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Abstract: Low-dimensional metal oxides-based electronic noses have been applied in various fields,
such as food quality, environmental assessment, coal mine risk prediction, and disease diagnosis.
However, the applications of these electronic noses are limited for conditions such as precise safety
monitoring because electronic nose systems have problems such as poor recognition ability of mixed
gas signals and sensor drift caused by environmental factors. Advanced algorithms, including
classical gas recognition algorithms and neural network-based algorithms, can be good solutions for
the key problems. Classical gas recognition methods, such as support vector machines, have been
widely applied in electronic nose systems in the past. These methods can provide satisfactory results
if the features are selected properly and the types of mixed gas are under five. In many situations,
this can be challenging due to the drift of sensor signals. In recent years, neural networks have
undergone revolutionary changes in the field of electronic noses, especially convolutional neural
networks and recurrent neural networks. This paper reviews the principles and performances of
typical gas recognition methods of the electronic nose up to now and compares and analyzes the
classical gas recognition methods and the neural network-based gas recognition methods. This work
can provide guidance for research in related fields.

Keywords: low-dimensional metal oxides; gas recognition algorithm; electronic noses; gas sensor
array; machine learning; deep learning

1. Introduction

Electronic nose systems have been developed for 40 years since Persaud et al. first put
forward an electronic nose based on biological olfactory senses in 1982 [1]. An electronic
nose system is a set of electronic equipment simulating animal or human olfactory systems
for the qualitative and quantitative composition of gas, also known as an artificial olfactory
system. The working procedure of the electronic nose shown in Figure 1 includes four pro-
cesses: data acquisition, data processing, model comparison, and identification decision [2].
With the great progress of core technologies, for instance, semiconductors, integrated cir-
cuits, and artificial intelligence, electronic nose technology has also been rapidly developed.
Based on low-dimensional metal oxides, very advanced electronic nose systems can be
developed [3–8]. The response mechanism of a metal oxide gas sensor includes three parts:
receiving, transducing, and utilization. The latest metal oxide sensitive layer is usually
made of low-dimensional metal oxide material, which has higher sensitivity, selectivity,
and response speed than a traditional metal oxide microstructure. Its working mechanism
is similar to the traditional metal oxide gas sensor. When the target gas is in contact with
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the sensitive layer, it causes a REDOX reaction, a change in concentration of the surface
adsorbed oxygen ion, thereby changing the charge state on the surface of the sensitive layer,
resulting in changes in the resistance value of the sensitive layer. Low-dimensional metal
oxides have a higher specific surface area and more surface active sites, so they can better
adsorb gas molecules and improve detection sensitivity. Low-dimensional metal oxide ma-
terials also typically have faster response and recovery due to their conductive properties
being affected by surface effects, thus, immediately changing resistance values upon the
adsorption of gas molecules to the surface, resulting in a faster response to the presence
of the target gas. An electronic nose can realize the rapid and accurate detection of a gas
mixture. They are widely applied in various fields, for instance, disease diagnosis [9–13],
food quality [14–16], environmental monitoring [17,18], coal mine risk assessment [19],
etc. A number of recent studies have shown that electronic noses can also be used in the
detection of COVID-19 [20–22].
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Figure 1. Schematic diagram of the human olfaction and e−nose system in 2022 [2].

Early gas recognition methods usually used artificial sensory recognition, gas chro-
matography [23], and laser spectrum detection [24]. However, these methods have some
disadvantages, i.e., recognition accuracy is not high enough, or the volume of the instru-
ment is large, resulting in difficulty on many occasions. With the development of gas
recognition technology, the miniaturized electronic nose [25] has attracted much attention
from researchers because of its excellent portability and high recognition accuracy. How-
ever, the electronic nose system is also faced with two key problems: poor recognition
ability of mixed gas signals and sensor drift caused by environmental factors, which makes
it difficult to accurately identify multiple types of gas in a noisy environment. Sensor drift
is usually affected by ambient temperature and humidity, gas concentration, air pressure,
wind direction, and other factors. Generally speaking, sensor drift means that the measured
response data will change slowly and randomly, even if the gas sensor is under the same
external conditions. As time goes by, the degree of sensor drift will gradually deepen,
resulting in inaccurate gas sensor data obtained in the final measurement and certain errors,
which gradually reduces the accuracy of gas recognition [26]. The drift phenomenon caused
by sensor measurement of gas substances seriously hinders the development of electronic
nose technology; therefore, it is necessary to find a solution to sensor drift [27,28] so as to
accurately identify different kinds of gas.

The main step of gas recognition of the electronic nose is the data analysis process,
as shown in Figure 2. A typical data analysis process usually consists of three modules:
data preprocessing, feature extraction and feature selection, and pattern recognition algo-
rithm [29]. Among them, data preprocessing can be filtered by wavelet filter [30], Kalman
filter [31], Gaussian filter [32], Savitzky–Golay filter [33], or other filtering methods, aiming
to remove noise interference caused by environmental factors and sensor drift in signal
data, so as to make the data more standardized. At the same time, due to the particularity
of gas sensing signal data, they often have high dimensional characteristics, which can
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be reduced by Principal Component Analysis [34,35] or other feature extraction [36–38]
methods. Then, feature selection [39,40] is carried out from the task set and reduces the
computational complexity. Finally, classical gas recognition methods, such as support
vector machine [41,42], K-nearest neighbor [43], decision tree [44,45], genetic algorithm [46],
and other machine learning methods, are usually applied to classify different kinds of
gases. Meanwhile, experimental studies also compare the gas classification performance
of different machine learning algorithms [47–49]. Classical gas identification methods
generally have a relatively fixed frame and limited parameters, are easy to design, and
have been widely used.
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Over the years, with the development of artificial intelligence, deep learning-based
gas recognition methods have been proven to be more effective for electronic noses [50–52].
Deep learning methods [53] aim to learn the internal rules and representation levels of
sample data. The core idea is to realize pattern recognition of feature extraction of data
through multi-layer nonlinear transformation. In deep learning, the gas recognition models
shown in Figure 3 generally take the form of multi-layer neural networks. Multi-layer
neural networks can distort input space and make data classes linearly separable. The task
of the neural network is to minimize the value of the loss function using the gradient descent
method, obtain the optimal weight parameter of each layer of neurons, and, finally, achieve
convergence. The gas recognition method based on a neural network can automatically
learn the deep-level gas characteristics, which greatly reduces the intervention of artificial
feature extraction. The algorithm has good universality and high application value.
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This paper reviews the typical research results of gas recognition algorithms for
electronic nose systems up to now. The key points are (1) the classic gas recognition
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algorithms, (2) neural network-based gas recognition algorithms, and (3) a comprehensive
comparison of the performances of the above gas recognition algorithms. We hope that this
review paper will provide researchers with a comprehensive overview of gas recognition
algorithms for electronic nose systems.

2. Classical Gas Identification Algorithms
2.1. Classical Gas Recognition Algorithms

Over the years, a variety of classical gas recognition algorithms have been success-
fully applied in electronic nose systems [54]. Next, we will introduce these classical gas
recognition algorithms and comprehensively compare and analyze them.

The basic working mechanism of the classical gas recognition algorithm is to design
the features according to the waveform of the time series signal and discover the hidden
deep structure through the features. Feature extraction of gas sensing data can obtain
features with more resolution, abstractness, and invariance. Generally, the classical gas
recognition algorithms mainly include the following six algorithms.

(1) Principal Component Analysis (PCA)

PCA is an unsupervised learning technique used to reduce the dimension of sample
data, increase interpretability, and minimize information loss at the same time [55]. In
2008, Sen et al. used PCA to distinguish 10 kinds of gaseous hydrogen sulfide (H2S) with
different concentrations, and the recognition accuracy was 100% [56]. In 2022, Khorramifar
et al. constructed an experimental electronic nose device and combined it with PCA for the
identification of grape varieties [57].

PCA is mainly used to reduce the dimension of data and reduce the computational cost
of the algorithm, which can remove certain noise. However, PCA is used in unsupervised
and linear cases, and it cannot distinguish the electronic nose data with categories and
nonlinear data. To some extent, this method limits the application of the sensor array
composed of metal oxide sensors, namely the electronic nose.

(2) Linear Discriminant Analysis (LDA)

LDA is a supervised learning technique that is used to project data into a low-
dimensional space and ensure that the intra-class variance of each category is small while
the mean difference between classes is large [58]. In 2006, Gomez et al. used behavioral
aroma information to evaluate different ripening states of tomato using PCA and LDA,
as shown in Figure 4a,b. For PCA, there were obvious differences between each group
and the other groups, except that the overlap degree between the half-ripe group and
the unripe group was relatively light. The LDA method was adopted to classify all the
different ripeness states of tomato [59]. In 2017, Choi et al. proposed an electronic nose
gas classification data reconstruction method based on subspace analysis, designed an
electronic nose system with stronger robustness to data errors, and enhanced the spatial
discrimination ability of PCA plus LDA [60]. In 2022, Palacin et al. successfully identified
complex aromas of caffeinated and decaffeinated espresso package types using LDA [61].
In the same year, Palacin et al. applied LDA to the electronic nose to classify two volatile
organic compounds, ethanol and acetone [62].

