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Abstract: A frequency magnetically tunable perfect absorber based on graphene in the terahertz
(THz) region is proposed. The performance is analysed using the 4 × 4 transfer matrix method,
demonstrating that the perfect absorption frequency of the proposed absorber for a left-handed
circularly polarized (LCP) wave can be dynamically tuned by varying the external static bias magnetic
field in three frequency ranges (0.95–2.2 THz, 4.15–5.4 THz, and 7.3–8.55 THz). Due to the destructive
interference of the reflected waves and the graphene-induced photonic band gap, the maximum
absorption of the LCP wave can reach 99.91%. In addition, the proposed absorber can tolerate a
wide range of incident angles for the LCP wave. This study may have great potential for various
applications, such as detectors, sensors, and other optoelectronic devices in the THz region.
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1. Introduction

Graphene is a two-dimensional honeycomb-like material with a single layer of carbon
atoms [1]. It has been widely studied due to its unique electrical, mechanical, thermal, and
optical properties [2,3]. In terms of electrical properties, the surface conductivity can be
tuned, and then graphene can be used in tunable devices such as modulators [4], filters [5],
and absorbers [6]. In particular, frequency-tunable absorbers have been extensively studied
from the GHz to infrared frequency ranges due to their wide application in sensors and
detectors [7–14]. In the THz frequency range (i.e., from 0.1 to 10 THz [15]), graphene sup-
ports strong surface plasmon polaritons [16] and has strong photon localization [17], which
significantly enhances the interaction between THz waves and graphene and effectively
improves the absorption. Therefore, graphene-based frequency-tunable THz absorbers
have become a research hotspot.

Recently, graphene-based frequency-tunable metamaterial [18–23], metasurface [24–26],
and photonic crystal [27–29] THz absorbers have achieved tunable high-performance in
narrowband, multiband, and broadband absorption. For many applications, frequency-
tunable narrowband absorbers are preferred to broadband absorbers because they can absorb a
given frequency without affecting adjacent frequencies. These THz absorbers can be frequency
tuned by using a static bias electric field. However, the tunable frequency range of a frequency-
tunable narrowband THz perfect absorber is limited (<3 THz) [19,23,27]. Although the
tunable frequency range of the multiband THz perfect absorber based on the patterned
graphene sandwich structure is broader, the multiple perfect absorption bands cannot be
independently tuned [20,21,24]. To achieve independent tuning in a multiband THz absorber,
a multilayer patterned graphene structure is designed, and different voltages are applied to
each layer, which requires more electrodes to be added, thus increasing the fabrication and
operation difficulties [18]. In addition, tunable absorption performance can also be achieved
with an external static bias magnetic field (SBMF) [17,30–34], which reduces the fabrication
difficulty due to the absence of electrodes. Cheng et al. [31] achieved tuning of the absorption
frequency over a wide range. However, the tunable absorption was far from perfect absorption.
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Rashidi et al. [32] and Mahesh et al. [34] achieved high absorption for a tunable frequency, but
the tunable frequency range was limited. Therefore, achieving a graphene-based frequency
magnetically tunable THz perfect absorber over a wide frequency range is still challenging.

In this paper, a frequency magnetically tunable THz perfect absorber based on graphene
and SiO2 layered structure is proposed. The absorption performance of the proposed ab-
sorber is tuned by varying the SBMF and investigated using the 4 × 4 transfer matrix
method. The results show that the absorption (≥99%) frequency for a left-handed circularly
polarized (LCP) wave can be magnetically tuned in three frequency ranges (0.95–2.2 THz,
4.15–5.4 THz, and 7.3–8.55 THz), and the total tunable frequency range reaches 3.75 THz.
Due to the destructive interference of the reflected waves and the graphene-induced pho-
tonic band gap, the maximum absorption of the LCP wave can reach 99.91%. In addition,
the perfect absorption of the LCP wave at the absorption peak frequency does not signifi-
cantly change with the incident angle when the incident angle is less than 40◦.

