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Abstract: Structural coloration has become a fascinating field of research, inspiring scientists and
engineers to explore the vibrant colors observed in nature and develop bio-inspired photonic struc-
tures for various applications. Cellulose-based materials derived from plant fibers offer a promising
platform for mimicking natural photonic structures. Their abundance, renewability, and versatility
in form and structure make them ideal for engineering specific optical properties. Self-assembly
techniques enable the creation of ordered, periodic structures at the nanoscale by manipulating
the interactions between cellulose fibers through chemical modification or physical manipulation.
Alternatively, additive manufacturing techniques like 3D printing and nanoimprint lithography
can directly fabricate desired structures. By em-ulating natural photonic structures, cellulose-based
materials hold immense potential for applications such as colorimetric sensors, optoelectronic devices,
camouflage, and decorative materials. However, further research is needed to fully com-prehend
and control their optical properties, as well as develop cost-effective and scalable manufacturing
processes. This article presents a comprehensive review of the fundaments behind natural structural
colors exhibited by living organisms and their bio-inspired artificial counterparts. Emphasis is placed
on understanding the underlying mechanisms, strategies for tunability, and potential applications of
these photonic nanostructures, with special focus on the utilization of cellulose nanocrystals (CNCs)
for fabricating photonic materials with visible structural color. The challenges and future prospects
of these materials are also discussed, highlighting the potential for advancements to unlock the full
potential of cellulose-based materials with structural color.

Keywords: cellulose nanocrystals (CNCs); structurally colored CNC films; photonic properties;
circularly polarized light; liquid crystals

1. Soft Matter and Structural Color: Short Introduction

Materials science researchers have long looked to nature for inspiration due to the
extraordinary multifunctional molecules and materials developed through evolution and
natural selection. Natural creatures have evolved to establish distinctive functions, such as
directional water collection on spider silk, antifogging properties of mosquito compound
eyes, water capture and wing-locking devices of beetles, multicolor of butterfly wings, and
superhydrophobicity and low adhesion of lotus leaves, among other examples [1].

Biological photonic structures, honed through countless generations of evolution,
offer valuable insights for the development of innovative artificial photonic materials with
multiple functions. Nature’s captivating and vibrant colors are not achieved through the
application of pigments but rather by manipulating transparent materials at the nanoscale.
For instance, plants can achieve stunning hues by arranging cellulose nano-fibers in their

Crystals 2023, 13, 1010. https://doi.org/10.3390/cryst13071010 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13071010
https://doi.org/10.3390/cryst13071010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://doi.org/10.3390/cryst13071010
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13071010?type=check_update&version=1


Crystals 2023, 13, 1010 2 of 26

cell walls. This periodic arrangement enables various plant species to exhibit remarkably
vivid colors spanning the entire visible spectrum, ranging from rich purples to vibrant reds.

In recent years, the study of structural colors has gained significant attention in
various research fields due to the complex interactions between light and sophisticated
microstructures found in nature [2]. This mechanism is responsible for some of the most
stunning displays of color in nature, which can be observed in butterflies, moths, beetles,
birds, fishes, plants, and fruits. Examples of such colors are, for instance, the Morpho
butterfly’s wings have lamellar structures in their ridges, which reflect light strongly at a
particular wavelength, resulting in its distinctive coloration [3].

The concept of “soft matter” was initially introduced by Pierre-Gilles de Gennes during
his Nobel acceptance speech in 1991. It refers to a category of materials that lie between
aqueous substances and ideal solids. These materials encompass a range of substances
such as colloids, foams, liquid crystals (LCs), gels, polymers, and active matter [4,5]. In
nature, soft matter materials serve as the fundamental building blocks of living systems.
They possess the remarkable ability to self-assemble into functional structures and exhibit
exceptional responsiveness to various environmental stimuli [6–9].

The interactions between the constituents of soft matter are relatively weak, resulting
in a delicate balance between entropic and enthalpic contributions to the overall free
energy. This delicate balance facilitates the spontaneous formation of microstructures at
multiple length scales. The emergence of these structures is influenced by both the inherent
properties of nanomaterials and the engineering of building blocks within a given spatial
region. For example, chameleons demonstrate a rapid and reversible change in color
patterns by actively arranging non-close-packed guanine nanocrystals within their skin in
response to external stimuli. Over the years, significant advancements have been made
in the development of soft materials with diverse and complex configurations, vibrant
patterns, metastable states, and macroscopic softness. These materials have provided
valuable insights and inspiration for addressing contemporary challenges across various
fields, particularly in advanced optical and photonic technologies. They have propelled the
progress of soft matter photonics.