In recent years, PCA and LDA, two data dimension reduction methods, have been
successfully applied in gas identification to finally realize the classification and recognition
of different gases. However, LDA may over-fit the data and eventually lead to a decline in
gas identification accuracy.



Crystals 2023, 13, 615 5 of 24

Crystals 2023, 13, x FOR PEER REVIEW 5 of 23 
 

 

ripeness states of tomato [59]. In 2017, Choi et al. proposed an electronic nose gas classifi-
cation data reconstruction method based on subspace analysis, designed an electronic 
nose system with stronger robustness to data errors, and enhanced the spatial discrimina-
tion ability of PCA plus LDA [60]. In 2022, Palacin et al. successfully identified complex 
aromas of caffeinated and decaffeinated espresso package types using LDA [61]. In the 
same year, Palacin et al. applied LDA to the electronic nose to classify two volatile organic 
compounds, ethanol and acetone [62]. 

In recent years, PCA and LDA, two data dimension reduction methods, have been 
successfully applied in gas identification to finally realize the classification and recogni-
tion of different gases. However, LDA may over-fit the data and eventually lead to a de-
cline in gas identification accuracy. 

  
(a) (b) 

Figure 4. Results of tomato ripeness from two analysis methods: (a) PCA; (b) LDA. Reprinted with 
permission from Ref. [59]. Copyright year 2006, copyright owner Elsevier. 

(3) Support Vector Machine (SVM) 
SVM is a supervised pattern recognition and machine learning method. It is a linear 

classifier defined on the feature space with the largest interval, which realizes the op-
timization of generalization ability under the condition of limited training samples 
[63]. Gas recognition based on SVM is a mature theory and has been proven to be success-
ful in many practical applications. In 2010, Pardo et al. applied SVM to the recognition of 
electronic nose data. In Figure 5, two separating hyperplanes are shown. The main idea of 
SVM is to use specific hyperplanes to separate different classes and maximize classifica-
tion spacing. The interval refers to the distance from the classification hyperplane to the 
nearest point in the data set [64]. 

Figure 4. Results of tomato ripeness from two analysis methods: (a) PCA; (b) LDA. Reprinted with
permission from Ref. [59]. Copyright year 2006, copyright owner Elsevier.

(3) Support Vector Machine (SVM)

SVM is a supervised pattern recognition and machine learning method. It is a linear
classifier defined on the feature space with the largest interval, which realizes the opti-
mization of generalization ability under the condition of limited training samples [63]. Gas
recognition based on SVM is a mature theory and has been proven to be successful in many
practical applications. In 2010, Pardo et al. applied SVM to the recognition of electronic
nose data. In Figure 5, two separating hyperplanes are shown. The main idea of SVM is to
use specific hyperplanes to separate different classes and maximize classification spacing.
The interval refers to the distance from the classification hyperplane to the nearest point in
the data set [64].
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In 2017, Qiu et al. classified gases in fruit juice food additives using the SVM
method [65]. In 2021, Binston et al. applied the SVM method to the electronic nose
system to detect lung cancer, chronic obstructive pulmonary disease (COPD), and other
lung diseases through changes in volatile organic compounds (VOC) in exhaled gases [66].
Furthermore, some improved SVMs, for instance, the Least Squares Support Vector Ma-
chine (LSSVM), have been applied to gas identification [67,68]. In 2015, Smulko et al.
successfully predicted gas concentration using a single gas sensor based on the LSSVM
method. The LSSVM method does not need to remove data noise, smooth data, or other
tedious data processing, which is an advantage of applying the LSSVM method to gas
recognition [67]. Researchers usually adopt two or more combined algorithms for better
gas classification and recognition accuracy. For example, in 2018, Chen et al. combined
PCA with SVM to monitor VOC produced in the ripening process of bananas to identify
different rims of bananas, with the highest recognition accuracy of 97.14% [69]. In 2019,
Shi et al. combined Convolutional Neural Network (CNN) with SVM to identify beer odor
information and achieved a good classification performance of 96.67% in the test set [70].
In recent years, the SVM method has been successfully applied to electronic nose systems.
SVM is a novel small-sample learning method with a solid theoretical basis; therefore, it
can be widely used in small-sample electronic nose data. However, the SVM method is
sensitive to missing data, affecting the accuracy of gas recognition.

(4) K-Nearest Neighbor (KNN)

KNN is a supervised learning algorithm. The KNN method is widely used in non-
parametric statistical methods for classification and regression due to its simplicity and
remarkable classification performance [71]. In 2019, Schroeder et al. used KNN to classify
several complex odors, including cheese, wine, and edible oil samples, with an identifica-
tion accuracy of 91% [72]. In addition, some improved KNNs, such as Fuzzy K-Nearest
Neighbor (F-KNN), are applied to gas recognition. In 2020, Mirzaee–Ghaleh et al. adopted
the F-KNN algorithm to identify fresh and frozen chicken with an accuracy of 95.83% [73].

In addition, researchers often combine KNN with other algorithms to achieve better gas
classification and recognition accuracy. For example, in 2018, Xu et al. used Kernel Principal
Component Analysis (KPCA) to extract the characteristics of nonlinear gas mixtures of
different components and combined it with KNN to recognize the target gases, with an
accuracy of 98.33%. The gas recognition flow chart based on KPCA and KNN methods
is shown in Figure 6. Firstly, the kernel matrix K is constructed from the training sample
set. KPCA is used to extract the features of all the training samples to train the KNN
classifier. Finally, the KNN algorithm is used to identify the features of test samples [74]. In
2021, Ji et al. used PCA and KNN to achieve qualitative and quantitative identification of
various toxin-making chemicals, providing a new approach for rapid online detection of
toxin-making chemicals sensors [4]. The KNN method can be applied to the classification
of nonlinear data, and its principle is simple. However, when the data dimension is very
high, the workload of computation is large. Samples that are close together may not belong
to the same category.
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(5) Decision Tree (DT)

DT is a non-parametric supervised learning method. It is a kind of decision judgment
model based on a tree structure. It classifies data sets through multiple condition discrimi-
nation processes and finally obtains the required results [75]. The most important feature of
a Decision Tree Classifier (DTC) is that it can decompose a complex decision judgment into
a series of simpler decisions that have good explanatory ability [76]. In 2011, Cho et al. used
decision tree methods of different tree models (C4.5 and CART) for the classification of
electronic nose data [44]. In 2012, Cho et al. adopted a pattern recognition technique based
on DT, as shown in Figure 7, to achieve the classification of explosive precursors and the
estimation of their concentrations, and the recognition accuracy was 93.75% [77]. In 2014,
Hassan et al. adopted the binary decision tree method for gas classification and considered
the difference in sensitivity of each pair of sensors in the multi-sensor array as the input at-
tribute of the tree. When the same concentration data were used in the training and testing
stages, the accuracy of the algorithm was 100%; when different concentration data were
used in the testing stage, the classification performance of the algorithm was 95.5% [78]. In
2016, He et al. used the Short-time Fourier Transform (STFT) feature extraction method
combined with the DT method to classify carbon monoxide, methane, and ethanol gases of
different concentrations. Considering that gas data usually contain more low-frequency
information than high-frequency information, STFT is used to extract the low-frequency
amplitude and is combined with a genetic algorithm to select the best features. Then, the
decision tree classifier is used to achieve gas classification, and better classification results
are obtained [79]. The time complexity of the DT algorithm is small and it can be used
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for electronic nose data with small samples. However, over-fitting occurs easily. For data
with inconsistent sample numbers in different categories, the result of DT is biased to those
features with more numerical values.
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(6) Random Forest (RF)

RF employs multiple decision trees to train and predict samples. That is to say, the
RF algorithm contains multiple decision trees, and the category of its output is deter-
mined by the many trees of the categories of individual decision tree output [80]. In 2018,
Wei et al. proposed a gas sensor array optimization method based on RF, which took Gini
importance as a new measure of sensor contribution to obtain the optimal sensor array.
CO, CH4, and their mixtures were classified from an initial array of six sensors, and the
recognition accuracy was 99.96% [81]. In 2020, Muhamad et al. adopted RF as a multi-
classification technique to identify multiple gas by-products, eventually achieving 96.4%
accuracy. As shown in Figure 8, multiple sets of data are obtained from the original training
data, multiple classifiers are established, and finally, a group of classifiers is connected to
build an effective combination classifier [82]. In 2022, Bogdal et al. adopted the random
forest method to identify fire debris with or without gasoline, and the algorithm performed
well. Compared with a convolutional neural network, the amount of training data and
training time required by the random forest method are significantly less [83].
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RF can handle high-dimensional and unbalanced data well, in general. However, it
may not produce a good classification for small-sample data. It is more complex than the
decision tree algorithm, and the calculation cost is higher.
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(7) Naive Bayes Model (NBM)

The Naive Bayes Model is a classification method based on Bayes’ theorem and
the assumption of independence of feature conditions. It is a probabilistic model with
a Directed Acyclic Graph (DAG) topology that is suitable for expressing and analyzing
uncertain and probabilistic events [84]. In 2017, Wijaya et al. used the Naive Bayes classifier
to identify fresh beef and pork with 75% accuracy [85]. In 2019, Grodniyomchai B et al. used
the Naive Bayes classifier to identify odorless, beery, whiskey, and wine flavors with 100%
accuracy [86]. In 2022, Pan H et al. used the improved Naive Bayes method to identify air
leaks in coal mine boreholes with an accuracy of 98.9%. As shown in Figure 9, the traditional
NBM was improved using MDF theory and PCA, and the gas leakage identification model
of gas extraction boreholes was established. The new classifier eliminated the shortcomings
of the NBM that could not adapt to missing data and non-standard data and greatly
improved the classification ability of the model [87].

