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Abstract: The effects of uniaxial tensile strain in the x direction (εx) on the mechanical properties
of the Al6MgNb compound were explored by carrying out first-principles calculations based on
the density functional theory (DFT). The calculation results showed that the Al6MgNb compound
was stable in mechanics at a uniaxial tensile strain range of 0–12%. The shear modulus G, bulk
modulus B and Young’s modulus E of the Al6MgNb compound all decreased as the uniaxial tensile
strain εx grew from 0 to 12%, exhibiting the negative sensitivities of elastic moduli to uniaxial tensile
strain. The Poisson ratio ν of the Al6MgNb compound grew with the increase in uniaxial tensile
strain εx from 0 to 7%, exhibiting the positive sensitivity of Poisson’s ratio to uniaxial tensile strain,
but it decreased as the uniaxial tensile strain εx increased from 7% to 12%, exhibiting its negative
sensitivity to the uniaxial tensile strain. The Al6MgNb compound possesses the optimal toughness
under a uniaxial tensile strain εx of 7% because of the largest value of ν. The Vickers hardness HV

of the Al6MgNb compound decreased first and then remained stable with the growth in uniaxial
tensile strain εx from 0 to 12%, exhibiting the significant negative sensitivity of the Vickers hardness
to tensile uniaxial strain at a strain range of 0–7%. The ratio of the bulk modulus B to the elastic
shear modulus G (i.e., B/G) increased first and then decreased with the growth in uniaxial tensile
strain εx from 0 to 12%. The highest ductility is achieved for the Al6MgNb compound at a strain
εx of 7% because of the largest value of B/G. The compression anisotropy percentage AB, shear
anisotropy percentage AG and the universal anisotropy index AU of the Al6MgNb compound all
increased as the uniaxial tensile strain εx increased from 0 to 12%, exhibiting the positive sensitivity
of elastic anisotropy to the uniaxial tensile strain. Our study suggested that the mechanical properties
of the Al6MgNb compound can be influenced and regulated by applying proper uniaxial tensile
strain. These findings can provide a favorable reference to the study on mechanical performance of
Al-Mg-based materials by means of strain modulation.

Keywords: Al6MgNb compound; mechanical properties; uniaxial tensile strain; first-principles
calculation

1. Introduction

Owing to their light weight, formability, good resistance to corrosion, great weldability,
affordability and excellent recyclability, aluminum-magnesium (Al-Mg)-based compounds
and alloys are extensively applied in aerospace, automobile, marine, electronics and civil
fields [1–3]. Nevertheless, Al-Mg-based materials also possess a relatively low strength,
which greatly limits their practical applications [4,5]. Therefore, it is extremely important to
enhance the mechanical performance of these kinds of materials. The addition of elements,
for example, Zr, Er, Sc, Zn, Ag and Cu, can upgrade the mechanical performance of
Al-Mg-based materials [6–9]. Researchers have shown that Niobium (Nb) also has the
potential to enhance the mechanical performance of some compounds and alloys [10–14].
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However, there is a lack of research regarding the mechanical behaviors of Al-Mg-based
materials with the addition of Nb.

In recent years, strain engineering, which represents an effective and promising strat-
egy, has been shown to regulate the functional properties of materials via modulating the
lattice strain [15,16]. Dong et al. [17] studied the characteristic deformation behavior of
AA6014-T4P aluminum alloy via cyclic loading. It was found that this material exhibited a
softening behavior in the process of tensile loading while the compressive pre-strain was
imposed, but this phenomenon did not appear while the loading sequence was inverted.
Tan et al. [18] explored the mechanical behaviors of AlSi2Sc2 under uniaxial tensile strain
by carrying out first-principles calculations on the basis of density functional theory (DFT).
The findings demonstrated that the calculated elastic moduli of AlSi2Sc2 decreased with
the growth in uniaxial tensile strain, whereas its brittleness remained unchanged when the
strain was exerted. Rasidul Islam et al. [19] studied the mechanical behaviors induced by
the strain of the CsGeBr3 compound via first-principles calculations on the basis of DFT.
The results indicated that the elastic moduli (including the shear modulus, bulk modulus
and Young’s modulus) went up with the growth in compressive strain but went down
with the growth in tensile strain. The brittleness of CsGeBr3 went up with the growth in
compressive strain, whereas it exhibited noticeable ductility when the tensile strain was
greater than 2%. Sun et al. [20] studied the influence of pre-strain at ambient and cryogenic
temperatures on the microstructure evolution and sulfide stress corrosion cracking (SSCC)
of 304 stainless steel. It was found that the 304 stainless steel exhibited exceedingly strong
SSCC susceptibility, and the SSCC susceptibility grew with the increasing pre-strain as a
consequence of the speedup of both the anodic dissolution and hydrogen embrittlement.
However, as far as we know, the existing studies rarely involve research into the mechanical
behaviors of Al-Mg-based compounds with Nb addition under the applied strain.