When it comes to creating synthetic photonic crystal-based materials, the majority of
studies have centered around the use of synthetic opals like SiO2 and polystyrene, as well
as inverse opals, to achieve structural color [10]. However, it is not limited to synthetic
materials for the production of photonic crystals. Biorenewable materials, such as cellulose
and chitin nanocrystals, have shown promise in forming colored and iridescent materials.

2. Cellulose and Cellulose Nanocrystals: Short Overview

The depletion of petroleum resources and its environmental impact, including global
warming, has created a growing interest in developing sustainable materials. In this context,
the field of materials science has been progressing towards prioritizing the replacement of
highly polluting substances with alternatives that have a reduced environmental footprint.
Bio-based materials have numerous advantages, including renewability, biodegradability,
and environmental friendliness, making them a viable solution to environmental chal-
lenges [11,12] Cellulose, arguably the most abundant biopolymers available on our plant, is
a renewable organic compound, fascinating and nearly limitless natural polymer that has
been widely used in everyday products and applications. It is also considered an alternative
to petroleum-based polymers due to its availability, low cost, low density, non-toxicity,
low abrasiveness, biocompatibility, and biodegradability. Cellulose is used in various
fields, such as automotive and construction industries, electronic components, sports, and
leisure [12].

Cellulose is a robust and fibrous polysaccharide that is not soluble in water and can be
found in the cell walls of various organisms, such as plants, bacteria, algae, and certain sea
animals like tunicates [13]. Cellulose consists of a linear chain with hundreds of thousands
of repeating unit β-1,4-linked D-glucose units. The basic building block is often considered
to be a glucose dimer called cellobiose (Figure 1), arranged in an alternating pattern, with
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each unit inverted at a 180◦ angle, creating a main chain polymer through 1,4 glycosidic
bonds that are formed by a condensation reaction. Usually, approximately 36 separate
cellulose molecules come together to form larger entities known as elementary fibrils or
protofibrils. These elementary fibrils or protofibrils then undergo further assembly to
create microfibrils. It is the arrangement of these microfibrils that gives rise to the well-
known cellulose fibers [14]. Cellulose contains multiple hydroxyl groups, which facilitate
the formation of numerous hydrogen bonds between hydrogen and oxygen molecules,
both within and between cellulose chains. These hydrogen bonds play a crucial role in
holding the cellulose chains firmly together in the crystalline regions of the fibrils [15].
These microfibrils self-assemble into macrofibers and fibers, forming hierarchical structures,
grouped into both crystalline and disordered regions, as illustrated in Figure 1b [16]. The
average degree of polymerization (DP) differs depending on the source of cellulose. For
instance, wood-derived cellulose has a DP of 10,000, while wool-derived cellulose has a
DP of 15,000 [13].
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cific pre-treatment process to remove the lignin and hemicellulose present in their raw 
state and isolate purified cellulose [30]. The pre-treatment process employed in this pro-
cedure should be tailored to the cellulose source and the desired morphology. Pulping, 
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Figure 1. Preparation of CNCs from wood source. (a) Chemical structure representation of cellulose
repetitive unit [17]. (b) Cellulose chain with both amorphous and crystalline regions. (c) Wood
pulp can be hydrolyzed with sulfuric acid to selectively remove amorphous regions from cellulose
chain, leaving behind crystalline cellulose nanorods. Typical dimensions of CNCs range from 50 to
1160 nm in length and 3 to 50 nm in diameter, depending on the cellulose source and acid hydrolysis
conditions. (Adapted with permission of John Wiley & Sons Ltd. from [18]).

The development of nanotechnology has stimulated interest in nanocellulose, as well
as the attention given to bio-based materials that utilize cellulose. By reducing the size
of cellulose to the nanoscale, nanocellulose has widened the scope of potential applica-
tions for this material. Cellulose nanocrystals, CNCs, (also referred to as nanocrystalline
cellulose (NCC), cellulose nano whiskers (CNWs), or cellulose crystallites) are nontoxic,
sustainable nanomaterials obtained from wood biomass via strong acid hydrolysis (sulfuric
or hydrochloric). This process was first proposed by Rånby over half a century ago [19,20]
and involves the selective chemical removal of the amorphous regions of the cellulose
chain, thereby preserving the crystalline regions. Since the early introduction of these steps,
the process has evolved and been applied to various wood and non-wood species [21–29].