2. Model and Method
2.1. Absorber and Magnetized Graphene Models

A side view of the proposed absorber model is shown in Figure 1a. The model can
be described as (DG)N , where D represents a nonmagnetic lossless dielectric (yellow), G
represents graphene (black), and N represents the DG period number. The dielectric D
and graphene G, with thicknesses of dD and dg and relative permittivities of εD and εg,
are parallel to the x-y plane. The SBMF B is perpendicular to the graphene plane, so the
surface conductivity of graphene can be described as a tensor that has not only diagonal
terms σxx (σxx = σyy), but also off-diagonal terms σxy (σxy = −σyx). In the THz frequency
range, the surface conductivity of highly doped graphene is often expressed by the Drude
model. Specifically, σxx and σxy are, respectively, expressed as [35]

σxx(ω, B) =
W
π

τ−1 − iω
ω2

c − (ω + iτ−1)2 , (1)

and
σxy(ω, B) = −W

π

ωc

ω2
c − (ω + iτ−1)2 , (2)

where W = e2|EF|/h̄2 is the Drude weight, ωc = eBv2
F/EF is the cyclotron angular fre-

quency, and τ = µEF/ev2
F is the scattering time. e, EF, h̄, vF, and µ are the electron charge,

Fermi level, reduced Planck’s constant, Fermi velocity, and carrier mobility, respectively.
The relative permittivity of graphene can be written by a tensor←→ε g as [36]

←→ε g =

εxx εxy 0
εyx εyy 0
0 0 εzz

. (3)

Here, εxx = εyy = 1 + iσxx/ωε0dg, εxy = −εyx = iσxy/ωε0dg, and εzz = 1, where
ω, ε0, and dg are the operating angular frequency, vacuum permittivity, and thickness of
graphene, respectively.

Figure 1. Schematics of the proposed absorber model. (a) (DG)N model and (b) (DG)1 model.
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2.2. Research Methods

The proposed absorber model consists of the layered isotropic dielectric D and mono-
layer magnetized graphene G. Therefore, the transmission and absorption performance of
the proposed layered structures are analysed using the 4 × 4 transfer matrix method [37]
and described in the following.

As shown in Figure 1a, the proposed absorber model is assumed to be placed in
air. Therefore, the refractive indices of the incident wave space (the zeroth medium) and
output wave space (the (N + 1)th medium) are one, i.e., ninc = nout = 1. In addition,
the THz wave is parallel to the x-z plane with angle of incidence θ and travels into the
model at z = 0 and out of the model at z = Le, i.e., Le is the thickness of the proposed
model. Hence, the tangential components of the wave vector k are kx = k0ninc sin θ and
ky = 0, respectively, where k0 is the free space wavenumber. For magnetized graphene, the
longitudinal component of the wave vector k is kz = k0λi , where i = 1, 2, 3, and 4, and λi
are four different z-components of the wave vector.

According to the Maxwell equations, on one side of monolayer anisotropic graphene,
the tangential components of the electric field E and the magnetic field H can be expressed
as [37,38]

∂ψ(z)
∂z

= ik0 AGψ(z), (4)

where

ψ(z) =


ex
ey
hx
hy

, (5)

e = E/
√

η0 and h =
√

η0H are the normalized electric field and normalized magnetic
field, respectively, and η0 =

√
µ0/ε0 is the impedance of free space. Moreover, AG in

Equation (4) can be expressed as [38]

AG =


0 0 0 1− k2

x
k2

0εzz

0 0 −1 0

−εyx
k2

x
k2

0
− εyy 0 0

εxx εxy 0 0

. (6)

Therefore, the tangential components of the electric and magnetic fields on the other
side of monolayer anisotropic graphene can be expressed as [37]

ψ(z + dg) = MG(dg)ψ(z), (7)

where MG(dg) is the transfer matrix with 4 × 4 elements and can be written as

MG(dg) = ΨGPG(dg)Ψ
−1
G , (8)

where PG(dg) is the diagonal propagation matrix and its four diagonal elements are
pii = exp(ik0λidg). Moreover, ΨG is composed of eigenvectors of AG. They can be ob-
tained from Equation (6) [39].

For the isotropic dielectric layer with a thickness of dD, the transfer matrix MD(dD)
can be similarly obtained from Equation (8). It is worth noting that εxy = εyx = 0 and
εxx = εyy = εzz = εD; then, AD can be accordingly simplified from Equation (6).