The purpose of this study is to explore the effects of uniaxial tensile strain on the
mechanical properties of the Al6MgNb compound via first-principle calculations based on
the DFT. We hope that our findings will provide some useful information for the application
of strain engineering in mechanical performance modulation of Al-Mg-based materials.

2. Methodology

In the present work, we executed the first principles on the basis of DFT to explore
the mechanical stability, elastic properties, hardness, ductility and elastic anisotropy of the
Al6MgNb compound under the various uniaxial tensile strains. The Cambridge Sequence
Total Energy Packet (CASTEP) code was utilized, in which the ultrasoft pseudopotential
was employed for the interaction between valence electrons and ion core [21]. The gener-
alized gradient approximation in the Perdew–Burke–Ernzerhof scheme (GGA-PBE) was
conducted to represent the exchange-correlation energy [22]. During the geometry optimiza-
tion, the total energy convergence was set as 5 × 10−6 eV/atom, the maximum force was
set as 0.01 eV/Å, the maximum stress was set as 0.02 GPa and the maximum displacement
was set as 5 × 10−4 Å. To ensure high calculation precision, the plane-wave cutoff energy
was set to 600 eV, and the Brillouin zone sampling was performed with a 3 × 6 × 6 k-point
mesh. The optimized structure of the Al6MgNb supercell is shown in Figure 1. The super-
cell includes eight atoms in total (including one Nb atom, six Al atoms and one Mg atom).
Green, gray and orange spheres stand for Nb, Al and Mg atoms, respectively.
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3. Results and Discussion
3.1. Mechanical Stability

The elastic stiffness constants Cij are the fundamental parameters to characterize the
mechanical behaviors of the solid material in the practical engineering, which not only
provide essential information about how a solid material reacts to an external force, but
also give the relation between mechanical and dynamical behaviors [23]. There were nine
independent effective parameters (C11, C12, C13, C22, C23, C33, C44, C55 and C66) in the elastic
stiffness matrix of the Al6MgNb compound due to the orthorhombic symmetry [24]. Table 1
shows the calculated elastic stiffness constants Cij of the Al6MgNb compound under various
uniaxial tensile strains in the x direction (εx) from first-principles calculations. In general,
the stability in the mechanics of a solid material can be assessed using Born–Huang’s
dynamical theory of crystal lattices [25,26]. For an orthorhombic crystal, the mechanical
stability requires the elastic stiffness constants Cij to meet the conditions below [27]:

Cii > 0
C22+C11 − 2C12 > 0
C33+C11 − 2C13 > 0
C33+C22 − 2C23 > 0

C33 + C22 + C11 + 2(C23 + C13 + C12) > 0

(1)

Table 1. Calculated elastic stiffness constants Cij (in GPa) of the Al6MgNb compound under various
uniaxial tensile strains in the x direction (εx).

εx (%) C11 (GPa) C12 (GPa) C13 (GPa) C22 (GPa) C23 (GPa) C33 (GPa) C44 (GPa) C55 (GPa) C66 (GPa)

0 177.30 49.321 49.251 165.257 65.73 165.162 64.91 30.5332 30.5334
1% 162.48 41.6166 41.6164 154.9274 69.16 154.9228 64.49 23.9430 23.9367
2% 150.01 39.14 39.13 145.04 74.79 145.04 62.65 20.7198 20.7206
3% 136.86 37.15 37.15 135.66 79.08 135.67 60.15 17.3070 17.3071
4% 124.25 35.10 35.11 128.24 81.94 128.21 58.02 14.1912 14.1887
5% 112.70 32.72 32.77 122.86 83.35 122.86 56.99 11.6577 11.6580
6% 100.41 29.65 29.65 119.35 83.52 119.34 57.65 9.6618 9.6604
7% 92.88 26.34 26.35 117.63 82.77 117.65 60.12 8.1493 8.1474
8% 83.76 23.41 23.40 117.24 81.16 117.27 63.78 6.8150 6.8164
9% 70.03 21.31 21.33 117.09 78.64 117.13 67.36 5.4851 5.4862