The NBM algorithm is simple and easy to implement, performs well on small-sample
data, and can handle multiple classification tasks. However, prior probability shall be
known, and it depends on the hypothesis in many cases. The hypothesis model can have
many cases; therefore, the prediction effect will be poor in some cases due to the hypothesis
prior model.
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(8) Extreme Learning Machine (ELM)

ELM is a new fast-learning algorithm, which randomly initializes the input weight,
and analyzes it to determine the output weight of the network. It has few training pa-
rameters, fast learning speed, strong generalization ability, and other advantages. In 2017,
Jian et al. proposed Weighted Multiple Kernel Extreme Learning Machine (QWMK-ELM)
on the basis of ELM and compared it with classical classification methods, such as ELM,
KELM, KNN, SVM, and MLP. Experimental results show that the proposed QWMK-ELM
is superior to the above methods, not only in terms of accuracy but also in terms of gas
classification efficiency [88]. In 2017, Zhang et al. combined a Self-Expression Model
(SEM) and ELM to identify outliers in the electronic nose response, and a large number of
experimental results have proven the effectiveness of the proposed method [89].

In 2022, Wang et al. used SVM, ELM, and Back Propagation Neural Network (BPNN)
to quantitatively analyze six types of VOC. Among them, the ELM algorithm model
showed the best performance; the recognition accuracy was up to 99% in the five-fold
cross-validation. Figure 10 shows the schematic diagram of the integration model based
on BPNN, ELM, and SVM. The integrated model has good compatibility and scalability.
Using the pipeline module in sklearn, a series of data operations contained in the pattern
recognition in the electronic nose system are formed into a workflow for gas recognition.

ELM is a kind of feed-forward neural network with single-layer hidden nodes, wherein
the parameters of hidden nodes are randomly assigned without tuning operation, and
the output weights are usually learned in one step, which makes ELM classification more
efficient [90]. The hidden layer of ELM does not need iteration and has a fast learning
speed and good generalization performance. However, it only considers empirical risks
rather than structural risks, which may lead to the problem of over-fitting and reduce the
accuracy of gas identification.
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2.2. Analysis and Comparison of Classical Gas Recognition Algorithms

In Table 1, we summarize and compare the properties of classical gas recognition
algorithms for electronic nose systems. As can be seen from Table 1, the classical gas iden-
tification algorithms generally have fast training speeds and fine interpretability, though
sensitive to missing data.

It can be known from [4,56,59,74,79] that optimal gas recognition algorithms can be
selected according to the characteristics of sensor signal data when carrying out gas recog-
nition experiments. It is found from [50,67,68,73] that, in view of different gas recognition
scenarios, improved classical gas recognition algorithms can achieve better gas recognition
accuracy. According to [4,69,70,74,79], for specific gas recognition scenarios, the efficient
combination of two or more algorithms can realize the accurate recognition of different
types of gas. Many classical gas recognition algorithms, such as KNN and SVM, have
relatively fixed frames and few parameters; therefore, their model generalization ability
is not strong. As another example, the PCA method usually requires complex feature
engineering and dimensionality reduction of data; therefore, the steps are complicated,
and the application is limited. Moreover, in a complex real environment, the air humid-
ity and temperature are often not controlled; therefore, the accuracy of the classical gas
identification algorithm is greatly affected by the air temperature and humidity.
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Table 1. Comparison of the classical traditional gas identification algorithms.

PCA LDA SVM KNN DT RF NBM ELM

Property Unsupervised Supervised Supervised Supervised Supervised Supervised Unsupervised Unsupervised
Training speed Fast Fast Moderate Moderate Fast Moderate Moderate Fast

Demand for data Low Low Low High Low High Moderate Low
Robustness for noise Moderate Moderate Low High Moderate High Low Low

Sensitive to missing data Low Low Moderate Low Low Moderate Low Moderate
Interpretability Moderate Moderate High High Moderate High Moderate Moderate
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Since gas sensor data are usually represented as time series signals, it is necessary
to artificially design features according to the waveform of time series signals [68,69].
Moreover, for classical gas recognition algorithms, the quality of feature extraction will
directly affect the accuracy of final classification results, which leads to greater difficulty in
feature extraction of classical gas recognition algorithms and poor algorithm universality.
Research in [70–72] shows that the recognition accuracy of traditional gas recognition
algorithms (for example, SVM, KNN, etc.) is lower than that of gas recognition algorithms
based on neural networks (such as CNN, DCNN, etc.) for the same gas to be identified.

At the same time, because the real measurement environment of the electronic nose is
very different, the change in ambient temperature and humidity will affect the response of
the sensors. After investigation, the classical gas recognition algorithm cannot solve the
problem of sensor drift very well.

3. Neural Network-Based Gas Recognition Algorithms
3.1. Neural Network-Based Gas Recognition Algorithms

For complex gas identification tasks, neural networks usually can perform better
compared with classic ones. Compared with classical gas recognition algorithms, neural
networks achieve higher gas recognition accuracy by adjusting their network layers, the
number of neurons in each layer, the activation functions of neurons, and the hyperpa-
rameters, etc. Generally speaking, the more learning samples a neural network has, the
stronger its generalization ability and classification recognition performance will be. Below
are some progress of typical neural network-based gas recognition algorithms.

3.1.1. Back Propagation Neural Network (BPNN)

As shown in Figure 11, BPNN is a multi-layer feed-forward feedback neural network
composed of an input layer, hidden layer, and output layer. By adjusting the weight
between each layer, it can realize any nonlinear mapping from input to output. Moreover,
the weight between each layer is optimized using the back propagation learning algorithm;
therefore, it is called the back propagation neural network [91,92].
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In 2013, Sunny et al. used BPNN and Average Slope Multiplication (ASM) to effectively
classify different kinds of gases, and the classification accuracy was 100%. They built a
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new model combining ASM and PCA algorithms to improve the BPNN algorithm. By
preprocessing the data with the ASM algorithm, more effective dynamic response features
can be extracted from the original response, and the quality of the data processed with ASM
technology is greatly improved, giving the BPNN algorithm higher accuracy [93]. In 2019,
Gu et al. used BPNN to classify and predict the species and quantity of Aspergillus in rice,
and the recognition accuracy was 96.4% [52]. In 2021, Chu et al. adopted BPNN to recognize
11 mixture gases with an accuracy of 100% [94]. In 2013, Benrekia et al. developed an
original gas recognition system for industrial gas classification. The BPNN-based classifier
can effectively classify five industrial gases [95].

After carefully checking the progress of the BPNN algorithm in metal oxide sensors-
based electronic noses in recent years, we conclude that, although the BPNN algorithm
has an excellent performance in classification accuracy, it needs to train a large number
of parameters due to its complex network structures. Therefore, it often requires a large
amount of calculation when solving complex gas classification problems, resulting in long
training time. In order to improve the performance of BPNN algorithms for electronic
noses, it is also necessary to optimize the number of layers and parameters of the network.
In most cases, combining the BPNN algorithm with other algorithms is a good route to
make up for the shortcomings of the BPNN algorithm.

3.1.2. Radial Basis Function Neural Networks (RBFNN)

As shown in Figure 12, RBFNN consists of an input layer, hidden layer, and output
layer. The weights between the input layer and the hidden layer are all set to 1, and
the activation function of the hidden layer uses the radial basis function. The weights
between the hidden layer and the output layer can be changed through training as in
a normal neural network. RBFNN is a feed-forward neural network with unique best
approximation, simple design, strong generalization ability, strong input noise resistance,
and strong online learning ability [96]. It has been proven that RBFNN can approximate
any continuous nonlinear network with any accuracy, and it is widely used in the fields
of function approximation, speech recognition, pattern recognition, image processing,
automatic control, and fault diagnosis.
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In 2017, Jiang et al. proposed an active learning algorithm that effectively combined
Query By Committee (QBC) and RBFNN into the electronic nose, achieving good clas-
sification and recognition accuracy of indoor pollutants such as toluene, formaldehyde,
and benzene [97]. In 2018, Zhang et al. proposed an oil and gas pipeline defect recog-
nition model based on the RBFNN model and adopted the Improved Particle Swarm
Optimization algorithm (IPSO-RBFNN) to select the optimal parameters, finally achieving
a higher recognition accuracy. The model adopts entropy-based population initialization,
uses dynamically adjusted inertia weight and improved learning factor to improve PSO,
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and effectively solves the problems of traditional IPSO, such as long search time and
easy-to-capture local minimum [98].

