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Abstract: We report the electrical properties of Al0.3Ga0.7N/GaN heterojunction field effect transistor
(HFET) structures with a Ga2O3 passivation layer grown by metal–organic chemical vapor deposition
(MOCVD). In this study, three different thicknesses of β-Ga2O3 dielectric layers were grown on
Al0.3Ga0.7N/GaN structures leading to metal-oxide-semiconductor-HFET or MOSHFET structures.
X-ray diffraction (XRD) showed the (201) orientation peaks of β-Ga2O3 in the device structure. The
van der Pauw and Hall measurements yield the electron density of ~ 4 × 1018 cm−3 and mobility of
~770 cm2V−1s−1 in the 2-dimensional electron gas (2DEG) channel at room temperature. Capacitance–
voltage (C-V) measurement for the on-state 2DEG density for the MOSHFET structure was found
to be of the order of ~1.5 × 1013 cm−2. The thickness of the Ga2O3 layer was inversely related
to the threshold voltage and the on-state capacitance. The interface charge density between the
oxide and Al0.3Ga0.7N barrier layer was found to be of the order of ~1012 cm2eV−1. A significant
reduction in leakage current from ~10−4 A/cm2 for HFET to ~10−6 A/cm2 for MOSHFET was
observed well beyond pinch-off in the off-stage at -20 V applied gate voltage. The annealing at 900 ◦C
of the MOSHFET structures revealed that the Ga2O3 layer was thermally stable at high temperatures
resulting in insignificant threshold voltage shifts for annealed samples with respect to as-deposited
(unannealed) structures. Our results show that the MOCVD-gown Ga2O3 dielectric layers can be a
strong candidate for stable high-power devices.

Keywords: GaN; MOSHFET; Ga2O3; MOCVD; gate dielectric

1. Introduction

GaN-based heterojunction field effect transistors (HFETs) have excellent properties
such as high critical breakdown field, high current, and superior thermal/chemical stability,
which are coveted for high power, both RF and high-frequency switching applications
under harsh environments [1–4]. The high-frequency performance of HFETs is limited
by a series of effects associated with charge leakage, trapping/de-trapping, and conduc-
tion characteristics at different locations of the devices [5]. One of the most significant
performance-limiting phenomena is the injection of electrons from the gate electrode to the
surface region of the semiconductor on the drain side of the gate electrode, which results
in reliability issues as well as limitations on the input drive in power applications [6,7].
For high drain and gate bias, the magnitude of the electric field under the gate region
can cause tunneling/leakage of electrons from the gate metal to the semiconductor. Thus,
the tunneling/gate leakage effect becomes critical for radio frequency (RF) applications
because the electric field oscillates with the total terminal (dc+RF) voltage [8]. During
the high voltage portion of the RF cycle, a pulse of electrons will tunnel from the gate by
acquiring sufficient energy and can cause gate breakdown [9,10]. The electron transport
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on the surface is sluggish due to high effective mass, and dispersion is introduced due to
the charging/discharging time constant [11]. The electrons escaping from the gate metal
gather on the surface, creating a “virtual gate” effect that functions as an effective increase
in gate length on the drain side can result in leakage current [7]. As a result, the conducting
channel depletes of free electrons, and the device dc current and RF power decreases [7]. To
overcome this problem, a dielectric material, often an oxide layer, is introduced between the
metal gate and the semiconductor, creating metal-oxide-semiconductor-HFET (MOSHET)
for high-frequency applications. Thus, the gate tunneling is reduced or eliminated with
improved surface charge modulation by an insulating oxide layer under the gate [7,12].

The incorporation of the oxide layer improves the GaN-based HFET performance by
minimizing the gate leakage current, maximizing the output power (as the input can be
driven harder), improving the breakdown voltage, etc [13]. The interface between the semi-
conductor and oxide layer, however, plays an important role in transistor performance [14].
Chemically and thermally stable oxides with low density of interface states between the
insulator (oxide) and semiconductor are required [15]. Several groups have reported the use
of different dielectrics, such as aluminum oxide (Al2O3) [16], hafnium dioxide (HfO2) [17],
zirconium dioxide (ZrO2) [18], silicon dioxide (SiO2) [19], silicon nitride (Si3N4), and hexag-
onal boron nitride (h-BN) [20], fabricated by several deposition methods, including atomic
layer deposition (ALD) [14], pulsed laser deposition (PLD) [21], and plasma enhanced
chemical vapor deposition (PECVD) [21]. SiO2/hBN has also been reported to be used as a
substrate material for field effect transistors [22].