10% 49.76 20.89 20.91 116.25 75.28 116.17 69.62 4.1904 4.1915
11% 25.86 21.97 22.00 114.58 71.32 114.61 70.28 3.2110 3.2132
12% 5.63 22.52 22.53 113.65 67.71 113.66 69.86 2.9094 2.9037
13% −4.33 20.12 20.18 113.97 65.18 113.87 68.94 3.6312 3.6562

Through the analysis of the elastic constants Cij of the Al6MgNb compound shown
in Table 1, it was found that the Cij satisfied the mechanical stability criteria at a uniaxial
tensile strain εx range of 0–12%, but they could not satisfy the above criteria when the strain
εx was more than 12%. Therefore, the Al6MgNb compound was mechanically stable at the
uniaxial tensile strain range of 0–12%. This study only focuses on the mechanical properties
of the Al6MgNb compound at the uniaxial tensile strain range of 0–12%.

3.2. Elastic Properties of Polycrystalline

In general, the elastic properties of polycrystalline have more important realistic mean-
ing than that of monocrystal [28]. The elastic properties of polycrystalline are represented
via the shear modulus (denoted by the G), bulk modulus (denoted by the B) Young’s
modulus (denoted by the E) and Poisson’s ratio (denoted by the ν).

The theoretical elastic moduli of polycrystalline can be obtained via the independent
elastic stiffness constants Cij based on first-principles calculations, and the lower and upper
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bounds are generally signified via the Reuss (R) and Voigt (V) methods, respectively. The
shear modulus G and bulk modulus B via the Reuss method can be calculated as below [29]:

GR =
15

3(S66 + S55 + S44) + 4(S33 + S22 + S11)− 4(S23 + S13 + S12)
(2)

BR =
1

S33 + S22 + S11 + 2(S23 + S13 + S12)
(3)

where Sij are the elastic compliance coefficients.
The shear modulus G and bulk modulus B via the Voigt method can be expressed

as below [29]:

GV =
C66 + C55 + C44

5
+

C33 + C22 + C11 − C23 − C13 − C12

15
(4)

BV =
C33 + C22 + C11 + 2(C23 + C13 + C12)

9
(5)

The Voigt–Reuss–Hill (VRH) average, which is the arithmetic mean of the Reuss and
Voigt bounds, is regarded as the optimum estimation of the theoretical elastic modulus for
the polycrystalline, as follows [29]:

G =
GR + GV

2
(6)

B =
BR + BV

2
(7)

Young’s modulus E and Poisson’s ratio ν of the polycrystalline can be determined
using the shear modulus G and bulk modulus B, and the calculation formulas are given
as below [29]:

E =
9GB

G + 3B
(8)

ν =
3B − 2G
2G + 6B

(9)

Table 2 and Figure 2 show the calculated shear modulus G, bulk modulus B, Young’s
modulus E and Poisson’s ratios ν of the Al6MgNb compound under various uniaxial tensile
strains εx.

Table 2. Calculated elastic moduli (G, B and E) and Poisson’s ratios ν of the Al6MgNb compound
under various uniaxial tensile strains in the x direction (εx).