Considering the application of the RBFNN algorithm in the electronic nose, it effec-
tively avoids the local optimum problem of the BPNN algorithm, and its strong robustness
and online learning ability can also improve the performance of the electronic nose. How-
ever, RBFNN and BPNN algorithms share the same shortcomings. They require a large
amount of data to complete the training of network parameters; therefore, optimizing
the network model and completing the training with fewer data and faster time becomes
particularly important.

3.1.3. Convolutional Neural Network (CNN)

CNN is widely used in the field of image recognition, and it is inspired by the natural
visual perception mechanism of biology. As shown in Figure 13, it is usually composed of
one or more convolution layers, pooling layers, and fully connected layers. Peng et al. first
applied CNN to gas identification in 2018. They designed a Deep Convolutional Neural
Network (DCNN) with up to 38 layers that identified four different odors with 95.2%
accuracy [99]. In 2019, Pan et al. proposed a new method combining hybrid CNN and
Recurrent Neural Network (RNN) to quickly identify four different gases, with the highest
accuracy of 98.28% [100].
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In 2020, Wang et al. proposed an optimized DCNN, which uses a special strip 1D
kernel in the convolutional layer and pooling layer, as shown in Figure 14, and has an
accuracy rate of 87.56% for the classification of various Chinese herbal medicines [102].
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In 2021, Ma et al. proposed a new method combining a dynamic response graph with
a Deep Learning Model (DLM), and the recognition accuracy of 10 VOCs was 92% [103].
In 2021, Xiong et al. combined CNN with Spiking Neuron Networks (SNN) to identify
the mixed odor of spoiled food and rotten fruit, with an average test accuracy of 84.5%
and 88.6%, respectively [104]. In 2022, Zhao et al. proposed a new One-Dimensional Deep
Convolutional Neural Network (1D-DCNN). This method has an algorithm based on a
multi-label method, which can fully and automatically extract and classify the features of a
gas mixture with an accuracy of 96.3% [105].

In 2022, Sharma et al. designed an effective and reliable gas hazard monitoring
system by combining a filter based on Dempster–Shafer Evidence Theory (DSET) with
a One-Dimensional Convolutional Neural Network (1DCNN) classifier, which solved a
problem in underground coal mines and mining operations. However, the accuracy of gas
classification may be affected by the failure of gas sensors due to the harsh environment.
By fusing DSET and 1DCNN, the classification accuracy reached 99.6%, even in the case
of partial sensor failure [106]. In 2022, Feng et al. proposed Augmented Convolutional
Neural Network (ACNN). The ACNN model is a constantly updated machine-learning
framework that automatically converts time-varying gas signals into multidimensional
characteristic matrices. Then, the knowledge of the existing model is extended with the
incremental data through internal parameter tuning, and the model deviation is further
compensated with an external adjustment module on the basic CNN classifier. Finally, the
pattern recognition method can solve the problem of gas identification for a long time with
high accuracy, and it can deal with the sensor drift problem well [101]. In 2022, Sun et al.
combined the gas sensor array with the CNN pattern recognition model to identify the
freshness of refrigerated tilapia, with an accuracy of 92.31% [107].

It can be seen that the CNN algorithm can automatically extract data features and has
a better application effect in the metal oxide sensor array. Both in terms of classification
accuracy and training speed, the CNN algorithm has more advantages than the traditional
machine learning and BP neural network. At the same time, as mentioned in article [105],
the CNN algorithm can also maintain a very high accuracy under strong interference.
However, when using a gradient descent algorithm to train CNN, the training results are
easy to converge to the local minimum rather than the global minimum, and the selection of
pooling layer parameters will also directly affect the final classification accuracy. Therefore,
to improve the performance of the metal oxides-based electronic nose, the CNN algorithm
should adopt more efficient trainers or be combined with other algorithms, automatically
extracting more valuable features from small data.

3.1.4. Recurrent Neural Network (RNN)

On the basis of traditional neural networks, RNN introduces state variables to store
past information and set weights and output results together with the current input. This
optimization allows RNN to handle timing information better. Although RNN can deal
with certain short-term dependencies, it cannot deal with long-term dependencies. When
the sequence is long, it is difficult for the gradient at the back of the sequence to propagate
back to the previous sequence, which leads to the problem of gradient disappearance. In
order to improve the computing efficiency of RNN and avoid gradient disappearance,
Hochreiter and Schmidhuber proposed Long Short-Term Memory (LSTM) in 1997. Its
structure is shown in Figure 15. By adding an input gate, forgetting gate, and output gate,
a sigmoid function was introduced and combined with the tanh function. The possibility
of gradient vanishing and gradient explosion is effectively reduced [108].
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In 2019, Wang et al. proposed a cyclic neural network based on LSTM to solve the
problem of chemical sensor drift. This technology can better mine the deep information
of sensor drift signals, replace manual extraction, and more accurately match complex
nonlinearity. The proposed LSTM prediction model can predict the baseline and drift of
chemical sensors in the long term and accurately [110]. In 2021, Zou et al. used RNN to
classify six gases, with an average accuracy of 95% [111]. In 2021, Zhang et al. proposed
a new gas recognition and concentration estimation model based on a many-to-many
long short-term memory-recurrent neural network (LSTM-RNN) and dynamic wavelet
convolutional neural network and realized the recognition of carbon monoxide, hydrogen
gas, and carbon monoxide and hydrogen gas mixture with accuracy close to 100% [109].
In 2021, Kwon et al. proposed a gas detection system based on RNN and prepared a gas
sensor for detecting nitrogen dioxide and hydrogen sulfide using In2O3 films as sensing
materials. The RNN algorithm mentioned in this paper has better gas classification accuracy
than other algorithms, even when using fewer input neurons and smaller arrays, which
makes the RNN algorithm with small arrays more suitable for low-power metal oxide
sensors [112]. In 2021, Bakiler et al. used the method of LSTM-RNN to extract the features
of gas data signals, realizing the classification of carbon monoxide, ethylene, ethanol, and
methane with the highest accuracy of 90.8%. Compared with other traditional pattern
recognition methods, the accuracy has been greatly improved [113].

The RNN algorithm correlates the information of time series by adding memory units.
This feature allows the RNN algorithm to use fewer data and extract more effective features;
therefore, the RNN algorithm is widely used in fast gas identification. However, it should
be noted that the problem of gradient disappearance easily occurs when using the RNN
algorithm, resulting in a poor model training effect.

3.1.5. Spiking Neural Network (SNN)

SNN is a new generation artificial neural network model derived from biological
inspiration, which is the most reasonable neuronal model in biology. It is used to capture
the observed information dynamics among real biological neurons and represent and
integrate multiple information dimensions [114]. As shown in Figure 16, different from
classical neural networks, neurons in pulsed neural networks are not activated in every
iteration propagation but only when their membrane potential reaches a certain threshold.

The model structure is shown in Figure 17. This structure mimics the basic structure
of the mammalian olfactory system. The network consists of three layers: the olfactory
neuron layer, the mitral valve cell layer, and the granular cell layer. The olfactory neuron
layer converts chemical information about odors into electrical information and sends this
information to the mitral valve cell layer. The mitral valve cell layer and granulosa cell layer
perform signal processing and initial odor recognition. The granulosa layer is an inhibitory
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cell that helps modify signaling and sorting. The connections between different olfactory
neuron layers are considered to be transverse connections, while the connections between
olfactory neuron layers and mitral valve cell layers are considered to be feed-forward
connections [115].
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In 2015, Sankho et al. applied SNN to the odor classification of orthodox black tea
with the highest accuracy of 94.68% [116]. In 2016, Jing et al. combined SNN and SVM
to classify seven kinds of liquor with an accuracy rate of 93%, which was an obvious
improvement compared with that of LDA/SVM/BPNN, three traditional pattern recogni-
tion algorithms [115]. In 2022, Han et al. used SNN to analyze complex mixed signals to
identify odor sources, and the classification accuracy reached 98.25%. Meanwhile, SNN
has achieved a good energy-saving effect compared with a traditional electronic nose
using deep neural network algorithms [117]. In 2021, Kwon et al. proposed an artificial
olfactory system based on SNN and field effect transistors-type gas sensors to realize rapid
and reliable detection of toxic gases. Only the first 5 s of response data from 12 sensors
were used, and the error rate of SNN in predicting nitrogen dioxide and hydrogen sulfide
concentrations was less than 3% [118].

Considering the use of the SNN algorithm for metal oxide sensors, we conclude
that the SNN algorithm has stronger robustness in that gas data can be easily affected by
temperature, humidity, and other environmental effects, and the SNN algorithm can deal
with the data drift problem of metal oxide sensors well. However, since the framework of
SNN algorithms is not yet perfect, SNN for gas identification has many challenges in terms
of accuracy and design complexity.
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3.2. Analysis and Comparison of Gas Recognition Algorithms Based on Neural Network

In Table 2, we summarize and compare the gas recognition algorithms based on neural
networks. From Table 2, it can be found that RBFNN, CNN, and SNN have faster training
speeds, and CNN, RNN, and SNN have stronger noise robustness. Generally speaking,
with enough training samples, the gas recognition algorithm based on a neural network
usually has higher gas recognition accuracy than the classical one. The algorithms can
be optimized by adjusting their network layers, the number of neurons in each layer,
the activation function of neurons, and hyper-parameters so as to achieve higher gas
recognition accuracy.