Ga2O3 is a promising material with potential dielectric applications for high-power
devices because of its wide bandgap (4.4–5.3 eV) and high breakdown voltage (8 MVcm−1)
[23,24]. It has a moderate dielectric constant (k = 10.6), which is higher than those of
traditional dielectrics such as SiO2 (k = 3.9), and Si3N4 (k = 7.4) [16]. This dielectric-constant
value allows gate scaling and a smaller voltage for the same charge. The feasibility of
using Ga2O3 as a gate dielectric was demonstrated by employing ALD with compounds
such as trimethylgallium, and triethylgallium as a Ga precursor and ozone or oxygen (O2)
plasma as an oxygen precursor [23,25,26]. The Ga2O3 layers grown by ALD for MOSHFETs
are amorphous and prone to change their properties, especially threshold voltage, with
annealing due to crystallization [27]. The use of crystalline metal–organic chemical vapor
deposition (MOCVD) grown β-Ga2O3 as a gate dielectric has so far not been reported. A
comprehensive study of the electrical properties is necessary to determine the feasibility of
MOCVD Ga2O3 as a gate dielectric.

In this work, we study the electrical properties of Al0.3Ga0.7N/GaN HFET with
MOCVD-grown β-Ga2O3 as a passivation/dielectric layer. β-Ga2O3 layers of three differ-
ent thicknesses of 10 nm, 20 nm, and 30 nm were grown on top of Al0.3Ga0.7N/GaN creating
MOSHFET structures. Furthermore, the variations in electrical properties, particularly the
shift in threshold voltage, are studied for annealed and as-deposited MOSHFET structures
with MOCVD-grown β-Ga2O3.

2. Experimental Methods

The epilayers used for devices studied in this paper were deposited in a vertical cold
wall metal–organic chemical vapor deposition (MOCVD) system using nitrogen (N2) as a
carrier gas on a 2-inch diameter c-axis sapphire substrate with 0.2◦ offcut. Trimethylalu-
minum (TMAl), triethylgallium (TEG), ammonia (NH3), and ultra-high purity oxygen were
used as aluminum (Al), gallium (Ga), N2, and oxygen (O2) precursors, respectively. First,
a thin 150 nm aluminum nitride (AlN) buffer layer was grown on the sapphire substrate
using the process described in [28,29]. Then, on top of the AlN layer, a 500 nm thick gallium
nitride (GaN) channel layer with a V/III ratio of 8000 at a temperature of 960 ◦C, a 2 nm
AlN spacer, and a 25 nm thick barrier aluminum gallium nitride (Al0.3Ga0.7N) layers with
V/III ratio of 5000 at a temperature of 1020 ◦C were grown at 100 Torr chamber pressure,
creating heterojunction field effect transistor (HFET) structure [30–32]. The van der Pauw
and Hall effect measurements show that the GaN layers used for our device structures
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were highly resistive. Figure 1 shows the schematic of the FET epilayer structures used in
this paper where, Figure 1a exhibits the schematic of the HFET structure. For this study,
the β-Ga2O3 layers were grown on top of the HFET structure using the MOCVD process
at 700 ◦C, 50 Torr chamber pressure, and a VI/III ratio of ~900. The details of the Ga2O3
growth can be found elsewhere [33]. This creates a MOSHFET structure with the dielectric
layer thickness varying from 10 nm to 30 nm, as shown in Figure 1b. The MOSHFET
structure with 30 nm oxide thickness was annealed to gauge its electrical and thermal
stability. Annealing was performed at 900 ◦C for 30 min in a 50/50 O2/N2 (nitrogen was
used as carrier gas) environment to avoid desorption from the Ga2O3 layer.