For the model shown in Figure 1a, the electric or magnetic fields at z = 0 and
z = Le satisfy

ψ(z = 0) = (MG MD)
−Nψ(z = Le), (9)
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Since a linearly polarized wave can be equivalent to two circularly polarized waves
with equal amplitudes and opposite handedness, i.e., right-handed circularly polarized
(RCP) and LCP waves, ψ(z = 0) and ψ(z = Le) can be expressed as [38]

ψ(z = 0) = Q(0)


aR
aL
rR
rL

, ψ(z = Le) = Q(0)


tR
tL
0
0

, (10)

where

Q(0) =
1√
2


cos θ cos θ cos θ cos θ
−i i i −i

i cos θ −i cos θ i cos θ −i cos θ
1 1 −1 −1

, (11)

where aR(aL), rR(rL) , and tR(tL) are the amplitudes of incidence, reflection, and transmis-
sion of the RCP (LCP) wave, respectively. Hence, Equation (9) can be rewritten as

aR
aL
rR
rL

 = Q(0)−1(ΨGPGΨ−1
G ΨDPDΨ−1

D )−NQ(0)


tR
tL
0
0

 = M


tR
tL
0
0

, (12)

where M is the total transfer matrix, which connects the fields at z = 0 and z = Le; then,
the transmission and reflection coefficients of co-polarization (with identical subscripts)
and cross-polarization (with different subscripts) can be obtained as

tRR =
tR
aR

∣∣∣
aL=0

=
M22

M11M22 −M12M21
, tLL =

tL
aL

∣∣∣
aR=0

=
M11

M11M22 −M12M21
,

tLR =
tL
aR

∣∣∣
aL=0

=
M21

M12M21 −M11M22
, tRL =

tR
aL

∣∣∣
aR=0

=
M12

M12M21 −M11M22
,

rRR =
rR
aR

∣∣∣
aL=0

=
M21M32 −M22M31

M12M21 −M11M22
, rLL =

rL
aL

∣∣∣
aR=0

=
M11M42 −M12M41

M11M22 −M12M21
,

rLR =
rL
aR

∣∣∣
aL=0

=
M21M42 −M22M41

M12M21 −M11M22
, rRL =

rR
aL

∣∣∣
aR=0

=
M11M32 −M12M31

M11M22 −M12M21
.

(13)

3. Results and Discussion

In the investigation of the proposed (DG)N model, the centre frequency f0 of the
incident wave is 1.59 THz, and the angle of incidence θ is 0 (unless specifically mentioned
in the following discussion). Furthermore, the dielectric D is set as SiO2 with a refractive
index nD of 2.25 (lossless dielectric, i.e., extinction coefficient κ = 0) [40], whose optical
thickness is a quarter wavelength, i.e., nDdD = λ0/4 (λ0 = c/ f0 is the centre wavelength,
where c is the speed of light in vacuum), and dD = 21 µm. The parameters of graphene
are EF = 0.1 eV, vF = 106 m s−1, µ = 105 cm2 V−1 s−1, and dg = 0.335 nm [41]. It should
be noted that the maximum magnetic field used in this paper (7 T) can be generated by a
split-coil superconducting magnet [35].

3.1. Absorption for Various Period Numbers N

To obtain the perfect absorption performance of (DG)N , the absorption of LCP and
RCP waves for various N are shown in Figure 2a. The absorption of LCP and RCP waves is
different due to the magnetic circular dichroism of graphene [42]. The absorption (AL) of
the LCP wave at the centre frequency is enhanced as N increases, and AL = 99.91% when
N ≥ 6. However, the absorption (AR) of the RCP wave is very slightly enhanced. For
example, AR is less than 5% when N = 8. Therefore, the absorption performance of the
proposed model for the LCP wave is mainly analysed in the following discussion.
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The proposed model achieves near-unity absorption due to the destructive interfer-
ence of the reflected waves [43] and the graphene-induced photonic band gap [44]. The
destructive interference of the reflected waves is mainly due to the structure of DG. As
shown in Figure 1b, the incident wave i1 is incident from a dielectric with a low refractive
index (i.e., air) to a dielectric with a high refractive index (i.e., the surface of D), which
causes half-wave loss, meaning that the phase difference between the reflected wave r1
and the incident wave i1 is π. Subsequently, the refracted wave t1 is incident into D. Due
to the optical thickness of D being set as λ/4, the total optical path difference in D is λ/2
when θ = 0, and the phase difference between r2 and i1 is π. In addition to the total optical
path difference, the half-wave loss caused by t1 from D to the surface of graphene G should
also be considered, and the total phase difference between r2 and i1 is 2π. Therefore, the
phase difference between r1 and r2 is π, and then, destructive interference occurs. To better
illustrate the destructive interference in DG, the transmittance, reflectance, and absorption
of G and DG for the LCP wave are shown in Figure 2b. At approximately f0, RLL is equal to
zero, and RRL is significantly depressed in DG, which means that the destructive interfer-
ence of the reflected waves occurs. Therefore, the AL in DG is further enhanced compared
to G, while the transmittance TLL in DG is nonzero, resulting in imperfect absorption. By
increasing N, a graphene-induced photonic band gap (i.e., TLL = 0, as shown in Figure 2c)
can be formed so that AL is closer to 100% and perfect absorption can be obtained. At ap-
proximately f0, it can also be seen from Figure 2c and d that TLL gradually approaches zero
with increasing N, while RRL is independent of N. Finally, N = 6 is chosen as the optimal
period number of the proposed model, which has perfect absorption for the LCP wave.

