layer to
become thinner and reduces its mass. When oxidation and volatilization occur at the same
time, the stability of the silica layer formed by oxidation determines the corrosion rate of the
material. Wang et al. [73] compared the corrosion resistances of SiCN and SiAlCN ceramics
(Figure 5) and found that a small amount of doped aluminum reduces the activity of silica
in Al2O3–SiO2, resulting in the SiAlCN ceramics exhibiting higher corrosion resistance.
Moreover, He et al. [74] reported that Y2Si2O7 is formed when SiC is doped with Y atoms
under a high-temperature air atmosphere; the Y-containing compounds cover the whole
samples, resulting in a lower oxidation resistance compared with Al-doped SiC.
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3.4. Light Transmission and Luminescence

Owing to the presence of a network-structured absorbing layer formed by carbon
atoms in the structure of PDCs [75], their optical properties are difficult to measure and
use in applications. Thus, Soraru et al. [59,76,77] used precursors with higher amounts of
Si–H functional groups to design and control the content of free carbon in SiCO; in this
way, the elemental content of the SiCO ceramics was closer to the stoichiometric ratio, and
the prepared ceramics exhibited good transparency. The higher content of Si–H functional
groups in polymers has two effects [78]: (i) they can reduce the C content in the precursor;
(ii) the formation of new Si–C bonds enables more Si to be incorporated with C into
the inorganic structure, reducing the final free carbon content. Fluorescence spectroscopy
measurements of the SiCO ceramic show a wide luminescence band at ~500 nm, originating
from sp2 carbon clusters contained in the matrix [20]; when the content of these clusters is
low, their presence does not affect the transparency of the SiCO glass, which is evidenced
in Figure 6. Based on this phenomenon, the luminescence of amorphous PDCs can also
be improved by introducing additional elements into the precursors through the sol–
gel process. For example, Zhang et al. [59] introduced Eu ions into SiCO ceramics by
adding Eu(NO3)3 to the precursors. When the ceramic containing Eu3+ is pyrolyzed at a
higher temperature, the Eu3+→Eu2+ reduction results in a wide blue luminescence band at
~450 nm. These photoluminescent properties of PDCs make them very promising materials
for the manufacture of optical amplifier components.
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3.5. Mechanical Properties

Polymers usually shrink during pyrolysis, so it is very difficult to prepare dense bulk
ceramics through PDCs technology at the early stage [21]. Previous research on their
mechanical properties mainly focuses on fiber preparation and modification [20]. Taking
polymer-derived SiC fibers as an example, in 1976, Yajima et al. [80] reported a preparation
method for silicon carbide fibers, which showed a tensile strength and Young’s modulus
of 6.2 and 440 GPa, respectively. Then, PDCs technology was used to prepare the first
generation of commercial Nicalon fibers. Subsequently, as the temperature and strength
requirements of SiC fibers for practical applications gradually increased, improved and
optimized processes [81–83] enabled SiC fibers to reach a tensile strength and Young’s
modulus of 3 and 220 GPa [84] at 1200 ◦C, respectively. SiC fibers containing Al and Zr
have also been studied; the mechanical strength of Al-containing fibers can be maintained
at high levels even at a temperature of 1900 ◦C [85].

With the development of techniques to prepare dense bulk ceramics, the mechanical
properties of polymer-derived block materials have also started to be investigated. For
amorphous bulk ceramics, the density, modulus of elasticity, hardness, and other properties
increase with the pyrolyzing temperature [20,86]:

i. Density and modulus: as the pyrolyzing temperature increases, the Si–H and C–H
bonds in the system are broken, more Si–C network connections are formed by
eliminating the hydrogen content in the system, and the density and elastic modulus
increase accordingly [87].

ii. Hardness and fracture toughness: similar to the modulus of elasticity, the increase in
the heat treatment temperature and the formation of more Si–C network links after
dehydrogenation will increase the hardness. The fracture toughness exhibits a more
complicated trend: many studies have shown that cracks in Si–C–N ceramics extend
along regions of the material that have not yet been dehydrogenated. These regions
exhibit lower strength compared to regions that have been dehydrogenated to form
Si–C bonds [86]. As the temperature increases, the areas with lower strength gradually
decrease, resulting in a tortuous crack propagation path at a certain scale, and the
overall fracture toughness of the material increases.

For crystalline ceramics, the main way to transform from an amorphous network
into a crystalline structure is the rearrangement of chemical bonds, which causes phase
separation and eventually leads to the formation of nanocrystalline nuclei and crystal
growth. Some studies of the shape and size of nanoparticles present in the structure of
PDCs after heat treatment at higher temperatures showed that these nanoparticles remain
stable even at very high temperatures [20]. Therefore, the preparation of a fully crystallized
ceramic containing such nanostructures by the polymer-derived method can achieve the
purpose of controlling the structure and composition of nanoceramics.