εx (%) G (GPa) B (GPa) E (GPa) ν

0 45.575 92.700 117.473 0.289
1% 40.000 86.235 103.931 0.299
2% 35.840 82.625 93.938 0.311
3% 31.450 78.895 83.284 0.324
4% 27.585 75.210 73.740 0.337
5% 24.615 71.535 66.247 0.346
6% 22.500 67.350 60.736 0.350
7% 21.360 63.955 57.661 0.350
8% 20.510 60.405 55.274 0.347
9% 19.365 55.925 52.083 0.345
10% 17.615 49.550 47.246 0.341
11% 15.590 39.805 41.369 0.327
12% 11.620 25.500 30.263 0.302
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Figure 2. Variation in the elastic moduli (B, G and E) and Poisson’s ratio ν of the Al6MgNb compound
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The shear modulus G reflects the ability of a material to resist the shear deformation.
The larger G implies the larger shear resistance of a material. The graph in Figure 2a shows
the calculated shear modulus G of the Al6MgNb compound under various uniaxial tensile
strains εx. It is clear that with the growth in strain εx from 0 to 12%, the shear modulus
G decreased from 45.575 GPa to 11.620 GPa. The shear modulus G dropped by 74.5%, which
suggested that the shear resistance was considerably affected by the uniaxial tensile strain.
The Al6MgNb compound possesses the minimum shear resistance at the strain εx of 12%
because of the minimum value of G. The bulk modulus B denotes the resistance of the
substance to volumetric compression from applied pressure. The graph in Figure 2b shows
the calculated bulk modulus B for the Al6MgNb compound under various uniaxial tensile
strains εx. It is clear that with the growth in strain εx from 0 to 12%, the bulk modulus B
decreased from 92.7 GPa to 25.5 GPa. The bulk modulus B dropped by 72.5%, which
exhibited the significant negative sensitivity of bulk modulus B to the uniaxial tensile strain.
The Al6MgNb compound has the highest incompressibility at the relaxed state because
of the maximum value of B, but it is the most compressible at the strain εx of 12% because
of the minimum value of B. Young’s modulus E characterizes the stiffness of the solid
materials. The larger E means the higher stiffness of a solid material. The graph in Figure 2c
presents the calculated Young’s modulus E of the Al6MgNb compound under various



Crystals 2023, 13, 1458 6 of 11

uniaxial tensile strains εx. It is clear that Young’s modulus E decreased with the increase in
strain εx. When the Al6MgNb compound was at the unstrained state, Young’s modulus E
was 117.473 GPa. While the strain εx was up to 12%, Young’s modulus E decreased to
30.263 GPa. Young’s modulus E dropped by 74.2%, exhibiting the significant negative
sensitivity of Young’s modulus E to the uniaxial tensile strain. The Al6MgNb compound
has the maximum stiffness at the relaxed state because of the maximum value of E, but it
represents the minimum stiffness at the strain εx of 12% because of the minimum value
of E. The change tendencies of elastic moduli (G, B and E) for the Al6MgNb compound
according to the uniaxial tensile strain are analogous to those of AlSi2Sc2 [18]. The graph
in Figure 2d shows the calculated Poisson’s ratio ν for the Al6MgNb compound at various
uniaxial tensile strains εx. It is clear that with the growth in uniaxial tensile strain εx
from 0 to 7%, Poisson’s ratio ν of the Al6MgNb compound increased from 0.289 to the
maximum value of 0.34974. However, with the increase in strain εx from 7 to 12%, Poisson’s
ratio ν decreased from the maximum of 0.34974 to 0.302. The Al6MgNb compound obtained
the maximum ν value at the strain εx of 7%, suggesting that the Al6MgNb compound
possesses the optimal toughness at the strain εx of 7%. In general, the Poisson ratio ranged
from −1 to 0.5, meaning that the material is relatively stable under shear deformation.
From the graph in Figure 2d, it is clear that the Poisson ratio of the Al6MgNb compound
was between 0.289 and 0.350, which is within the range of −1 to 0.5, implying that the
Al6MgNb compound is a stable linear elastic solid at a range of uniaxial tensile strain εx
between 0 and 12%.

By comparing Figure 2a–d, we can see that as the uniaxial tensile strain εx increased
from 0 to 12%, the elastic moduli (G, B and E) of the Al6MgNb compound declined
monotonically, but the Poisson ratio ν increased first and then decreased.

3.3. Hardness and Ductility

As a key mechanical parameter of a solid material, hardness describes its ability to
withstand surface invasion from external objects, and it has an important influence on the
practical application of functional materials. Considering that the shear modulus G and
bulk modulus B can be determined by means of the first-principles calculations, a relatively
simple semi-empirical model established by Chen et al. can be used to evaluate the Vickers
hardness HV of a solid material, and its formula is as follows [30]:

HV = 1.887k1.717G0.591, k = G/B (10)

This semi-empirical model can correctly predict the hardness of a variety of polycrys-
talline materials and bulk metallic glasses.

