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Abstract: Nanoparticles where holmium was substituted with nickel-cadmium Ni0.5Cd0.5HoxFe2-xO4

(X = 0, 0.02, and 0.04) ferrites were synthesized through a sol-gel auto-combustion process to reveal
their structural and physical properties. The synthesized nanoparticles were characterized using
X-ray diffraction (XRD), a scanning electron microscope (SEM), Fourier transform infrared ray (FTIR)
spectroscopy, and impedance spectroscopy techniques. XRD revealed the formation of the cubic
crystal structure had a preferential orientation along (311). By including holmium, the lattice constant
was reduced, while the average crystallite size was increased. SEM analysis revealed that the
nanoparticles exhibited regular shapes, and the average grain size increased with the holmium
content. FTIR spectroscopy determined that all the organic and inorganic materials had an absorption
range of 400 to 4000 cm−1. The dielectric properties were measured between the frequency ranges of
1 kHz and 2 MHz. This shows that the tangent loss and the dielectric constant were raised when the
concentration of holmium was increased.

Keywords: Ni0.5Cd0.5HoxFe2-xO4 ferrites; sol-gel auto-combustion method; XRD; FTIR;
dielectric properties

1. Introduction

Many researchers have studied the application of nanotechnology during the last
few years. The subject of nanotechnology has seen a number of significant breakthroughs;
according to (Feynman, 1960), ‘There are plenty of rooms at the bottom’. Nanotechnology
has enabled the production of a wide variety of materials at the nanoscale. A broad
category of materials known as nanoparticles (NPs) is made up of compounds that are
particulate and have at least one dimension greater than 1 nm and less than 100 nm [1]. The
following categories can be used to classify nanomaterials according to their dimension:
(a) zero-dimensional (0D): All of the dimensions of this type of nanomaterial fall inside the
nanometer (nm) range. Typically, they have a spherical shape, such as nanodots, clusters,
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etc.; (b) one-dimensional (1D): In 1D nanomaterials, only one dimension is outside the
nm range. They are long like cylinders, such as nanorods, nanowires, fibers, and so on;
(c) two-dimensional (2D): These nanoparticles have two dimensions and are similar to
sheets outside of the nanometer range, such as nanotubes, coatings, and films; (d) three-
dimensional (3D): 3D nanomaterials are large materials, such as sand and crystals, that
have no dimensions in the nanoscale range [2].