0 0.5 1 1.5 2 2.5 3 3.5

f (THz)

0

0.2

0.4

0.6

0.8

1

T
L

L

(c)
N = 2

N = 4

N = 6

N = 8

0 0.5 1 1.5 2 2.5 3 3.5

f (THz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
R

L

N = 2

N = 4

N = 6

N = 8

(d)

Figure 2. (a) Absorption (AL and AR), (c) transmittance (TLL), and (d) reflectance (RRL) of (DG)N

with various N, and (b) reflectance, transmittance, and absorption of DG and G for the LCP wave,
when B = 1 T.

To further understand the mechanism of perfect absorption for the LCP wave, the
electric field amplitude distributions of the LCP and RCP waves are shown in Figure 3. The
electric field of the LCP wave gradually decays and approaches zero at z = Le, while the
RCP wave propagates through (DG)6 without attenuation. Therefore, only the LCP wave
is perfectly absorbed.
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Figure 3. Electric field amplitude distributions of the (a) LCP and (b) RCP waves in (DG)6 when
B = 1 T.

3.2. Frequency Tuning with Various SBMFs B

The absorption peak frequency for the LCP wave can be tuned by varying the SBMF B,
as shown in Figure 4a. The peak frequency of AL is blueshifted while the peak value remains
unchanged (i.e., AL = 99.91% at 1.59, 4.77, and 7.95 THz) as B increases. To explain the
mechanism of magnetic tuning of the absorption peak frequency, the imaginary part of the
relative permittivity xx-component of graphene (i.e., Im(εxx)) for B = 1, 3, and 5 T is plotted
in Figure 4b. The peak frequency of Im(εxx) coincides with the absorption peak frequency
in Figure 4a. Due to the presence of absorption and the lossless nature of the dielectric D,
graphene must be lossy. Furthermore, Im(εxx) is usually used to represent ohmic loss [31].
Therefore, the maximum loss can occur at the peak frequency of Im(εxx), and then, the optimal
absorption can also be achieved. In addition, it can be seen from Figure 4a that the peak
frequencies of 4.77 and 7.95 THz are three and five times the peak frequency of 1.59 THz,
respectively, and these increases are equal to the increases in the tuned B. This occurs because
f0 is set to be the cyclotron frequency fc at B = 1 T, which is linearly related to B. Therefore,
peak frequency magnetic tuning of AL can be realized for (DG)6.

0 2 4 6 8 10

f (THz)

0

0.2

0.4

0.6

0.8

1

A
L

(a)

B = 1 T

B = 3 T

B = 5 T

X: 1.59

Y: 0.9991

X: 4.77

Y: 0.9991

X: 7.95

Y: 0.9991

0 2 4 6 8 10

f (THz)

0
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1

1.5

2

x
x

10
5

(b)
B = 1 T

B = 3 T

B = 5 T

X: 1.59

Y: 1.991e+05

X: 4.77

Y: 6.618e+04

X: 7.95

Y: 3.967e+04

Figure 4. (a) Absorption of (DG)6 for the LCP wave; (b) imaginary part of the relative permittivity
xx-component of graphene for B = 1, 3, and 5 T.

The peak frequency of AL for (DG)6 with varying B is shown in Figure 5. Three fre-
quency bands of the absorption peak with AL ≥ 99% appear in the investigated frequency
range, which can be illustrated by the following formula:

fp =
c

nDdD
× l

4
, (14)

where fp is the peak frequency, and l is a positive number. When the refractive index nD
and thickness dD of the dielectric are fixed, fp is mainly determined by l. Specifically, de-
structive interference, with minimum reflection and maximum absorption, can be achieved
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when l is an odd number. For example, it can be seen from Figure 5 that destructive inter-
ference can be achieved and AL is maximum when fp = 4.76 THz and l = 3. In contrast,
constructive interference can be achieved and AL is minimum when fp = 3.17 THz and
l = 2. Therefore, the frequency of AL ≥ 99%(90%) for (DG)6 is tuned by varying B in
the frequency ranges of 0.95–2.2 THz, 4.15–5.4 THz, and 7.3–8.55 THz (0.63–2.53 THz,
3.8–5.7 THz, and 6.98–8.88 THz).