Different types of nanocellulose structures can be obtained depending on the prepara-
tion method, shape, dimension, and function. The raw fibers must first undergo a specific
pre-treatment process to remove the lignin and hemicellulose present in their raw state
and isolate purified cellulose [30]. The pre-treatment process employed in this procedure
should be tailored to the cellulose source and the desired morphology. Pulping, bleaching,
oxidation, and enzymatic processes are some of the most commonly used pre-treatments.
After the initial purification, the obtained fibers can undergo a specific process to obtain
either cellulose microfibrils (CMFs) or cellulose nanocrystals (CNCs) [13]. Rojas and col-
leagues obtained Eucalyptus cellulose micro/nanofibers through three different processes:
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refining, sonication, and acidic hydrolysis of the cellulosic pulp [31]. They demonstrated
that mechanical and chemical processes can be used to isolate the micro/nanofibers.

The dimensions of cellulose nanocrystals (CNCs), such as length and width, vary
depending on the source of the cellulose microfibrils and the acidic hydrolysis conditions,
such as time and temperature [10]. Nanocellulose has several advantages, such as high stiff-
ness combined with low weight, an impressive surface area-to-volume ratio, a high aspect
ratio, excellent mechanical properties (nano-strength), biodegradability, and the possibility
of use as reinforcement [12]. The use of cellulose at the nanoscale allows the production
of a new type of cellulose-based building block called nanocellulose, which enables the
creation of multifunctional polymer nanocomposites [12]. Nanocellulose possesses several
advantages, including a high aspect ratio, low density of 1.6 g·cm−3, and reactive hydroxyl
side groups on its surface that facilitate the attachment of functional groups to achieve
different surface properties. The CNCs exceptional mechanical properties, make them
suitable for use in various fields, such as materials science, electronics, and medicine [11,32].

3. Photonic Structures in Nature

Structural coloration, observed in a wide range of organisms including animals, plants,
and fruits, serves vital ecological functions. It plays a key role in attracting pollinators, sig-
naling ripeness, deterring herbivores, gaining a competitive advantage, and manipulating
light. This remarkable adaptation enhances reproductive success, species survival, and
ecological interactions within diverse ecosystems. The phenomenon of structural coloration
in natural systema has garnered significant attention from researchers and engineers in
recent times, due to the captivating display of vibrant colors observed and the potential ap-
plications of bio-inspired functional photonic structures and materials. Numerous studies
have been conducted to uncover and replicate the physical mechanisms responsible for the
natural occurrence of structural colors in plants, fruits and animals [33–36] and revealed
the self-assembling structural color in Nature [34,35] (see Figure 2).

Structural coloration in plants serves important functions related to their ecological
interactions, and demonstrates their intricate interaction with their environment. From
attracting pollinators to deterring herbivores and manipulating light, these visual cues
contribute to the plant’s reproductive success, competitive advantage, and overall survival
in their environment. The presence of vibrant and visually striking hues plays a crucial
role in attracting pollinators, ensuring successful reproduction. Flowers employ structural
colors, such as vivid petals and intricate patterns, as visual cues to signal the availability
of nectar or pollen rewards, thus enticing pollinators like bees, butterflies, and birds. In
2009, Whitney et al. made a groundbreaking discovery regarding iridescence in Hibiscus
trionum and revealed that the iridescence exhibited by this plant is a result of regular
nanoscale patterns, such as striations or wrinkles, that are formed on the cuticle covering
the flat epidermis of the petal’s surface [37,38]. These patterns act as diffraction gratings
(see Figure 2e), leading to diffractive optical effects [37,39,40]. A similar iridescence phe-
nomenon was observed in the H. trionum tulip species, where periodic striations are present
on top of the purple-pigmented epidermis of the petal [41]. Conversely, the SEM image of
the side of the tulip petal reveals an unorganized structure and lack of iridescence [42].