The inherent ductility or brittleness of the solid material correlates with the ratio of the
bulk modulus B to the shear modulus G (i.e., B/G). In the event that the B/G is greater than
1.75, the material exhibits ductility in nature, but if the B/G is less than 1.75, it characterizes
the brittleness feature [31,32].

Table 3 and Figure 3 show the calculated Vickers hardness HV and the ratio B/G of the
Al6MgNb compound under various uniaxial tensile strains in the x direction (εx).
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Table 3. Calculated Vickers hardness HV and the ratio B/G of the Al6MgNb compound under various
uniaxial tensile strains in the x direction (εx).

εx (%) HV (GPa) B/G

0 7.852 2.034
1% 6.791 2.156
2% 5.883 2.305
3% 4.933 2.509
4% 4.141 2.726
5% 3.593 2.906
6% 3.291 2.993
7% 3.190 2.994
8% 3.176 2.945
9% 3.141 2.888
10% 3.063 2.813
11% 3.192 2.553
12% 3.203 2.194
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From the graph in Figure 3a, with the growth in uniaxial tensile strain εx from 0 to 7%,
the Vickers hardness HV of the Al6MgNb compound decreased rapidly from 7.852 GPa to
3.190 GPa. The Vickers hardness HV was down by 59.4%, exhibiting the significant negative
sensitivity of the Vickers hardness HV to the tensile uniaxial strain. However, the Vickers
hardness HV changed little with the growth in uniaxial tensile strain εx from 7% to 12%.

From the graph in Figure 3b, with the growth in uniaxial tensile strain εx from 0 to 12%,
the ratio B/G of the Al6MgNb compound increased from 2.034 to the maximum of 2.994,
and then decreased to 2.194. The ratio B/G corresponding to the green dashed-line in
Figure 3b is 1.75. Obviously, in the strain εx between 0 and 12%, the ratio B/G was greater
than 1.75, which implied that the Al6MgNb compound exhibited ductility. The Al6MgNb
compound obtained the highest ductility at the strain εx of 7% because of the maximum
B/G value of 2.994. Therefore, an improved ductility can be achieved for the Al6MgNb
compound by applying appropriate uniaxial tensile strain.

3.4. Elastic Anisotropy

The elastic anisotropy of a solid material can be depicted by means of the elastic
anisotropy indexes. The elastic anisotropy indexes include compression anisotropy per-
centage (denoted by the AB), shear anisotropy percentage (denoted by the AG) and the
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universal anisotropy index AU (denoted by the AU), and their calculation formulas are
as below [28]: 

AB = BV−BR
BV+BR

AG = GV−GR
GV+GR

AU = 5 GV
GR

+ BV
BR

− 6
(11)

where BV and GV are determined via Voigt approximation, and BR and GR are determined
via Reuss approximation.

When the elastic anisotropy indexes have a relationship of AB = AG = AU = 0, the
material has elastic isotropy. Otherwise, it exhibits elastic anisotropy, and the greater the
difference between the elastic anisotropy indexes and the 0 is, the higher the degree of
elastic anisotropy becomes.

Table 4 and Figure 4 present the calculated elastic anisotropy indexes (AB, AG and AU)
of the Al6MgNb compound under various uniaxial tensile strains εx.

Table 4. Calculated elastic anisotropy indexes (AB, AG and AU) of the Al6MgNb compound under
various uniaxial tensile strains in the x direction (εx).

εx (%) AB AG AU

0% 0 5.672% 0.601
1% 0.133% 9.500% 1.052
2% 0.345% 11.468% 1.302
3% 0.691 14.277% 1.679
4% 1.197% 17.890% 2.203
5% 1.908% 21.999% 2.859
6% 3.073% 26.578% 3.683
7% 4.073% 31.695% 4.725
8% 5.620% 37.348% 6.080
9% 8.646% 43.868% 8.004
10% 15.782% 51.064% 10.810
11% 35.561% 58.178% 15.015
12% 99.765% 99.139% 2000.000