Nanostructure ferrites have become more well known in the world of electronic tech-
nology as a result of their outstanding “ferrimagnetism” feature [3]. A cubic structure with
the typical formula AB2O4 (where A stands for divalent cation and B for trivalent cation)
is described as “spinel” [4,5]. Spinel ferrites are defined as closely packed simple cubic
structures along with Fe3+ ion as trivalent, i.e., AFe2O4; the bulk of transitional metals,
including Co, Fe, Ba, Ni, Cd, Zn, etc.; and their concerned composites, as well. This type
of ferrite resembles spinel, a naturally occurring mineral made of MgAl2O4, in terms of
its structural makeup. By definition, these cubic ferrites, also known as ferro spinels, are
semiconducting [6]. In this situation, the cubic or spinel type of crystal structure leads
to the creation of numerous free charge carriers and vacancies in the structure, the pres-
ence of which determines the practical application of these materials. One of the simplest
methods for creating oxide nanostructures with a spinel-like structure is the oxidizing of
solid solutions of FeCo and FeNi by introducing oxygen into the nodes and interstices
of the crystal lattice [7]. Spinel ferrites have drawn a lot of interest from researchers due
to their incredible, extraordinary magnetic and dielectric properties, i.e., high saturation
magnetization, considerable magneto-crystalline anisotropy, and low coercivity [8]. Based
on their magnetic characteristics, ferrites can be divided into some groups: (a) hard ferrites:
They are sometimes mentioned as “permanent magnets”, since they can be difficult to mag-
netize and then demagnetize. High coercivity and saturation magnetization characterize
them. Hard ferrites have a hexagonal structure and are mostly composed of Fe and Ba or
Sr oxides [9]; (b) soft ferrites: These materials are referred to as “soft ferrites” because of
how easily they can become magnetized and demagnetized. Due to their low coercivity,
they can serve as magnetic field conductors. Nickel, manganese, and zinc compounds
make up the majority of them [10]. The creation of FNPs is evolving into one of the most
fascinating fields of research due to their use in practically every aspect of life, including
electronic devices for energy storage applications; antimicrobial activity [11]; biomedical
applications, such as magnetic resonance imaging (MRI), hyperthermia, drug delivery,
etc. [12,13]; and use as sensors for various poisonous gases [14]. They have significantly
aided in the treatment of sewage by acting as photo catalysts [15]. Spinel ferrites, along
with different dopants in MFe2O4 (M = Co, Ni, Mn, Zn, Mg, etc.), are the most compatible
materials [16]. Spinel ferrites can be broadly divided into three categories, i.e., (i) normal
spinels: In general, they are (M12+)[Fe3+]2O4. Divalent ions occupy the tetrahedral or A-site
of typical spinels, while trivalent ions are found in B-site octahedra; (ii) inverse spinels:
They are (Fe3+) [M12+Fe3+]O4 in general. In this instance, trivalent metal ions were only
found at site A, while divalent metal ions were found at site B; (iii) mixed spinels: divalent
metal ions that are present in both the A- and B-sites make up mixed spinels, which have no
clear preference. Numerous industries, including medicine delivery, antimicrobial activity,
gas sensors, energy storage, and microwave devices, use spinel ferrites [17]. Ferrites are a
cheap material that can be used for a variety of sensor probes, including those for tempera-
ture, mechanical stress, and magnetic fields and currents [18–21]. Regarding applications,
the shape, size, purity, and magnetic stability of nanoparticles all affect their magnetic
characteristics. Due to their large thermal stability and electrical resistivity, they are used
in electrode materials for high temperature applications [22,23]. Ferrites as temperature
sensors can measure the body’s temperature and are used in biological applications [24].
The inverse form of the soft magnetized spinel, nickel ferrite is used extensively in modern
electronics, particularly in phase shifters, circulators, isolators, power converters, and
many electromagnetic devices for electromagnetic interference reduction (EMIS) [25–27].
Due to the wide functional diversity of properly substituted nickel ferrites, the use of
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high-resistivity nickel ferrites with appropriate doping, i.e., divalent ions (Mn2+ Co2+ and
Zn2+), trivalent ions (Al3+, Cr3+, and Sb3+), and rare earth (RE) ions (Nd3+, Dy3+, Y3+, Pr3+,
and Sm3+), has received particular attention from many researchers [28]. In nickel ferrite,
the cation distribution is typically thought of as (Fe2+)[Ni2+Fe3+]O4, where doping with
various cations at tetrahedral and octahedral sites was reported to impart special properties
to these nanostructures synthesized by the sol-gel route [29–31]. Due to modified electrical
and magnetic properties of spinel-type ferrites caused by RE-Fe interactions and magneto-
crystalline anisotropy in rare earth ions, the replacement of Fe3+ by rare earth ions has been
favorable. For example, the efficiency of doping with Er3+ ions had a significant impact
on the optical and shielding properties of TeO2-ZnO-Er2O3 glasses. In general, doping
oxide glasses with rare earth elements, such as cerium, samarium, erbium, gadolinium,
and neodymium, is typically performed, as evidenced by a review of the literature. This
leads to significant changes in both the structural and optical and shielding properties of
telluride or boride glasses, which can be exploited as one of the methods to improve their
ionizing radiation shielding efficiency and their resistance to external influences [32]. A
few methodologies are used for the synthesis of obtaining the oxide compositions, such
as either by soft chemistry, such as sol-gel, or by hydrothermal or electrochemical depo-
sition, solvothermal strategies, co-precipitation, or organic–inorganic solution [33–35]. In
their study of the dielectric and magnetic characteristics of Pr3+ doped Zn-Ni ferrite, Peng
et al. found that Pr3+ replacement decreases the dielectric properties in frequency range of
1 MHz–400 MHz [36].

The main objective of this research work was to synthesize and characterize low-loss
dielectrics with improved structural and dielectric properties through studying the effect
of Ho3+ substitutions at the B-site cation for Fe3+ in Ni0.5Cd0.5Fe2O4 structure ceramics.