Crystals 2022, 12, x FOR PEER REVIEW 3 of 12 
 

 

gallium nitride (GaN) channel layer with a V/III ratio of 8000 at a temperature of 960 °C, 

a 2 nm AlN spacer, and a 25 nm thick barrier aluminum gallium nitride (Al0.3Ga0.7N) layers 

with V/III ratio of 5000 at a temperature of 1020 °C were grown at 100 Torr chamber pres-

sure, creating heterojunction field effect transistor (HFET) structure [30–32]. The van der 

Pauw and Hall effect measurements show that the GaN layers used for our device struc-

tures were highly resistive. Figure 1 shows the schematic of the FET epilayer structures 

used in this paper where, Figure 1a exhibits the schematic of the HFET structure. For this 

study, the -Ga2O3 layers were grown on top of the HFET structure using the MOCVD 

process at 700 °C, 50 Torr chamber pressure, and a VI/III ratio of ~900. The details of the 

Ga2O3 growth can be found elsewhere [33]. This creates a MOSHFET structure with the 

dielectric layer thickness varying from 10 nm to 30 nm, as shown in Figure 1b. The 

MOSHFET structure with 30 nm oxide thickness was annealed to gauge its electrical and 

thermal stability. Annealing was performed at 900 °C for 30 min in a 50/50 O2/N2 (nitrogen 

was used as carrier gas) environment to avoid desorption from the Ga2O3 layer. 

 
Figure 1. The epilayer structure of the (a) Al0.3Ga0.7N/GaN HFET, (b) Ga2O3 MOSHFET. 

We characterized the structural quality and electrical properties of all the device 

structures obtained in this work. A Rigaku Miniflex II Desktop X-ray diffractometer with 

Cu-Kα1 x-ray source (λ = 1.5406 Å ) operated at 30 mA current and 15 kV voltage was used 

to evaluate the structural properties of the epilayers. The capacitance–voltage (C-V) meas-

urements were performed using a mercury probe controller model 802B connected with 

a HP 4284A Precision LCR Meter capable of measuring the impedance as a function of 

frequency. Gate leakage current was measured in the same mercury probe set up with 

Keysight B2910 Precision Source/Measure Units (SMU). The gate diameter of the mercury 

probe was 797 μm with 0.1 pF stray capacitance. The van der Pauw/Hall effect measure-

ments were performed on the samples using the MMR Technologies Inc. H-50 controller 

and MPS-50 programmable power supply with indium contacts. 

3. Results and Discussions 

Figure 2 shows the X-ray diffraction (XRD) 2θ scan of the MOSHFET structure (be-

fore and after annealing). The peaks at 18.8° and 38.2° are related to the (201) and (402) 

Ga2O3 of the β phase [34]. The peak at 34.5° and the adjacent higher angle shoulder are 

consistent with the (002) and (002) reflection from the GaN channel and AlGaN barrier 

layers, respectively [35]. Note that the GaN channel layer was grown on 0.15 µm AlN. The 

peak at 36.1° is due to the (002) AlN reflection. The peaks at 20.4° and 41.6° correspond to 

the (003) and (006) sapphire reflections [34]. The most common method of oxide dielectric 

deposition is ALD, which is mostly used for depositing amorphous materials [36]. The 

Figure 1. The epilayer structure of the (a) Al0.3Ga0.7N/GaN HFET, (b) Ga2O3 MOSHFET.

We characterized the structural quality and electrical properties of all the device
structures obtained in this work. A Rigaku Miniflex II Desktop X-ray diffractometer with
Cu-Kα1 x-ray source (λ = 1.5406 Å) operated at 30 mA current and 15 kV voltage was
used to evaluate the structural properties of the epilayers. The capacitance–voltage (C-V)
measurements were performed using a mercury probe controller model 802B connected
with a HP 4284A Precision LCR Meter capable of measuring the impedance as a func-
tion of frequency. Gate leakage current was measured in the same mercury probe set
up with Keysight B2910 Precision Source/Measure Units (SMU). The gate diameter of
the mercury probe was 797 µm with 0.1 pF stray capacitance. The van der Pauw/Hall
effect measurements were performed on the samples using the MMR Technologies Inc.
H-50 controller and MPS-50 programmable power supply with indium contacts.