Table 2. Comparison based on neural network gas identification algorithms.

BPNN RBFNN CNN RNN SNN

Property Unsupervised Supervised Supervised Supervised Unsupervised/Supervised
Training speed Slow Fast Fast Moderate Fast

Demand for data Moderate Moderate High Low High
Robustness for noise Moderate Moderate High High High

Sensitive to missing data Low Low Low Low Low
Interpretability High Moderate Moderate Moderate Moderate

It is found from the studies in [93,94,101,104] that neural networks such as BPNN,
CNN, RNN, SNN, RBFNN, etc., have advantages in gas recognition accuracy and the
number of gas types. One critical reason is that when the data size is large enough, the
classical gas recognition algorithms will encounter a recognition performance bottleneck in
the case of limited parameters and a relatively fixed frame, but the gas recognition accuracy
based on neural networks can be further improved. At the same time, the accuracy of the
classical gas recognition algorithms depends very much on the quality of feature extraction
of data. It is found that the classical gas recognition algorithms can achieve good accuracy
under the limited small sample types. However, with the increase in gas recognition
types, the accuracy of the classical gas recognition algorithm declines. When more than
five kinds of gas are identified, the classical gas recognition algorithm cannot give good
classification results. However, the neural network-based gas recognition algorithms also
have good accuracy when more than 10 kinds of gas are classified. Because the neural
network algorithms have stronger learning ability, i.e., they usually have enough sample
data to train the neural network, gas recognition can achieve higher classification accuracy.

At the same time, neural network-based gas recognition algorithms can achieve higher
classification accuracy and faster training speed by selecting proper optimizers when
training the network. Classical optimizers in the past include the Stochastic Gradient
Descent (SGD) method, which randomly selects one sample each time. Although it enables
the parameter updating speed to reach the optimal value more quickly, the frequent
updating of the SGD method sometimes causes serious shock to the loss function. In
recent years, with the continuous development of deep learning, more and more excellent
optimizers have been designed, among which Adaptive Moment Estimation (Adam) has the
advantages of simple implementation, efficient calculation, and few memory requirements.
At the same time, the learning rate can be automatically adjusted during the training process.
The emergence of the Adam optimizer makes the training of the model more efficient.
In [110], the author successfully applied the Adam optimizer in the deep convolutional
neural network of the training electronic nose, making the whole training process of the
model more efficient.

4. Conclusions

This paper reviews the gas recognition methods in metal oxide-based electronic noses,
including the classical and neural network-based algorithms, and analyzes and compares
the performance of different gas recognition algorithms. It is found that the classical gas
recognition algorithms are simple to implement and have obvious advantages in classifying
small-sample data. However, classical gas recognition algorithms usually require complex
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feature engineering, which requires dimensionality reduction, feature extraction and feature
selection of data, etc.; therefore, the steps are complicated, and the application is limited.
In contrast, neural network-based gas recognition algorithms usually have higher gas
recognition accuracy than classical ones. Neural network-based gas recognition algorithms
can be optimized by adjusting their network layer structures, the number of neurons in
each layer, and the activation function of neurons and hyperparameters to achieve higher
gas recognition accuracy. At the same time, the gas recognition model based on a neural
network has better anti-interference ability and stronger robustness.

In the future, a lighter and more efficient gas recognition model will be constructed
and applied to different scenarios to realize the wide application of metal oxides-based
electronic nose systems.

Author Contributions: Conceptualization, M.J.; methodology, Z.Z.; software, X.W.; validation, X.W.,
Y.Z., and M.J.; formal analysis, Z.Z.; investigation, X.F.; resources, M.J.; data curation, X.W.; writing—
original draft preparation, X.W. and Y.Z.; writing—review and editing, M.J.; visualization, X.W. and
Y.Z; supervision, M.J.; project administration, Z.Z.; funding acquisition, Z.W. and M.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of China (2022CSJGG0703),
National Natural Science Foundation of China (62204260, 52204253), Opening Foundation of Civil Aircraft
Fire Science and Safety Engineering Key Laboratory of Sichuan Province (MZ2023KF06).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature

1982, 299, 352–355. [CrossRef] [PubMed]
2. Liu, H.; Meng, G.; Deng, Z.; Li, M.; Chang, J.; Dai, T.; Fang, X. Progress in Research on VOC Molecule Recognition by

Semiconductor Sensors. Acta Phys. Chim. Sin. 2022, 38, 2008018. [CrossRef]
3. Meng, F.; Li, X.; Yuan, Z.; Lei, Y.; Qi, T.; Li, J. Ppb-Level Xylene Gas Sensors based on Co3O4 Nanoparticles coated Reduced

Graphene Oxide (rGO) Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 9511510. [CrossRef]
4. Ji, H.; Qin, W.; Yuan, Z.; Meng, F. Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2

gas Sensor with dynamic measurement and PCA weak separation. Sens. Actuators B Chem. 2021, 348, 130698.
5. Qin, W.; Yuan, Z.; Gao, H.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its

gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015.
6. Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.; Xing, C. Detection of Four Alcohol Homologue Gases by ZnO Gas Sensor in

Dynamic Interval Temperature Modulation Mode. Sens. Actuators B Chem. 2022, 350, 130867. [CrossRef]
7. Meng, F.; Qi, T.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2-templated porous hollow MoO3 microspheres for

highly selective ammonia sensing via a Lewis acid-base interaction. IEEE Trans. Ind. Electron. 2022, 69, 960–970. [CrossRef]
8. Jiao, M.; Chen, X.; Hu, K.; Qian, D.; Zhao, X.; Ding, E. Recent developments of nanomaterials-based conductive type methane

sensors. Rare Met. 2021, 40, 1515–1527.
9. Navaneeth, B.; Suchetha, M. PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications.

Comput. Biol. Med. 2019, 108, 85–92. [CrossRef]
10. Guntner, A.T.; Abegg, S.; Konigstein, K.; Gerber, P.A.; Schmidt-Trucksass, A.; Pratsinis, S.E. Breath sensors for health monitoring.

ACS Sens. 2019, 4, 268–280.
11. Das, S.; Pal, M. Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review. J. Electrochem.

Soc. 2020, 167, 037562. [CrossRef]
12. Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges.

Sens. Actuators B Chem. 2020, 318, 128104. [CrossRef]
13. Paleczek, A.; Rydosz, A. Review of the algorithms used in exhaled breath analysis for the detection of diabetes. J. Breath Res. 2022,

16, 026003. [CrossRef]
14. Paknahad, M.; Ahmadi, A.; Rousseau, J.; Nejad, H.R.; Hoorfar, M. On-chip electronic nose for wine tasting: A digital microfluidic

approach. IEEE Sens. J. 2017, 17, 4322–4329. [CrossRef]

http://doi.org/10.1038/299352a0
http://www.ncbi.nlm.nih.gov/pubmed/7110356
http://doi.org/10.3866/PKU.WHXB202008018
http://doi.org/10.1109/TIM.2021.3097858
http://doi.org/10.1016/j.snb.2021.130867
http://doi.org/10.1109/TIE.2021.3053902
http://doi.org/10.1016/j.compbiomed.2019.03.017
http://doi.org/10.1149/1945-7111/ab67a6
http://doi.org/10.1016/j.snb.2020.128104
http://doi.org/10.1088/1752-7163/ac4916
http://doi.org/10.1109/JSEN.2017.2707525


Crystals 2023, 13, 615 21 of 24

15. Hidayat, S.N.; Triyana, K.; Fauzan, I.; Julian, T.; Lelono, D.; Yusuf, Y.; Ngadiman, N.; Vesolo, A.C.A.; Peres, A.M. The electronic
nose coupled with chemometric tools for discriminating the quality of black tea samples in situ. Chemosensors 2019, 7, 29.
[CrossRef]

16. Pulluri, K.K.; Kumar, V.N. Development of an Integrated Soft E-nose for Food Quality Assessment. IEEE Sens. J. 2022, 22, 15111–15122.
[CrossRef]

17. Lamagna, A.; Reich, S.; Rodríguez, D.; Boselli, A.; Cicerone, D. The use of an electronic nose to characterize emissions from a
highly polluted river. Sens. Actuators B Chem. 2008, 131, 121–124. [CrossRef]

18. Ma, H.; Wang, T.; Li, B.; Cao, W.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Zhou, Z.; Yang, Z. A low-cost and efficient electronic nose
system for quantification of multiple indoor air contaminants utilizing HC and PLSR. Sens. Actuators B Chem. 2022, 350, 130768.
[CrossRef]

19. Liu, M.; Li, Y. Application of electronic nose technology in coal mine risk prediction. Chem. Eng. Trans. 2018, 68, 307–312.
20. Comito, C.; Pizzuti, C. Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review. Artif. Intell. Med.