2. Experimental Methods

Samples of Ni0.5Cd0.5HoxFe2-xO4 (X = 0, 0.02, and 0.04) nanoferrite were made using
the sol-gel auto-combustion technique to reveal their chemical makeup. High-grade chem-
icals, i.e., Ni (NO3)2 0.6(H2O), Cd (NO3)2 0.4(H2O), Ho (NO3)2 0.4(H2O), and Fe(NO3)2
0.9(H2O), were used as precursors. Stoichiometric calculations showed that 0.5 M and
2 M solutions of Ni (NO3)2 0.6(H2O), Cd (NO3)2 0.4(H2O), Ho (NO3)2 0.4(H2O), and Fe
(NO3)2 0.9(H2O) were synthesized in 100 mL of distilled water separately, and all the
mixtures were then stirred continuously for 30 min to create a homogeneous solution,
using citric acid as a chelating agent. The solution was then put on a heated plate set to
80 ◦C, where it was continuously stirred while an ammonia solution was added to keep
the pH level at 7–8. The fluid formed into a viscous brown gel after 5–6 h, and then the
gel self-combusted, turning it into ash. The ash was thoroughly crushed and processed
before being converted into a fine powder and sintered for five hours at 700 ◦C in a furnace.
An X-ray diffractometer, (JDX-3532, JEOL, Tokyo, Japan), scanning electron microscopy
(SEM) (JSM-5910, JEOL, Tokyo, Japan), and Fourier transform infrared spectroscopy were
used to evaluate the produced Ni0.5Cd0.5HoxFe2-xO4 (X = 0, 0.02, and 0.04) nanoferrites.
To analyze the dielectric behavior, all of the samples were compressed into pellets using
a hydraulic press at a pressure of 50 MPa, measuring 12 mm in diameter and 2 to 3 mm
in thickness. An LCR meter (Wayne-Kerr version-6500B, Wayne-Kerr Electronics, Bognor
Regis, UK) was used to measure the dielectric constant (ε′) and dielectric loss tangent (tanδ)
in the frequency range of 1 KHz to 2 MHz at ambient temperature.

3. Results and Discussion
3.1. Structural Evaluation

X-ray diffraction was used for the analysis of crystal structure and phase purity. The
lattice constants, interplanar spacing, crystallite size, and X-ray density may all be calculated
from the XRD data. This Ni0.5Cd0.5HoxFe2-xO4 (X = 0, 0.02, and 0.04) nanoparticle study
revealed a cubic crystal structure with the Fd-3m (227) space group. The planes (220),
(311), (400), (511), and (440) were where the reflection took place. These planes correspond



Crystals 2023, 13, 495 4 of 11

to JCPD card number [00-019-0629] from the Joint Committee on Powder Diffraction
Standards. The peak (311) shifting towards a lower Bragg’s angle was observed as shown
in the Figure 1b. The shifting of the peak was due to the difference of the ionic radius of
the host and dopant elements. According to XRD analysis, the use of rare earth Ho ions
up to 0.02 in nanoparticles did not change the crystal structure, and no second phase was
observed, according to XRD analysis.
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peak shifting toward the lower angle.

Equation (1) and the Debye–Scherrer Equation (2) were used to determine the cubic
structure’s lattice parameter (a) and average crystallite size (D) [37].

a = d
√

h2 + k2 + l2 (1)

D =
kλ

βcosθ
(2)

In Equations (1) and (2), d is the spacing element (given in Bragg’s law) and full width
at half maximum (FWHM) of the primary XRD peak. h, k, and l are Miller indices.

Equation (3) is used to compute X-ray density, also known as theoretical density.

ρ =
8M
NaV

(3)

where Na is Avogadro’s number (6.02 × 1023), M is the sample’s molecular mass, V is the
unit cell’s volume, and since each spinel primitive cell is composed of eight molecules, the
molecule’s mass is multiplied by eight.

Table 1 provides the lattice characteristics, typical crystallite sizes, and X-ray density.
The prepared sample was a single-phase, cubic crystalline system, as indicated by the
XRD peaks that were obtained in the 20◦ to 90◦ range. Table 1’s findings demonstrate
that swapping Ho for nickel-cadmium ferrite had no appreciable impact on the lattice
constant. Although Ho’s ionic radius (0.901) is significantly higher than iron’s (0.67) [38–40],
the substitution of Ho did not change the lattice constant. This might be because Ho’s
substitution was so minute. By moving the Fe3+ ion from the octahedral to the tetrahedral
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site, holmium with larger ionic radii could be found on the octahedral site. The size of
crystallites is typically between 10 nm and 13 nm.

Table 1. XRD parameters of Ni0.5Cd0.5HoxFe2-xO4 (x = 0, 0.02, and 0.04) ferrite samples.