3. Results and Discussions

Figure 2 shows the X-ray diffraction (XRD) 2θ scan of the MOSHFET structure
(before and after annealing). The peaks at 18.8◦ and 38.2◦ are related to the (201) and
(402) Ga2O3 of the β phase [34]. The peak at 34.5◦ and the adjacent higher angle shoulder
are consistent with the (002) and (002) reflection from the GaN channel and AlGaN barrier
layers, respectively [35]. Note that the GaN channel layer was grown on 0.15 µm AlN. The
peak at 36.1◦ is due to the (002) AlN reflection. The peaks at 20.4◦ and 41.6◦ correspond to
the (003) and (006) sapphire reflections [34]. The most common method of oxide dielectric
deposition is ALD, which is mostly used for depositing amorphous materials [36]. The
problem with amorphous layers is that, during the rapid thermal annealing (RTA) step
required to form ohmic contacts to MOSHFETs, there occurs a phase transformation from
amorphous to crystalline structure [27]. This transformation results in the formation of a
microcrystalline structure with multiple grain boundaries, which creates leakage paths,
rendering it unsuitable for device applications [27]. The process used for the MOCVD
oxide deposition favors the growth of single-crystal β-Ga2O3 dielectric layers, as confirmed
by the XRD data. Therefore, it is expected that, as Ga2O3 is already in the crystalline
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form, the thermal treatment will have a minimal impact on its electrical properties, as we
demonstrate by the annealing experiments in the later description.
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Figure 2. XRD 2θ scan of the MOSHFET structure (before and after annealing) confirming
the presence of the peaks consistent with crystalline Ga2O3 (β phase), GaN, AlGaN, AlN, and
sapphire substrate.

The origin of the highly conductive quantum confined two-dimensional electron
gas (2DEG) at the AlGaN/GaN interface is due to the lack of inversion symmetry along
the [0001] axis of GaN coupled with AlN being relatively more electronegative [2]. The
difference between spontaneous and piezoelectric polarization and band offset at the
interface introduces a fixed polarization-induced sheet of carrier charges, indicated by
the shift of Fermi level in the conduction band. Schrödinger and Poisson’s equation-
based charge distribution and band diagram can be calculated using different available
tools [37]. However, a simpler approach using the Langer and Heinrich rule helps to
estimate different parameters and understand the band structure at the heterojunction
interfaces [38,39]. Figure 3 shows the schematical band diagram for the Ga2O3 MOSHFET.
The bandgaps for GaN, Al0.3Ga0.7N, and Ga2O3 are 3.4 eV, 4.03 eV (using Vegard’s law),
and 4.9 eV (β phase), respectively [40]. The position of the Fermi level in GaN near the
channel-barrier interface is in the conduction band; where ns is the sheet carrier density,
Cb is the Al0.3Ga0.7N barrier layer capacitance, Cox is the Ga2O3 layer capacitance. We can
express the total gate capacitance (CG) using the series capacitance formula as below:

1
CG

=
1

Cb
+

1
Cox

(1)
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The capacitance–voltage (C-V) measurements of the MOSHFET structure were per-
formed using a mercury probe gate contact to extract pertinent electrical parameters of the
device structures, such as threshold voltage (Vth), zero gate voltage capacitance, and 2DEG
electron density. The total gate capacitance is given by Equation (1), i.e., the addition of the
oxide dielectric layer capacitance in series with the barrier layer capacitance. The benefit
of an oxide dielectric is to increase the gate breakdown voltage and/or reduce the gate
leakage current by suppressing the surface states, sometimes superseded by the impact of
different device electrical parameters such as threshold voltage and gate leakage current.
The threshold voltage of the MOSHFET structure is given by the Equation [41]:

Vth,MOSHFET = Vth,HFET

(
1 +

diεs,b

εids,b

)
(2)

where Vth,MOSHFET and Vth,HFET are the threshold voltage of the MOSHFET and HFET
(that without the oxide layer- otherwise identical), respectively. di, ds,b, εi and εs,b are the
thicknesses and dielectric constants of the insulator/oxide (indexed by i) and semicon-
ductor barrier (indexed by s,b) layers, respectively. From equation (2), it is clear that if di
increases, Vth,MOSHFET increases, whereas Vth,MOSHFET decreases with the increase in εi.
Thus, a higher dielectric constant and lower dielectric thickness are desirable for minimum
threshold voltage shifts.