To demonstrate the advantage of the proposed absorber, we further compare it with
other graphene-based frequency magnetically tunable absorbers reported in recent years.
Table 1 illustrates the comparative results. From Table 1, we see that the proposed absorber
has the widest tunable frequency range with the highest absorption, implying good perfor-
mance. Therefore, the proposed absorber can be better used in circularly polarized wave
sensors [32], circular polarizers [45], and MCD (the difference in the absorption of LCP and
RCP waves induced by a magnetic field) photodetectors [34].

Table 1. Comparison with other graphene-based frequency magnetically tunable absorbers.

Reference Absorption
Frequency

Tunable Range
(THz)

fL (THz) fH (THz)

[17] 90% 0.2 4.24 4.44
[32] 90% 0.8 3.37 4.17
[33] 70% 1 0 1
[34] 95% 0.84 3.85 4.69

Present study 99% 3.75 0.95 8.55

Figure 5. B-dependent absorption of the LCP wave for (DG)6.

3.3. Influence of Incident Angle θ on Magnetic Tuning

The incident angle is highly related to the absorption performance [27–29]. Therefore,
the magnetic tuning with various incident angles is investigated. The θ-dependence and
B-dependence of AL are shown in Figure 6. When the incident angle is less than 40◦, the
peak frequencies at B = 3 and 5 T exhibit a slight blueshift and the absorption is more than
99%, which is beneficial for the application of (DG)6 in wide-angle frequency magnetically
tunable absorbers. Here, the blueshift of the peak frequency is mainly due to the periodic
structure of graphene and the dielectric. In addition, as the incident angle increases, the
blueshift becomes more pronounced as the peak frequency increases [46].



Crystals 2023, 13, 553 8 of 10

Figure 6. θ- and B-dependent absorption of the LCP wave for (DG)6; (a) B = 1 T, (b) B = 3 T, and
(c) B = 5 T.

3.4. Influence of the Nonmagnetic Dielectric Loss

Previous studies have discussed the magnetically tunable absorption performance
of materials with the nonmagnetic dielectric SiO2 as a lossless medium (i.e., extinction
coefficient κsio2 = 0). However, in practical manufacturing, SiO2 has losses, and it is crucial
to investigate the influence of its losses on the magnetically tunable absorption performance.
The absorption of the proposed model ((DG)6) with different extinction coefficients κsio2

is shown in Figure 7 for B = 1, 3, and 5 T. It can be seen from the figure that the loss of
SiO2 has almost no influence on the magnetically tunable absorption performance when
κsio2 ≤ 0.001. However, when κsio2 > 0.001, although the influence of SiO2 loss on the
absorption performance at the centre frequency is relatively small, it significantly affects
the absorption performance outside the 1 THz bandwidth around the centre frequency.
Therefore, in practical manufacturing, a nonmagnetic dielectric SiO2 with an extinction
coefficient κsio2 ≤ 0.001 should be selected to achieve more stable magnetically tunable
absorption performance.
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Figure 7. Absorption of the LCP wave for the proposed model (DG)6 with various extinction
coefficients: (a) B = 1 T, (b) B = 3 T, and (c) B = 5 T.

4. Conclusions

In this study, a frequency magnetically tunable THz perfect absorber based on graphene
and silica layered structures is proposed. The absorption performance of the proposed
absorber is investigated using the 4 × 4 transfer matrix method. The absorption (≥99%)
peak frequency for an LCP wave of the proposed model can be tuned by varying the SBMF
in three frequency ranges (0.95–2.2 THz, 4.15–5.4 THz, and 7.3–8.55 THz), and the total
tunable frequency range reaches 3.75 THz. The maximum absorption of the LCP wave can
reach 99.91% due to the destructive interference of the reflected waves and the graphene-
induced photonic band gap. In addition, the influence of the incident angle on magnetic
tuning is also analysed. The perfect absorption of the LCP wave at the absorption peak
frequency is unaffected when the incident angle is less than 40◦. Finally, the influence of the
loss of the nonmagnetic dielectric SiO2 on the magnetically tunable absorption performance
is investigated. It is shown that a more stable magnetically tunable absorption performance
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can be achieved in practice when the extinction coefficient of the nonmagnetic dielectric
SiO2 κsio2 ≤ 0.001. This study provides a new concept for magnetically tunable THz perfect
absorbers over a wide frequency range, which have potential applications in various fields
such as detectors, sensors, and other optoelectronic devices.
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