Sample Name Interplanar
Distance (d) Å

Lattice Constant
(a) (Å)

Crystal Size
(D) (nm)

Volume
(Å)3

X-ray Density (ρ)
(g/cm3)

Ni0.5Cd0.5Fe2O4 2.5433 8.4351 11 600.16 5.7841

Ni0.5Cd0.5
Ho0.02Fe1.98O4

2.5418 8.4301 10 599.09 5.8431

Ni0.5Cd0.5Ho0.04
Fe1.96O4

2.5362 8.4116 13 595.16 5.8912

3.2. Morphological Investigations

SEM images were analyzed to examine the surface morphology along with the grain
size of the nanopowders and help in understanding the growth of the grain sizes. Figure 2
shows the SEM images of the Ni0.5Cd0.5HoxFe2-xO4 (X = 0, 0.02, and 0.04) nanoparticles
sintered at 700 ◦C. SEM micrographs demonstrate the samples’ porosity, regularity in
shape, and uneven grain size variations where particles formed large clusters. The small
agglomerations in the samples were seen with non-uniform distribution. It was also
found that the grain size decreased with the increasing of the Ho3+ content. The lowest
average grain size and maximum homogeneity was observed at x = 0.0. The average
grain sizes measured by IMAGEJ (developed by National Institutes of Health (NIH), USA)
for the Ni0.5Cd0.5HoxFe2-xO4 nanoparticles with x = 0, 0.02, and 0.04 were 54.47, 57.31,
and 58.76 nm, respectively (See Table 2). According to the literature, the nucleation and
grain development processes that take place during synthesis affect the size and form
of crystallites in compounds [41,42]. Figure 2d shows the elemental compositions of the
synthesized Ni0.5Cd0.5HoxFe2-xO4 (x = 0, 0.02, and 0.04) nanoparticles.
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Table 2. Grain size obtained from SEM analysis for Ni0.5Cd0.5HoxFe2-xO4 (x = 0, 0.02, and 0.04) nanoparticles.

Sample Grain Size (nm)

Ni0.5Cd0.5Fe2O4 54.47

Ni0.5Cd0.5 Ho0.02 Fe1.98O4 57.31

Ni0.5Cd0.5Ho0.04 Fe1.96O4 58.76

3.3. FT-IR Study

The unidentified material, quality, and components of the samples were discovered via
FTIR analysis. The spectrum of the nickel-cadmium ferrites is shown in Figure 3 and ranged
from 400 to 4000 cm−1. The mass of the metal cations and the strength of the connection
between the metal cations and oxygen determine the frequency at which absorption occurs.
In the spectrum, the band between 400 and 600 cm−1 is significant for ferrites. Spinel ferrite
contains two absorption bands; the highest band is at 648 cm−1 and is referred to as the
intrinsic stretching vibration of the metal ion at the tetrahedral site [43,44]. The lowest band
is at 557 cm−1 and is referred to as the octahedral metal stretching vibration. Peaks in the
nickel-cadmium ferrites were somewhat moved toward the lowest range of wavelength by
adding more holmium to the mixture. The addition of holmium caused the dispersion of
Fe3+ from the B- to the A-site.
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3.4. Dielectric Properties

Utilizing the parallel equivalent capacitance that can be measured with an LCR meter
at frequencies between 1 KHz and 2 MHz, the dielectric constant and tangent loss were
determined. Ferrite nanoparticles’ dielectric characteristics are influenced by a number
of variables, including composition, production method, grain size, etc. These variables
provided details regarding the prepared sample’s dielectric properties.

The below formulae were adopted to determine various parameters using the par-
allel equivalent capacitance (Cp) measurement, including the dielectric constant (ε′) and
dielectric loss (tanδ) [45].

E ′ =
Cp × d
A× E0

(4)

tanδ =
E ′′
E ′ (5)

A is the sample’s surface area, d is the thickness of the pellet, and εo is the vacuum
permittivity. Figure 4 demonstrates the dielectric constant variation with frequency of
the produced samples. This typical trend is observed in ferrites. The dielectric constant
is highest for the lowest values of frequency and dramatically decreases with the rising
frequency before becoming constant and giving no response to the applied frequency. At
the grain boundaries, space charge polarization accumulates in the low-frequency region,
and the dielectric constant is large. Polarization is used to study the decreasing dielectric
constant trend, which shows if a material is polar or conductive. As the frequency rises, the
polarization declines. Space charge polarization is used to describe the trend in the dielectric
constant [46]. Polarization is caused by the displacement of the electron in the direction of
the applied field as a result of the electron exchange between Fe2+ and Fe3+. Due to the fact
that the frequency of electronic exchange cannot follow the frequency of the alternating
field, polarization decreases. In other words, the polarizability is frequently behind the
external field. Due to the dominance of species such as Fe2+, the dielectric constant values
at lower frequencies are larger at the grain border due to interface dislocation.