Whitney et al. emphasized the significance of these patterns in petals for biological
purposes. They discovered that the iridescent signals produced by the H. trionum flower,
through its diffraction gratings, allow it to interact with its main pollinators, particularly
bumblebeesn [37]. Remarkably, the researchers successfully trained bumblebees to distin-
guish between replicas of iridescent H. trionum petals and identical non-iridescent replicas
with smooth surfaces [37]. This is in accordance with the demonstration of Kevan and
Lane that the microtextures present on the surface of flower petals serve as tactile cues for
bees during pollination. They found that honeybees can differentiate between petals with
distinct textures and detect variations in textures within petals of the same species [43].

The optical properties of the flower petals depend on the shape of the epithelial cells.
Kourounioti et al. discovered that in order to generate iridescence through diffraction
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gratings, the epithelial cells must be planar and exhibit regular striations within the petal
cuticle, with appropriate spacing between them. These striations or wrinkles can be either
parallel or perpendicular to the long axis of the cells. Such variations in orientation can be
observed within the same plant species and across different plant species. For example, the
striations in H. trionum and Kalanchoe blossfeldiana were found to be parallel, while those in
Yunnan rhododendron, Ursinia calendulifolia, and daisy were found to be perpendicular to the
long axis of the cells [37,42,44].

Additionally, structural coloration in fruits serves as a signaling mechanism for
ripeness. As fruits mature, they develop distinct hues that catch the attention of fruit-
eating animals, indicating their readiness for consumption. This coloration facilitates seed
dispersal, as animals consume the fruit and spread the enclosed seeds to different locations,
contributing to the plant’s reproductive success. As structural colors do not fade, this
bright coloration on fruits is maintained after the fruit is picked or has fallen from the plant,
increasing its probability of being further dispersed [45–47].

Animals possess structural coloration for various purposes, including communication,
camouflage, mate attraction, warning signals, and thermoregulation. Structural coloration
serves as visual signals for species recognition, social interactions, and reproductive success.
It aids in camouflage by blending with the environment or enhancing hunting abilities. In
mate attraction, vibrant colors and patterns play a role in sexual selection. Some animals
use bright colors as warning signals to deter predators, while structural coloration also
assists in thermoregulation. These adaptations contribute to the survival, reproduction,
and ecological interactions of animals. Similarly to plants and fruits, the mechanism behind
structural colors in animals is based on diffraction and specular reflection and on nano and
microscopic-scale patterns [48–53]. The majority of the incoming light travels through the
biopolymeric formations largely unhindered; nonetheless, a specific set of wavelengths
(those with specific ratios to the size of the structure’s periodic patterns) are selectively
bounced back and generate angle-dependent iridescent shades found in various insects,
birds, and marine creatures. Common examples of structural colors that appears in animals
are peacock feathers [54–57], colorful birds [58–61], butterfly wings [62–64] and beetle
exoskeletons [52,65–69].
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johnsoni jumping spiders (Adapted with permission. [71] Copyright 2011, Elsevier); (c) chirped
multilayers in Chrysina aurigans beetles (Adapted under the terms of the CC-BY Creative Commons
Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0 accessed on 1
June 2023). [72] Copyright 2020); (d) sculpted and curved multilayers or bowls in Papilio Palinurus
(Adapted under the terms of the CC-BY Creative Commons Attribution 4.0 International license
(https://creativecommons.org/licenses/by/4.0 accessed on 1 June 2023)). [66] Copyright 2014);
and (e) surface gratings in Hibiscus trionum flower (From [37]. Reprinted with permission from
AAAS). Examples of 2D forms of structural color includes: (f) barbule nanostructure photonic
crystals in Pavo cristatus (Adapted from [54] under the terms of CC BY 4.0 Creative Commons
Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0 accessed on 1
June 2023)); (g) the Mandrillus sphinx face displaying quasi-ordered crystal arrays, balancing some
long-range order with short-range disorder (Adapted with permission. [73] Copyright 2004, Company
of Biologists); (h) the helicoid of Polia condensata fruit (adapted with permission from [47]); and
(i) the ridge of the Morpho butterfly (Adapted under the terms of the CC-BY Creative Commons
Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0 accessed on
1 June 2023). [72] Copyright 2020). 3D forms of structural color examples: (j) intercalation as in
Trigonophorus rothschildi (Adapted with permission. [74] Copyright 2012, American Physical Society);
(k) particle arrangements that appears in Pseudomyagrus waterhousei (Reprinted with permission
from [75] Copyright 2011 by the American Physical Society); (l) the gyroid in Parides sesostris (Adapted
with permission from [76]. Copyright 2018 American Chemical Society); and (m) disordered fibers
in Cyphochilus beetles (Adapted under the terms of the CC-BY Creative Commons Attribution 4.0
International license (https://creativecommons.org/licenses/by/4.0 accessed on 1 June 2023). [77]
Copyright 2014).