From the graph in Figure 4a, as the uniaxial tensile strain εx increased from 0 to 12%,
the compression anisotropy percentage AB increased from 0 to 99.765%, and its rising
slope increased suddenly when the strain εx was more than 9%. The Al6MgNb compound
represented the highest degree of compression anisotropy at the uniaxial tensile strain
εx of 12% because of the largest AB value, which was close to 1. The change in shear
anisotropy percentage AG according to the uniaxial tensile strain εx has an analogous trend
to that of AB, as shown in the graph in Figure 4b. With the growth in uniaxial tensile strain εx
from 0 to 12%, AG increased from 5.672% to 99.139%. The Al6MgNb compound represented
the highest degree of shear anisotropy at the uniaxial tensile strain εx of 12% because of the
largest AG value, which was close to 1. The universal anisotropy index AU characterizes
anisotropy more exactly because not only the shear modulus G but also the bulk modulus
B is considered in AU. As illustrated in the graph in Figure 4c, the variation in universal
anisotropy index AU with uniaxial tensile strain εx also has an analogous trend to that of AB.
When the strain εx was 12%, AU reached 2000, reflecting the highest elastic anisotropy.
Therefore, the elastic anisotropy indexes (AB, AG and AU) of the Al6MgNb compound went
up with the growth in strain εx, displaying their positive sensitivities to the uniaxial tensile
strain. The change tendencies of elastic anisotropy indexes for the Al6MgNb compound
according to uniaxial tensile strain are analogous to those of MoSi2 [23]. The degree of
elastic anisotropy of the Al6MgNb compound was enhanced by the uniaxial tensile strain,
and the Al6MgNb compound exhibited stronger elastic anisotropy under higher uniaxial
tensile strain.
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4. Conclusions

On the whole, first-principles calculations were utilized to explore the mechanical
properties of the Al6MgNb compound under the uniaxial tensile strain εx. The effects of
uniaxial tensile strain on the mechanical stability, elastic properties, hardness, ductility and
elastic anisotropy for the Al6MgNb compound were analyzed. The following conclusions
can be reached:

1. The Al6MgNb compound was stable in mechanics at a uniaxial tensile strain range of
0–12%, but it was mechanically unstable while the strain εx was greater than 12%.

2. The shear modulus G, bulk modulus B and Young’s modulus E of the Al6MgNb
compound all went down with the growth in strain εx, exhibiting the negative sen-
sitivities of its moduli to the uniaxial tensile strain. Thereby, the shear resistance,
incompressibility and stiffness of the Al6MgNb compound all went down with the
growth in uniaxial tensile strain.

3. As the uniaxial tensile strain εx grew from 0 to 7%, the Poisson ratio ν of the Al6MgNb
compound went up, showing the positive sensitivity of Poisson’s ratio to uniaxial
tensile strain, but it went down with the growth in strain εx from 7% to 12%, showing
the negative sensitivity of Poisson’s ratio to the uniaxial tensile strain. The Al6MgNb
compound possesses the optimal toughness at the uniaxial tensile strain εx of 7%
because of the largest Poisson’s ratio ν value.

4. The Vickers hardness HV of the Al6MgNb compound went down rapidly as the
uniaxial tensile strain εx grew from 0 to 7%, but it changed little as the uniaxial tensile
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strain εx grew from 7% to 12%. Therefore, the hardness of the Al6MgNb compound
showed negative sensitivity to the uniaxial tensile strain at a strain range of 0–7%.

5. As the uniaxial tensile strain εx grew from 0 to 7%, the ratio of the bulk modulus B to
the elastic shear modulus G (i.e., B/G) of the Al6MgNb compound went up, showing
positive sensitivity to uniaxial tensile strain, but it decreased with the growth in strain
εx from 7% to 12%, exhibiting its negative sensitivity to the uniaxial tensile strain. The
highest ductility is achieved for the Al6MgNb compound at the uniaxial tensile strain
εx of 7% because of the maximum B/G value.

6. The compression anisotropy percentage AB, shear anisotropy percentage AG and the
universal anisotropy index AU of the Al6MgNb compound all increased with the
increasing uniaxial tensile strain from 0 to 12%, showing their positive sensitivities
to the uniaxial tensile strain. Therefore, the elastic anisotropy was enhanced by
the uniaxial tensile strain, and the Al6MgNb compound exhibited stronger elastic
anisotropy at higher uniaxial tensile strain.
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