Crystals 2023, 13, x FOR PEER REVIEW 7 of 11 
 

 

3.4. Dielectric Properties 

Utilizing the parallel equivalent capacitance that can be measured with an LCR meter 

at frequencies between 1 KHz and 2 MHz, the dielectric constant and tangent loss were 

determined. Ferrite nanoparticles’ dielectric characteristics are influenced by a number of 

variables, including composition, production method, grain size, etc. These variables 

provided details regarding the prepared sample’s dielectric properties. 

The below formulae were adopted to determine various parameters using the 

parallel equivalent capacitance (Cp) measurement, including the dielectric constant (ε′) 

and dielectric loss (tanδ) [45]. 

ℰ�  = 
�� ×�

�×ℰ�
  (4)

���� = 
ℰ��

ℰ�  (5)

A is the sample’s surface area, d is the thickness of the pellet, and εo is the vacuum 

permittivity. Figure 4 demonstrates the dielectric constant variation with frequency of the 

produced samples. This typical trend is observed in ferrites. The dielectric constant is 

highest for the lowest values of frequency and dramatically decreases with the rising 

frequency before becoming constant and giving no response to the applied frequency. At 

the grain boundaries, space charge polarization accumulates in the low-frequency region, 

and the dielectric constant is large. Polarization is used to study the decreasing dielectric 

constant trend, which shows if a material is polar or conductive. As the frequency rises, 

the polarization declines. Space charge polarization is used to describe the trend in the 

dielectric constant [46]. Polarization is caused by the displacement of the electron in the 

direction of the applied field as a result of the electron exchange between Fe2+ and Fe3+. 

Due to the fact that the frequency of electronic exchange cannot follow the frequency of 

the alternating field, polarization decreases. In other words, the polarizability is 

frequently behind the external field. Due to the dominance of species such as Fe2+, the 

dielectric constant values at lower frequencies are larger at the grain border due to 

interface dislocation. 

 

Figure 4. The dielectric constant vs. log(f) plot for Ni0.5Cd0.5HoxFe2-xO4 (x = 0, 0.02, and 0.04). Figure 4. The dielectric constant vs. log(f) plot for Ni0.5Cd0.5HoxFe2-xO4 (x = 0, 0.02, and 0.04).

Figure 5 illustrates how tangent loss (tan) varies with frequency. The graph demon-
strates that tangent loss reduces with frequency. This phenomenon is explained by the
Maxwell–Wagner model and Koop’s hypothesis, which hold true for higher frequen-
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cies [47,48]. Electron and charge defect dipole hoops cause ferrites to lose their dielectric
properties. At lower frequencies, electron hopping occurs, whereas at higher frequencies,
dielectric loss is caused by charge defect dipoles. When the applied AC frequency matches
the frequency of the exchange of electrons between Fe2+ and Fe3+, polarization occurs [49].
Dielectric loss continues as a result of structural impurities.
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4. Conclusions

As a general formula for nickel-cadmium ferrites doped with holmium, sol-gel auto-
combustion was used to prepare Ni0.5Cd0.5HoxFe2-xO4 (X = 0, 0.02, and 0.04). X-ray
diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and an
LCR meter were used to characterize the produced samples. The produced nanoparticles’
cubic spinel structure is visible in the XRD graph, and the Scherrer formula was used
to determine the size of the crystals. The average particle size varied from 54.47 nm
to 58.76 nm, with Ho content revealed by SEM micrographs. Dielectric characteristics,
such as the relative permittivity and tangent loss, were examined in frequency ranges
between 1 kHz and 2 MHz, and these characteristics varied depending on the holmium
concentration. The highest concentration of doped material (at x = 0.04) yielded the highest
value for the dielectric constant. Dielectric characteristics are caused by space charge
polarization. The vibrational spectrum was seen by FTIR. The spectrum spanned 400 to
4000 cm−1. For ferrites, the 400–600 cm−1 band is crucial. When the holmium concentration
was increased, the peaks of the produced nanoparticles with reported structural and
physical features were moved toward the lowest wavelength. These nanoparticles are
employed for energy storage and microwave absorption applications.
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