Figure 4 shows the capacitance voltage characteteristics, threshold voltage and zero
capacitance dispersion of our samples. Figure 4a shows the C-V data for HFET and MOSH-
FET structures with oxide thicknesses of 10 nm, 20 nm, and 30 nm. The addition of oxide
on the HFET barrier adds capacitance in series with the existing barrier layer capacitance,
which would lower the overall gate capacitance. The relative dielectric constants for the
AlGaN barrier layer (9.2) and that for the Ga2O3 (10.6) are very close [42], and the AlGaN
barrier layers is undoped. Due to these reasons, we did not observe any change in the C-V
curve shape near the zero-gate voltage position when increasing the negative gate voltage
before depleting the channel. From equation (2), we observe that as the thickness of the
oxide layer increases, the Vth should increase. The C-V measurements on the MOSHFET
structure with MOCVD-grown Ga2O3 gate dielectric confirm the increase in the Vth value.
As the thickness of the Ga2O3 layer increased, the Vth exhibited a negative shift. Thus, with
the increase in dielectric layer thickness, a higher voltage is required to deplete the 2DEG.
During the C-V measurement, when 2DEG starts to deplete, the capacitance decreases
drastically, ultimately leading to pinching off of the channel. By further increasing the
gate voltage beyond pinch-off, the depletion layer extends to the GaN channel. Figure 4b
summarizes the above discussion.
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Figure 4. C-V characteristics at 1MHz frequency of (a) HFET and Ga2O3-based MOSHFETs with
different oxide thicknesses, (b) Threshold voltage and zero gate-voltage capacitance dispersion for
HFET and Ga2O3 MOSHFETs.

Figure 5 compares the C-V data for annealed and as-deposited MOSHFETs with a
30 nm thick β-Ga2O3 as a gate oxide layer. The 30-min annealing at 900 ◦C was performed
in the MOCVD reactor, used for the Ga2O3 growth, as described in the experimental
method section. As shown in Figure 2, the pre and post-annealed XRD was similar. As can
be concluded from the C-V data, the annealing experiment did not result in any discernable
change in the Vth and zero capacitance values, demonstrating the excellent thermal stability
of the crystalline β-Ga2O3. The change in threshold voltage (open circle) and capacitance
(open square) for the annealed MOSHFET structure are also shown in Figure 4b.
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The carrier density Nd was calculated using the Hall effect data and found to be on
the order of 1018 cm−3, the exact values of the carrier density can be found in Table 1. The
built-in voltage Vbi (as shown in the band diagram: Figure 2) can be measured from 1/C2

intercept with the x-axis and expressed by equation (3) [43]:

Vbi =
qNdx2

d
2εs

+
qNdxd

εox
tox +

Qox

εox
tox (3)
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Table 1. The summary of the key electrical parameters measured/calculated from C-V and
Hall measurements.

Vth
(V)

µ

(cm2V− s−1)
(Hall)

Rsh
(Ωcm−2)
(Hall)

Nd
(cm−3)
(Hall)

ns
(cm−2)
(C-V)

ns
(cm−2)
(Hall)

Qox
(Ccm−2)

(C-V)

Dit
(cm−2eV−1)

(C-V)

Leakage
Current at
−20 V

(A/cm−2)

HFET –5 750 537 6.8 × 1018 1.25 × 1013 1.55 × 1013 None None 1.66 × 10−4

10 nm –7.9 772 630 5.0 × 1018 1.28 × 1013 1.4 × 1013 –6.68 × 1012 7.47 × 1012 1.3 × 10−6

20 nm –9.5 770 650 4.2 × 1018 1.24 × 1013 1.42 × 1013 –1.64 × 1013 7.57 × 1012 1.12 × 10−6