These natural structures, such as the iridescent colors found in flowers and animals,
are, as known, often created through mechanisms of scatter, diffraction, polarization and
interference of light interacting with periodic micro- and nano-scale structures in the
materials (Figure 3).
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4. Liquid Crystalline Phases in Cellulose: Short Overview

Recently, cellulose has been found to be an ideal environmentally friendly material
to mimic periodic micro and nanostructures that produce iridescence and structural col-
oration [82]. The extraction of CNCs using acidic hydrolysis generates a suspension of
nanorods [83] and, under appropriate conditions and above a critical concentration, CNCs
self-assemble in the suspension to form a chiral nematic liquid crystalline phase due to
their rod-like shape (see Figure 4) [84]. Beck-Candanedo et al. mentioned Rånby and Ribi in
the production of stable suspensions of colloidal-sized cellulose crystals by sulfuric acidic
hydrolysis of wood and cotton cellulose in 1949 [85]. To date, CNCs have been extracted
from a large variety of natural sources [11], spanning plants [19], bacteria [86–88], and
tunicates [89–91].
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Figure 4. Schematic representation of the arrangement of rod-like mesogens in liquid crystalline
phases depending on its alignment: nematic, chiral nematic, or smectic phases.

Liquid crystals (LCs) are a distinct state of matter that exhibits optical characteristics
similar to those of crystals, such as birefringence, while retaining the mechanical properties
of liquids. There are various types of LC structures, including the nematic (N), smectic
(Sm), and cholesteric (Ch, N*) (Figure 4), which have been widely studied and documented
in literature [92].

The nematic structure is characterized by long-range orientational order of the molecules
along a preferred direction or “director” (n), without any positional order, unlike layered
structures [93]. Cholesteric or chiral nematic structures are formed by pseudo-layers of
molecules aligned with the director (n), with the orientation of each layer rotated by a fixed
angle around the cholesteric perpendicular axis, as depicted in Figure 4 [94]. The pitch (P)
of a chiral nematic structure, defined as the distance over which the director makes one
complete rotation of 360◦, typically falls within the range of 0.4–0.8 µm, corresponding to
visible light wavelengths. If the pitch of the chiral nematic structure is comparable to the
wavelength of visible light, it reflects circularly polarized light, resulting in an iridescent
appearance that changes with the viewing angle [15].

The de Vries equation describes the dependence of the reflected wavelength on the
angle of incidence:

λ = n P sinθ (1)

where θ represents the angle of light incidence; λ the reflected wavelength by the sample; n
the average refractive index of the sample (cholesteric or chiral nematic) phase; and P the
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value of helical pitch [95]. The pitch, defined by the distance required for the director to
complete a full turn is a function of both the temperature and concentration [96].

Chiral nematic liquid crystals, with a pitch comparable to the wavelength of visible
light, exhibit the ability to reflect circularly polarized light of the same handedness as their
chiral nematic phase [94]. As a result, when viewed from different angles, these materials
display an iridescent effect due to the wavelength of the selectively reflected light varying.
The iridescent appearance of chiral nematic liquid crystals is attributed to the change in
the reflected wavelength based on the angle at which light is incident upon them. The
chiral nematic helix possesses a specific internal handedness, and just like the pitch of
the helix influences light reflection, the handedness also impacts the optical properties of
these materials. Consequently, one can anticipate that circularly polarized light will be
differentially affected by the handedness of the helix [97,98]. The formation of iridescent
liquid and solid phases by cellulose derivatives has been well-established for a considerable
time. The CNCs chiral nematic structure reflects left-handed circularly polarized (LCP) light
due to the rotation of the director in each successive layer. On the other hand, cholesteric
structures with a right-handed helix reflect right circularly polarized (RCP) light, while
those with a left-handed helix reflect LCP light [99]. Godinho et al. presented a photonic
structure based on cellulose that reflects both RCP and LCP light and can be adjusted by
changing the temperature and applying an external electric field [100].