2022, 128, 102286. [CrossRef]
21. Hidayat, S.N.; Julian, T.; Dharmawan, A.B.; Puspita, M.; Chandra, L.; Rohman, A.; Julia, M.; Rianjanu, A.; Nurputra, D.K.;

Triyana, K.; et al. Hybrid learning method based on feature clustering and scoring for enhanced COVID-19 breath analysis by an
electronic nose. Artif. Intell. Med. 2022, 129, 102323. [CrossRef] [PubMed]

22. Nurputra, D.K.; Kusumaatmaja, A.; Hakim, M.S.; Hidayat, S.N.; Julian, T.; Sumanto, B.; Mahendradhata, Y.; Saktiawati, A.M.;
Wasisto, H.S.; Triyana, K. Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print
recognition. NPJ Digit. Med. 2022, 5, 115. [CrossRef] [PubMed]

23. Mendis, S.; Sobotka, P.A.; Euler, D.E. Pentane and isoprene in expired air from humans: Gas-chromatographic analysis of single
breath. Clin. Chem. 1994, 40, 1485–1488. [CrossRef] [PubMed]

24. Wang, C.; Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection
limits. Sensors 2009, 9, 8230–8262. [CrossRef]

25. Arroyo, P.; Meléndez, F.; Suárez, J.I.; Herrero, J.L.; Rodriguez, S.; Lozano, J. Electronic nose with digital gas sensors connected via
bluetooth to a smartphone for air quality measurements. Sensors 2020, 20, 786. [CrossRef]

26. Romain, A.C.; André, P.; Nicolas, J. Three years experiment with the same tin oxide sensor arrays for the identification of
malodorous sources in the environment. Sens. Actuators B Chem. 2002, 84, 271–277. [CrossRef]

27. Liu, Q.; Li, X.; Ye, M.; Ge, S.S.; Du, X. Drift compensation for electronic nose by semi-supervised domain adaption. IEEE Sens. J.
2013, 14, 657–665. [CrossRef]

28. Zhang, L.; Zhang, D. Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans.
Instrum. Meas. 2014, 64, 1790–1801. [CrossRef]

29. Covington, J.A.; Marco, S.; Persaud, K.C.; Schiffman, S.S.; Troy Nagle, H. Artificial Olfaction in the 21st Century. IEEE Sens. J.
2021, 21, 12969–12990. [CrossRef]

30. Donoho, D.L.; Johnstone, J.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [CrossRef]
31. Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial applications of the Kalman

filter: A review. IEEE Trans. Ind. Electron. 2013, 60, 5458–5471. [CrossRef]
32. Afshari, H.H.; Gadsden, S.A.; Habibi, S. Gaussian filters for parameter and state estimation: A general review of theory and

recent trends. Signal Process. 2017, 135, 218–238. [CrossRef]
33. Wang, X.; Qian, C.; Zhao, Z.; Li, J.; Jiao, M. A Novel Gas Recognition Algorithm for Gas Sensor Array Combining Savitzky–Golay

Smooth and Image Conversion Route. Chemosensors 2023, 11, 96. [CrossRef]
34. Schreyer, S.K.; Mikkelsen, S.R. Chemometric analysis of square wave voltammograms for classification and quantitation of

untreated beverage samples. Sens. Actuators B Chem. 2000, 71, 147–153. [CrossRef]
35. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
36. Liu, T.; Zhang, W.; Ye, L.; Ueland, M.; Forbes, S.L.; Su, S.W. A novel multi-odour identification by electronic nose using

non-parametric modelling-based feature extraction and time-series classification. Sens. Actuators B Chem. 2019, 298, 126690.
[CrossRef]

37. Jong, G.J.; Hendrick; Wang, Z.; Hsieh, K.S.; Horng, G.J. A novel feature extraction method an electronic nose for aroma
classification. IEEE Sens. J. 2019, 19, 10796–10803. [CrossRef]

38. Liu, T.; Zhang, W.; Li, J.; Ueland, M.; Forbes, S.L.; Zheng, W.; Su, S.W. A Multiscale Wavelet Kernel Regularization-Based Feature
Extraction Method for Electronic Nose. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 7078–7089. [CrossRef]

39. Wijaya, D.R.; Afianti, F. Information-theoretic ensemble feature selection with multi-stage aggregation for sensor array optimiza-
tion. IEEE Sens. J. 2021, 21, 476–489. [CrossRef]

40. Attallah, O.; Morsi, I. An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via
artificial intelligence. Measurement 2022, 199, 111458. [CrossRef]

41. Ge, H.; Liu, J. Identification of gas mixtures by a distributed support vector machine network and wavelet decomposition from
temperature modulated semiconductor gas sensor. Sens. Actuators B Chem. 2006, 117, 408–414. [CrossRef]

42. Brudzewski, K.; Osowski, S.; Markiewicz, T. Classification of milk by means of an electronic nose and SVM neural network.
Sens. Actuators B Chem. 2004, 98, 291–298. [CrossRef]

http://doi.org/10.3390/chemosensors7030029
http://doi.org/10.1109/JSEN.2022.3182480
http://doi.org/10.1016/j.snb.2007.12.026
http://doi.org/10.1016/j.snb.2021.130768
http://doi.org/10.1016/j.artmed.2022.102286
http://doi.org/10.1016/j.artmed.2022.102323
http://www.ncbi.nlm.nih.gov/pubmed/35659391
http://doi.org/10.1038/s41746-022-00661-2
http://www.ncbi.nlm.nih.gov/pubmed/35974062
http://doi.org/10.1093/clinchem/40.8.1485
http://www.ncbi.nlm.nih.gov/pubmed/8044986
http://doi.org/10.3390/s91008230
http://doi.org/10.3390/s20030786
http://doi.org/10.1016/S0925-4005(02)00036-9
http://doi.org/10.1109/JSEN.2013.2285919
http://doi.org/10.1109/TIM.2014.2367775
http://doi.org/10.1109/JSEN.2021.3076412
http://doi.org/10.1093/biomet/81.3.425
http://doi.org/10.1109/TIE.2012.2236994
http://doi.org/10.1016/j.sigpro.2017.01.001
http://doi.org/10.3390/chemosensors11020096
http://doi.org/10.1016/S0925-4005(00)00601-8
http://doi.org/10.1002/wics.101
http://doi.org/10.1016/j.snb.2019.126690
http://doi.org/10.1109/JSEN.2019.2929239
http://doi.org/10.1109/TSMC.2022.3151761
http://doi.org/10.1109/JSEN.2020.3000756
http://doi.org/10.1016/j.measurement.2022.111458
http://doi.org/10.1016/j.snb.2005.11.037
http://doi.org/10.1016/j.snb.2003.10.028


Crystals 2023, 13, 615 22 of 24

43. Martın, Y.G.; Oliveros, M.C.C.; Pavón, J.L.P. Electronic nose based on metal oxide semiconductor sensors and pattern recognition
techniques: Characterisation of vegetable oils. Anal. Chim. Acta 2001, 449, 69–80. [CrossRef]

44. Cho, J.H.; Kurup, P.U. Decision tree approach for classification and dimensionality reduction of electronic nose data.
Sens. Actuators B Chem. 2011, 160, 542–548. [CrossRef]

45. Li, Q.; Bermak, A. A low-power hardware-friendly binary decision tree classifier for gas identification. J. Low Power Electron. Appl.
2011, 1, 45–58. [CrossRef]

46. Gardner, J.W.; Boilot, P.; Hines, E.L. Enhancing electronic nose performance by sensor selection using a new integer-based genetic
algorithm approach. Sens. Actuators B Chem. 2005, 106, 114–121. [CrossRef]

47. Gromski, P.S.; Correa, E.; Vaughan, A.A.; Wedge, D.C.; Turner, M.L.; Goodacre, R. A comparison of different chemometrics
approaches for the robust classification of electronic nose data. Anal. Bioanal. Chem. 2014, 406, 7581–7590. [CrossRef]

48. Xu, L.; He, J.; Duan, S.; Wu, X.; Wang, Q. Comparison of machine learning algorithms for concentration detection and prediction
of formaldehyde based on electronic nose. Sens. Rev. 2016, 36, 207–216. [CrossRef]

49. De Vito, S.; Esposito, E.; Salvato, M.; Popoola, O.; Formisano, F.; Jones, R.; Francia, G.D. Calibrating chemical multisensory devices
for real world applications: An in-depth comparison of quantitative machine learning approaches. Sens. Actuators B Chem. 2018,
255, 1191–1210. [CrossRef]

50. Yu, H.; Wang, J.; Xiao, H.; Liu, M. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose
signals. Sens. Actuators B Chem. 2009, 140, 378–382. [CrossRef]

51. Timsorn, K.; Thoopboochagorn, T.; Lertwattanasakul, N.; Wongchoosuk, C. Evaluation of bacterial population on chicken meats
using a briefcase electronic nose. Biosyst. Eng. 2016, 151, 116–125. [CrossRef]

52. Gu, S.; Wang, J.; Wang, Y. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using
electronic nose. Food Chem. 2019, 292, 325–335. [CrossRef] [PubMed]

53. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
54. Marco, S.; Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sens. J.