30 nm –12.5 776 685 4.4 × 1018 1.4 × 1013 1.4 × 1013 –2 × 1013 4.98 × 1012 9.54 × 10−7

annealed –12.1 760 680 4.5 × 1018 1.4 × 1013 1.4 × 1013 –3.06 × 1012 3 × 1012 8.33 × 10−7

Here, tox and εox are the thickness and permittivity of the oxide layer, Nd is the carrier
concentration, xd and εs are the depletion width and permittivity of the AlGaN barrier
layer. If we set tox = 0, then the 2nd and 3rd term of Equation (3) becomes zero, and the
equation represents the built-in voltage for conventional HFET structure. Using Equation
(1) and the parallel plate capacitance formula for each series capacitor component, we can
calculate the value of xd at zero gate voltage. Inserting the determined value of xd, and
previously calculated/measured Nd, tox, and known εox, εs into Equation (3), we can obtain
the oxide charge Qox. The calculated values of Qox for all the samples is shown in Table 1.
We observe a trend in the value of Qox; as the oxide thickness increases, the value of Qox,
become more negative which increases Vth shift supporting Equation (2). There may be
impact of stress on the charge, but we did not isolate that in our calculation. Due to low
thickness, we did not observe any signature peak of the dielectric Ga2O3 or barrier AlGaN
layer in Raman measurement (Figure S2 in Supplementary Section).

Figure 6 shows the 2DEG carrier density (ns) versus the gate voltage (VG) for
10, 20, and 30 nm gate oxide thicknesses calculated using the following equation:

qns = (VG − Vth)CG (4)
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In all three cases, the zero-gate voltage value of sheet carrier density is very close in
the range of (1.25–1.5) × 1013 cm−2, a slightly higher value of ns could be due to sample-to-
sample variations. The sheet carrier concentrations measured using van der Pauw/Hall
effect method are also in the range of (1–1.5) × 1013 cm−2, which validates our calculations
using the value from the C-V measurement by employing equation (4). The sheet carrier
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concentration does not change with oxide layer thickness or annealing of the oxide layer.
In previous studies for the ALD-grown amorphous oxide dielectrics-based MOSHFETs,
it has been demonstrated that the annealing of the oxide layers drastically shifts Vth. As
we can see in Figure 5, annealing of the crystalline Ga2O3-based MOSHFET, there is no
noticeable change in the threshold voltage in contrast to the case for previously reported
ALD-grown oxides [44]. To further validate the MOCVD oxide material property we
can use Equation (1), to calculate the experimental dielectric constant for β-Ga2O3. The
values of the gate capacitance, CG, before and after annealing are 1.64 × 10−7 F/cm−2 and
1.67 × 10−7 F/cm−2 (for 1 MHz frequency measurement). Cb is the barrier capacitance
of the MOSHFET, and the value is 3.3 × 10−7 F/cm−2. Based on Cox = εrε0

tox
, we get

εr = 10.9 (using CG = 1.67 × 10−7 F/cm−2), whereas the reference value is 10.6. Thus, it
can be inferred that the MOCVD-grown oxide has a dielectric property that is very close to
the previously reported literature value [42].

The interface trapped charge or interface traps stem(s) from dangling bonds at the
semiconductor–insulator interface. The frequency-dependent High–Low method is com-
monly used to determine interface charge density (Dit). Figure 7 shows the frequency-
dependent CV measurement used to calculate the interface charge densities for MOSHFET
with 10 nm oxide thickness (the frequency-dependent C-V measurements of MOSHFET
with 20 nm, 30 nm oxide thickness along with the annealed sample are shown in the
Supplementary Section Figure S1).
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The High–Low frequency CV method compares a low-frequency C-V curve with one
that is free of interface traps. The latter is usually referred to as a high-frequency C-V
measurement, where interface traps with relatively long-time constants cannot respond,
leading to decreased measured capacitance. At low frequencies, the interface traps can
respond, if not deep, thus resulting in higher capacitance; 100 kHz and 1 MHz frequencies
are the typical values can be used for CV-based calculations of the density of interface
states (Dit) of Nitride systems [45]. Consequently, from the difference between high- and
low-frequency CV measurements, the Dit can be obtained based on Equation (5) at a specific
applied gate voltage [46]:

Dit(VG) =
Cox

q

(
CLF

Cox − CLF
− CHF

Cox − CHF

)
(5)

where Cox is the capacitance of the oxide dielectric layer calculated using the parallel plate
capacitor formula, q is the unit elementary charge, CLF is the MOSHFET low-frequency
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capacitance value and CHF is the MOSHFET high-frequency capacitance value. The total
trap densities for all the samples are tabulated in Table 1. For all samples, the calcu-
lated interface trap densities are in the range (3–7.57) × 1012 cm−2eV−1; these values are
close to the typically calculated values of MOSHFETs (typical values are in the order of
~1011 cm−2eV−1–1013 cm−2eV−1) [27]. The Dit value is expected to be lower for the pro-
cessed devices due to the mesa isolation [47]. Our data revealed no specific correlation
between the oxide thickness and interface trap densities. Ideally, this is the case, but the
total number of bulk defects in the oxide under the gate would depend on the thickness,
more data are needed to find any correlation. It is observed that the annealed sample
showed a slightly smaller trap density, which can correlate to the higher ns, the origin of
which is not yet explored.

To further investigate the β-Ga2O3 viability as a gate dielectric leakage current mea-
surements were performed for all the samples. Figure 8 shows the gate leakage current in
the HFET and different thicknesses β-Ga2O3 MOSHFET structure. There is a significant
reduction in leakage current for the MOSHFET structure compared to the HFET structure
in the off-stage. The leakage current at -20 V for HFET is ~10−4 A/cm2, and it reduces to
~10−6 A/cm2 for MOSHFET. This remarkable improvement in the gate leakage current
shows that β-Ga2O3 can be used as an effective dielectric layer for GaN/AlGaN MOSH-
FETs. Table 1 summarizes the key electrical parameters of the GaN/AlGaN-based HFET
and GaN/AlGaN/β-Ga2O3-based MOSHFET determined in this work.
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4. Conclusions

We have demonstrated MOCVD-grown single-crystal Ga2O3 thin films as a gate
dielectric on AlGaN/GaN HFETs. We have found that an increase in the thickness of the
dielectric layer has an impact on threshold voltage Vth, shifting it to more negative values
and reducing the zero capacitance as additional Cox is added in series. The sheet carrier
densities for HFET and MOSHFETs were determined to be ~1013 cm−2, well within the
typical range- of 1012 cm−2–1013 cm−2 for AlGaN/GaN-based devices. The leakage current
was reduced by approximately 2 order from ~10−4 A/cm2 for HFET to ~10−6 A/cm2 for
MOSHFET at −20 V. Moreover, the addition of the oxide layer did not change the sheet
carrier concentration but had an impact on the calculated value of oxide charge Qox. The
calculated Qox value was found to be negative and mainly responsible for depleting the
2DEG. As the thickness of the Ga2O3 layer increases, the Qox becomes more negative,
following a trend similar to the change in Vth with increasing gate oxide thickness. The
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charge density in the oxide–AlGaN barrier interface was found to be of the order of
~1012 cm2eV−1. The thermal stability, as confirmed by the annealing experiment, suggests
that the MOCVD-grown single-crystal Ga2O3 layer could be more suitable for the gate
dielectric application compared to the ALD-grown oxide due to threshold voltage stability.
The moderate interface trap density and good thermal stability indicate that MOCVD-
grown β-Ga2O3 is an excellent candidate for gate dielectric as well as a passivation layer
for III-Nitride-based high-power RF MOSHFET devices.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cryst13020231/s1. Figure S1. Frequency-dependent CV
measurements of MOSHFET with (a) 20 nm thick gate oxide (b) 30 nm thick gate oxide, and
(c) annealed 30 nm thick gate oxide. Figure S2. (a) Raman spectra of HFET and MOSHFET
(30 nm oxide), (b) Raman spectra of Ga2O3 on sapphire to identify the Ga2O3 signature peak positions.
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