Kodama et al. [88] prepared single-phase silicon carbide ceramics using polycarbosi-
lane and controlled the grain size of SiC in the range of 0.2 to 1.4 µm by varying the
sintering temperature; they found that grain size is directly related to fracture toughness.
Moreover, the fracture toughness of the nanosized SiC reaches a maximum of 5.1 MPa·m1/2

for a grain size of 0.7 µm, which is much higher than the fracture toughness of microscale
silicon carbide ceramics (~3 MPa·m1/2). In addition to single-phase ceramics, multi-phase
ceramics can also be obtained by varying the precursor components. Taking Si–C–N ceram-
ics as an example, the amorphous SiCN undergoes phase separation at 1000 ◦C, as well as
a carbothermal reaction at a higher temperature, yielding β-SiC and Si3N4 products after
complete crystallization at 1500 ◦C [20]. Several studies found that, when the temperature
is continually increased to 1800 ◦C, the powder particle size can be maintained below
200 nm [89–91]; this feature can be used to obtain a multi-phase ceramic powder (Figure 7).
In summary, the phase separation process of PDCs at high temperatures can be used to
prepare single-, bi-, or even multi-phase nanocomposites and improve the mechanical
properties of materials. Therefore, this process has great application prospects in the field
of functional and structural materials.
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4. Development of PDCs Technology in the Field of High-Entropy Ceramics

The above discussion shows that the advantages of polymer-derived ceramics tech-
nology are mainly related to the designability and fluidity of the precursors, which is
very suitable for the preparation of ceramics of any kind and their components, including
high-entropy ceramics. However, the preparation of these systems using PDCs technology
has rarely been reported.

High-entropy ceramics are defined as a new type of high-entropy materials consisting
of four or more main components in near-equiatomic ratios, with each atomic percentage
being between 5 and 35 at.% in a single-phase structure [9,92]. The complete mixing
of multiple elements at the atomic scale is a key factor in triggering the properties of
high-entropy ceramics [16–19], such as superionic conductivity [93], specific capacitive
properties [94], water splitting resistance [95], low thermal conductivity [96], and good
mechanical properties [97]. Because the PDC process starts from polymers or a mixture of
inorganic and organic components, it can be expected that the first challenge to preparing
high-entropy ceramics via PDCs technology is the preparation of high-entropy polymers
or precursors. Several studies have focused on high-entropy polymers/precursors; for
example, some researchers have studied the crystallization and mechanical behavior of
multi-quaternary ammonium mixtures and found that the ternary and quaternary blending
mixtures exhibit restricted crystallization behavior and high elongation at break; these
characteristics are not observed in the reacted binary or unreacted quaternary blends [98].
It has also been reported that simply changing the state of some ethylene valence bonds in
ternary copolymers, such as converting single to double bonds, can significantly improve
their thermoelectric properties [99]. It must be noted that, in the current literature currently
claiming to work on high-entropy polymers, the polymers used are actually mixtures [98]
(blending multiple polymers together) and copolymers [99] (specific polymers formed by
two or more polymer segments of different properties connected together). These forms of
products do not achieve either atomic-level mixing or the concept of a single-phase structure.
Hence, these polymers are strictly unable to meet the concept of high-entropy materials.

On the other hand, some studies skip the step of high-entropy polymer prepara-
tion and focus on the preparation of high-entropy ceramics by PDCs technology, in
which polymers or raw mixtures are used to prepare high-entropy ceramics as precur-
sors [100–106] and the polymer itself does not necessarily meet the concept of high
entropy. Tseng et al. [100] used polymeric steric entrapment, with which cations are
trapped in the long chain polyvinyl alcohol structure after stirring at room temperature
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and evaporating at 200 ◦C, and then a metal oxide is generated after heat treatment to
form Gd0.4Tb0.4Dy0.4Ho0.4Er0.4O3 material. Sun et al. [101,102] successfully prepared
a series of high-entropy nano-carbide powders with mixed rare-earth acetylacetonates
and metal acetylacetonate alkoxides via co-hydrolysis and a subsequent polycondensa-
tion reaction (Figure 8). Moreover, the reaction between the M-OR alkoxide (M: metal,
R: alkyl group) and a metal salt (MNO3 or MCl) was used to produce various high-
entropy ceramics, such as (Yb0.2Y0.2Lu0.2Sc0.2Gd0.2)2Si2O7 [103], 4.5SiO2–3Al2O3–1.5P2O5–
4CaO–1CaF2 [104], and 43SiO2–24.5CaO–24.5Na2O–6P2O5–2Fe2O3 [105]. Li et al. [106] and
Du et al. [107] obtained high-entropy nano-carbide powders (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C
and (Hf0.25Nb0.25Zr0.25Ti0.25)C by a hydrothermal reduction reaction at 2000–2200 ◦C
using transition metal halides (TiCl4, ZrCl4, HfCl4, NbCl5, TaCl5) and organic materials as
a source of carbon.
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These studies open a new research avenue for the fabrication of high-entropy ceramics
or ceramic–matrix composites via PDCs technology.

5. Conclusions and Outlook

Polymer-derived ceramics technology provides designability and manufacturability,
overcoming the shortcomings of traditional ceramic processes, such as high preparation
temperatures and molding and processing difficulties, and has rapidly become a research
hotspot since its development in the 1960s. The current research on polymer-derived
ceramics and the corresponding technology has extended to various areas in the field of
materials, including synthesis and modification of precursors, structural evolution during
transformation, as well as electrical, optical, chemical, and mechanical properties. These
studies confirm that the preparation of ceramics using precursors can allow tuning the
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phase structure and enable the preparation of complex-phase nanoceramics, which may
improve the brittleness and overall properties of the ceramics.

Moreover, the main advantages of PDCs technology lie in the designability and flu-
idity of its precursors, allowing structural designs at multiple scales to further meet the
application requirements in the industrial field. Therefore, this technology has very good
application prospects in the field of high-entropy ceramics, whose remarkable charac-
teristics are closely related to the position and arrangement of atoms. However, studies
exploring the use of PDCs technology in high-entropy ceramics are scarce and mainly focus
on the synthesis of high-entropy polymers, pyrolyzing processes, and phase analysis.

Overall, we expect that PDCs technology will greatly support future studies in the
field of high-entropy ceramics, expanding the scope and promoting the application of
these systems.
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