2012, 12, 3189–3214. [CrossRef]
55. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.

2016, 374, 20150202. [CrossRef]
56. Sen, A.; Albarella, J.D.; Carey, J.R.; Kim, P.; McNamaraet, W.B. Low-cost colorimetric sensor for the quantitative detection of

gaseous hydrogen sulfide. Sens. Actuators B Chem. 2008, 134, 234–237. [CrossRef]
57. Khorramifar, A.; Karami, H.; Wilson, A.D.; Sayyah, A.H.A.; Shuba, A.; Lozano, J. Grape cultivar identification and classification

by machine olfaction analysis of leaf volatiles. Chemosensors 2022, 10, 125. [CrossRef]
58. Hayes, T.L.; Kanan, C. Lifelong machine learning with deep streaming linear discriminant analysis. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.
59. Gómez, A.H.; Hu, G.; Wang, J.; Pereia, A.G. Evaluation of tomato maturity by electronic nose. Comput. Electron. Agric. 2006,

54, 44–52. [CrossRef]
60. Choi, S.I.; Jeon, H.M.; Jeong, G.M. Data reconstruction using subspace analysis for gas classification. IEEE Sens. J. 2017,

17, 5954–5962. [CrossRef]
61. Palacín, J.; Rubies, E.; Clotet, E. Application of a Single-Type eNose to Discriminate the Brewed Aroma of One Caffeinated and

Decaffeinated Encapsulated Espresso Coffee Type. Chemosensors 2022, 10, 421. [CrossRef]
62. Palacín, J.; Clotet, E.; Rubies, E. Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors

Applied to Classify Two Volatiles. Chemosensors 2022, 10, 118. [CrossRef]
63. Chang, C.; Lin, C. A library for support vector machines. TIST 2011, 2, 1–27. [CrossRef]
64. Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 2005,

107, 730–737. [CrossRef]
65. Qiu, S.; Wang, J. The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem. 2017,

230, 208–214. [CrossRef] [PubMed]
66. Va, B.; Subramoniam, M.; Mathew, L. Noninvasive detection of COPD and Lung Cancer through breath analysis using MOS

Sensor array based e-nose. Expert Rev. Mol. Diag. 2021, 21, 1223–1233. [CrossRef]
67. Smulko, J.M.; Ionescu, R.; Granqvist, C.G.; Kish, L.B. Determination of gas mixture components using fluctuation enhanced

sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst. 2015, 22, 341–350.
68. Uçar, A.; Özalp, R. Efficient android electronic nose design for recognition and perception of fruit odors using Kernel Extreme

Learning Machines. Chemom. Intell. Lab. Syst. 2017, 166, 69–80. [CrossRef]
69. Chen, L.; Wu, C.; Chou, T.-I.; Chiu, S.-W.; Tang, K.-T. Development of a dual MOS electronic nose/camera system for improving

fruit ripeness classification. Sensors 2018, 18, 3256. [CrossRef] [PubMed]
70. Shi, Y.; Gong, F.; Wang, M.; Liu, J.; Wu, Y.; Men, H. A deep feature mining method of electronic nose sensor data for identifying

beer olfactory information. J. Food Eng. 2019, 263, 437–445. [CrossRef]
71. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans.

Neural Netw. Learn. Syst. 2017, 29, 1774–1785. [CrossRef]
72. Schroeder, V.; Evans, E.D.; Wu, Y.C.M.; Voll, A.C.C.; McDonald, B.R.; Savagatrup, S.; Swager, T.M. Chemiresistive sensor array

and machine learning classification of food. ACS Sens. 2019, 4, 2101–2108. [CrossRef] [PubMed]

http://doi.org/10.1016/S0003-2670(01)01355-1
http://doi.org/10.1016/j.snb.2011.08.027
http://doi.org/10.3390/jlpea1010045
http://doi.org/10.1016/j.snb.2004.05.043
http://doi.org/10.1007/s00216-014-8216-7
http://doi.org/10.1108/SR-07-2015-0104
http://doi.org/10.1016/j.snb.2017.07.155
http://doi.org/10.1016/j.snb.2009.05.008
http://doi.org/10.1016/j.biosystemseng.2016.09.005
http://doi.org/10.1016/j.foodchem.2019.04.054
http://www.ncbi.nlm.nih.gov/pubmed/31054682
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/JSEN.2012.2192920
http://doi.org/10.1098/rsta.2015.0202
http://doi.org/10.1016/j.snb.2008.04.046
http://doi.org/10.3390/chemosensors10040125
http://doi.org/10.1016/j.compag.2006.07.002
http://doi.org/10.1109/JSEN.2017.2716967
http://doi.org/10.3390/chemosensors10100421
http://doi.org/10.3390/chemosensors10030118
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1016/j.snb.2004.12.005
http://doi.org/10.1016/j.foodchem.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28407902
http://doi.org/10.1080/14737159.2021.1971079
http://doi.org/10.1016/j.chemolab.2017.05.013
http://doi.org/10.3390/s18103256
http://www.ncbi.nlm.nih.gov/pubmed/30262785
http://doi.org/10.1016/j.jfoodeng.2019.07.023
http://doi.org/10.1109/TNNLS.2017.2673241
http://doi.org/10.1021/acssensors.9b00825
http://www.ncbi.nlm.nih.gov/pubmed/31339035


Crystals 2023, 13, 615 23 of 24

73. Mirzaee-Ghaleh, E.; Taheri-Garavand, A.; Ayari, F.; Lozano, J. Identification of fresh-chilled and frozen-thawed chicken meat and
estimation of their shelf life using an E-nose machine coupled fuzzy KNN. Food Anal. Methods 2020, 13, 678–689. [CrossRef]

74. Xu, Y.; Zhao, X.; Chen, Y.; Zhao, W. Research on a mixed gas recognition and concentration detection algorithm based on a metal
oxide semiconductor olfactory system sensor array. Sensors 2018, 18, 3264. [CrossRef]

75. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
76. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. 1991, 21, 660–674. [CrossRef]
77. Cho, J.; Li, X.; Gu, Z.; Kurup, P.U. Recognition of explosive precursors using nanowire sensor array and decision tree learning.

IEEE Sens. J. 2011, 12, 2384–2391. [CrossRef]
78. Hassan, M.; Bermak, A. Gas classification using binary decision tree classifier. In Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014.
79. He, A.; Yu, J.; Wei, G.; Chen, Y.; Wu, H. Short-time Fourier transform and decision tree-based pattern recognition for gas

identification using temperature modulated microhotplate gas sensors. J. Sens. 2016, 2016, 7603931. [CrossRef]
80. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
81. Wei, G.; Zhao, J.; Yu, Z.; Feng, Y.; Li, G.; Sun, X. An effective gas sensor array optimization method based on random forest. In

Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018.
82. Muhamad, N.A.; Musa, I.V.; Malek, Z.A.; Mahdi, A.S. Classification of partial discharge fault sources on SF6 insulated switchgear

based on twelve by-product gases random forest pattern recognition. IEEE Access 2020, 8, 212659–212674. [CrossRef]
83. Bogdal, C.; Schellenberg, R.; Lory, M.; Bovens, M.; Höpli, O. Recognition of gasoline in fire debris using machine learning: Part I,

application of random forest, gradient boosting, support vector machine, and naïve bayes. Forensic Sci. Int. 2022, 331, 111146.
[CrossRef]

84. Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10
algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

85. Wijaya, D.R.; Sarno, R.; Daiva, A.F. Electronic nose for classifying beef and pork using Naïve Bayes. In Proceedings of the 2017
International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), Surabaya, Indonesia, 25–26 August 2017.

86. Grodniyomchai, B.; Chalapat, K.; Jitkajornwanich, K.; Jaiyen, S. A deep learning model for odor classification using deep neural
network. In Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST),
Luang Prabang, Laos, 2–5 July 2019.

87. Pan, H.; He, S.; Zhang, T.; Song, S.; Wang, K. Application of an improved naive Bayesian analysis for the identification of air leaks
in boreholes in coal mines. Sci. Rep. 2022, 12, 16081. [CrossRef]

88. Jian, Y.; Huang, D.; Yan, J.; Lu, K.; Huang, Y.; Wen, T.; Zeng, T.; Zhong, S.; Xie, Q. A novel extreme learning machine classification
model for e-Nose application based on the multiple kernel approach. Sensors 2017, 17, 1434. [CrossRef]

89. Zhang, L.; Deng, P. Abnormal odor detection in electronic nose via self-expression inspired extreme learning machine. IEEE Trans.
Syst. Man Cybern. Syst. 2017, 49, 1922–1932. [CrossRef]

90. Wang, T.; Zhang, H.; Wu, Y.; Chen, X.; Chen, X.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Yang, Z. Classification and concentration
prediction of VOCs with high accuracy based on an electronic nose using an ELM-ELM integrated algorithm. IEEE Sens. J. 2022,
22, 14458–14469. [CrossRef]

91. Xu, X.; Qin, H.; Zhou, J. Cyber Intrusion Detection Based on a Mutative Scale Chaotic Bat Algorithm with Backpropagation
Neural Network. Secur. Commun. Netw. 2022, 2022, 5605404. [CrossRef]

92. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

93. Mishra, V.N.; Dwivedi, R.; Das, R.R. Classification of gases/odors using dynamic responses of thick film gas sensor array.
IEEE Sens. J. 2013, 13, 4924–4930.

94. Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of gas mixtures via sensor
array combining with neural networks. Sens. Actuators B Chem. 2021, 329, 129090. [CrossRef]

95. Benrekia, F.; Attari, M.; Bouhedda, M. Gas sensors characterization and multilayer perceptron (MLP) hardware implementation
for gas identification using a field programmable gate array (FPGA). Sensors 2013, 13, 2967–2985. [CrossRef]

96. Yu, H.; Xie, T.; Paszczyñski, S.; Wilamowski, B.M. Advantages of radial basis function networks for dynamic system design.
IEEE Trans. Ind. Electron. 2011, 58, 5438–5450. [CrossRef]

97. Jiang, X.; Jia, P.; Luo, R.; Deng, B.; Duan, S.; Yan, J. A novel electronic nose learning technique based on active learning:
EQBC-RBFNN. Sens. Actuators B Chem. 2017, 249, 533–541. [CrossRef]

98. Zhang, H.; Yu, X. Research on oil and gas pipeline defect recognition based on IPSO for RBF neural network. Sustain. Comput.
Inform. Syst. 2018, 20, 203–209. [CrossRef]

99. Peng, P.; Zhao, X.; Pan, X.; Ye, W. Gas classification using deep convolutional neural networks. Sensors 2018, 18, 157. [CrossRef]
100. Pan, X.; Zhang, H.; Ye, W.; Bermak, A.; Zhao, X. A fast and robust gas recognition algorithm based on hybrid convolutional and

recurrent neural network. IEEE Access 2019, 7, 100954–100963. [CrossRef]
101. Feng, L.; Dai, H.; Song, X.; Liu, J.; Mei, X. Gas identification with drift counteraction for electronic noses using augmented

convolutional neural network. Sens. Actuators B Chem. 2022, 351, 130986. [CrossRef]
102. Wang, Y.; Diao, J.; Wang, Z.; Zhan, X.; Zhang, B.; Li, N.; Li, G. An optimized deep convolutional neural network for dendrobium

classification based on electronic nose. Sens. Actuators B Phys. 2020, 307, 111874. [CrossRef]

http://doi.org/10.1007/s12161-019-01682-6
http://doi.org/10.3390/s18103264
http://doi.org/10.1007/BF00116251
http://doi.org/10.1109/21.97458
http://doi.org/10.1109/JSEN.2011.2182042
http://doi.org/10.1155/2016/7603931
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/ACCESS.2020.3040421
http://doi.org/10.1016/j.forsciint.2021.111146
http://doi.org/10.1007/s10115-007-0114-2
http://doi.org/10.1038/s41598-022-20504-0
http://doi.org/10.3390/s17061434
http://doi.org/10.1109/TSMC.2017.2691909
http://doi.org/10.1109/JSEN.2022.3176647
http://doi.org/10.1155/2022/5605404
http://doi.org/10.1038/323533a0
http://doi.org/10.1016/j.snb.2020.129090
http://doi.org/10.3390/s130302967
http://doi.org/10.1109/TIE.2011.2164773
http://doi.org/10.1016/j.snb.2017.04.072
http://doi.org/10.1016/j.suscom.2017.08.002
http://doi.org/10.3390/s18010157
http://doi.org/10.1109/ACCESS.2019.2930804
http://doi.org/10.1016/j.snb.2021.130986
http://doi.org/10.1016/j.sna.2020.111874


Crystals 2023, 13, 615 24 of 24

103. Ma, D.; Gao, J.; Zhang, Z.; Zhao, H. Gas recognition method based on the deep learning model of sensor array response map.
Sens. Actuators B Chem. 2021, 330, 129349. [CrossRef]

104. Xiong, Y.; Chen, Y.; Chen, C.; Wei, X.; Xue, Y.; Wan, H.; Wang, P. An odor recognition algorithm of electronic noses based on
convolutional spiking neural network for spoiled food identification. J. Electrochem. Soc. 2021, 168, 077519. [CrossRef]

105. Zhao, X.; Wen, Z.; Pan, X.; Ye, W.; Bermak, A. Mixture gases classification based on multi-label one-dimensional deep convolutional
neural network. IEEE Access 2019, 7, 12630–12637. [CrossRef]

106. Sharma, M.; Maity, T. Multisensor Data-Fusion-Based Gas Hazard Prediction Using DSET and 1DCNN for Underground Longwall
Coal Mine. IEEE Internet Things J. 2022, 9, 21064–21072. [CrossRef]

107. Sun, Y.; Zhang, X. Tilapia freshness prediction utilizing gas sensor array system combined with convolutional neural network
pattern recognition model. Int. J. Food Prop. 2022, 25, 2066–2072. [CrossRef]

108. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
109. Zhang, W.; Wang, L.; Chen, J.; Xiao, W.; Bi, X. A novel gas recognition and concentration detection algorithm for artificial olfaction.

IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [CrossRef]
110. Wang, Q.; Qi, H.; Liu, F. Time Series Prediction of E-nose Sensor Drift Based on Deep Recurrent Neural Network. In Proceedings

of the 38th Chinese Control Conference, Guangzhou, China, 27–30 July 2019.
111. Zou, Y.; Lv, J. Using recurrent neural network to optimize electronic nose system with dimensionality reduction. Electronics 2020,

9, 2205. [CrossRef]
112. Kwon, D.; Jung, G.; Shin, W.; Jeong, Y.; Hong, S. Low-power and reliable gas sensing system based on recurrent neural networks.

Sens. Actuators B Chem. 2021, 340, 129258. [CrossRef]
113. Bakiler, H.; Güney, S. Estimation of Concentration Values of Different Gases Based on Long Short-Term Memory by Using

Electronic Nose. Biomed. Signal Process. Control 2021, 69, 102908. [CrossRef]
114. Lobo, J.L.; Del, S.J.; Bifet, A.; Kasabov, N. Spiking neural networks and online learning: An overview and perspectives.

Neural Netw. 2020, 121, 88–100. [CrossRef]
115. Jing, Y.; Meng, Q.; Qi, F.; Cao, M.; Zeng, M.; Ma, S. A bioinspired neural network for data processing in an electronic nose.

IEEE Trans. Instrum. Meas. 2016, 65, 2369–2380. [CrossRef]
116. Sarkar, S.T.; Bhondekar, A.P.; Macaš, M.; Kumar, R.; Kaur, R.; Sharma, A.; Gulati, A.; Kumar, A. Towards biological plausibility of

electronic noses: A spiking neural network based approach for tea odour classification. Neural Netw. 2015, 71, 142–149. [CrossRef]
117. Han, J.K.; Kang, M.; Jeong, J.; Cho, I.; Yu, J.; Yoon, K.; Park, I.; Choi, Y. Artificial Olfactory Neuron for an In-Sensor Neuromorphic

Nose. Adv. Sci. 2020, 9, 2106017. [CrossRef]
118. Kwon, D.; Jung, G.; Shin, W.; Jeong, Y.; Hong, S.; Oh, S.; Kim, J.; Bae, J.; Park, B.; Lee, J. Efficient fusion of spiking neural networks

and FET-type gas sensors for a fast and reliable artificial olfactory system. Sens. Actuators B Chem. 2021, 345, 130419. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.snb.2020.129349
http://doi.org/10.1149/1945-7111/ac1699
http://doi.org/10.1109/ACCESS.2019.2892754
http://doi.org/10.1109/JIOT.2022.3175724
http://doi.org/10.1080/10942912.2022.2120000
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/TIM.2021.3071313
http://doi.org/10.3390/electronics9122205
http://doi.org/10.1016/j.snb.2020.129258
http://doi.org/10.1016/j.bspc.2021.102908
http://doi.org/10.1016/j.neunet.2019.09.004
http://doi.org/10.1109/TIM.2016.2578618
http://doi.org/10.1016/j.neunet.2015.07.014
http://doi.org/10.1002/advs.202106017
http://doi.org/10.1016/j.snb.2021.130419

	Introduction 
	Classical Gas Identification Algorithms 
	Classical Gas Recognition Algorithms 
	Analysis and Comparison of Classical Gas Recognition Algorithms 

	Neural Network-Based Gas Recognition Algorithms 
	Neural Network-Based Gas Recognition Algorithms 
	Back Propagation Neural Network (BPNN) 
	Radial Basis Function Neural Networks (RBFNN) 
	Convolutional Neural Network (CNN) 
	Recurrent Neural Network (RNN) 
	Spiking Neural Network (SNN) 

	Analysis and Comparison of Gas Recognition Algorithms Based on Neural Network 

	Conclusions 
	References