The presence of asymmetric carbon atoms in the anhydroglucose units of cellulose-
based liquid crystals accounts for their optical activity in chiral nematic systems. Various
cellulose derivatives with substituents attached to the hydroxyl groups of cellulose also
exhibit liquid-crystalline phases, for instance: cellulose phenylcarbamate (CPC), ethyl
cellulose (EC), and hydroxypropylcellulose (HPC). The existence of the liquid-crystalline
phase is influenced by several key factors, including the type of substituent, molecular
weight, and average degree of substitution (DS, which represents the average number of
hydroxyl substituents per anhydroglucose unit). Substituents capable of further chemical
functionalization, as seen in HPC and CPC, allow for continuous growth of side chains.
The molar substitution denotes the average number of substituents per anhydroglucose
units, encompassing all substitutions rather than solely those replacing hydroxyl groups
on the cellulosic main chain. Cellulosic materials with high DS values (ranging from 2
to 3), dissolved in suitable solvents at sufficiently high concentrations, form lyotropic
liquid-crystalline phases [101–103].

This manuscript focus on the development of structural coloration in aqueous solu-
tions of cellulose-bases materials and their consequent films and so only liquid crystalline
cholesteric case is referred. However, interesting studies on the properties of cellulose in
different solutions and host matrices and their anisotropy can be also essential to many
applications. One example is the work of Fujisawa et al. [104] related to the study of
nanocellulose-doped starch–polyurethane nanocomposite biodegradable films via direct
contact measurement of thermal properties. For the first time, thermal diffusivity was
investigated in this polymer nanocomposite.

5. Photonic Structures in Cellulose-Based Materials

Natural structural colors serve as fascinating examples of nature’s ability to achieve
functionality by shaping and molding inherently non-functional compounds into precisely
defined structures [36,48]. Similar principles of creating functionality through structural
design have become fundamental in the field of nanomaterials and nanotechnology over
the past 40 years [105]. The resulting materials, often referred to as metamaterials, consist
of conventional substances such as metals, semiconductors, ceramics, or polymers, yet
they exhibit unconventional properties due to their nanostructures. For instance, by syn-
thesizing semiconductors in the form of nanometer-sized spheres or rods, their electronic
and optical properties can be dramatically altered. Similarly, transforming a transparent
ceramic into a colored coating can be achieved by structuring it with a three-dimensional
periodic architecture featuring a lattice spacing of a few hundred nanometers. Alterna-
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tively, a polymer film can be converted into a super-hydrophobic, self-cleaning surface by
introducing hierarchically organized nano-to-micrometer-sized protrusions and filaments.

In nature, the most brilliant example of blue coloration stems from a helical arrange-
ment of cellulose fibers in tropical fruits such as Pollia condensata (Figure 2h) and Margaritaria
nobilis [47,106–108]. Mimicking these natural-colored photonic structures and getting in-
spiration for material design and sustainable processing using natural materials is an
interesting area of research [109] and cellulosic materials have gained considerable promi-
nence due to their renewable nature, compatibility with living organisms, and ability to
degrade naturally, making them an eco-conscious alternative [110].

Revol et al. made a surprising finding when they stumbled upon the fact that a solid
film could retain the chiral nematic liquid crystalline arrangement observed in a suspension
of cellulose nanocrystals [23,111]. The researchers accomplished this by evaporating the
water from a cellulose nanocrystal suspension with a concentration of approximately
3.5% by weight, resulting in a film with preserved chiral nematic order (Figure 5). Upon
examination using polarized optical microscopy (POM), they observed that the films
exhibited birefringence, and their structures were susceptible to disruption by shear forces.
Films made from CNCs have unique optical properties, including iridescence and the
ability to selectively reflect left circularly polarized light while transmitting right circularly
polarized light [100,112,113]. Similar to a suspension of cellulose nanocrystals, the chiral
nematic orientation within the solid films yielded a positive signal when subjected to CD
spectroscopy [114]. The helical twist of the cellulose nanocrystals consistently displayed a
left-handed nature, as confirmed by the positive CD signal for transmitted light and the
generation of left-handed circularly polarized light upon reflection.
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Figure 5. Schematic of the self-assembly of a CNC suspension upon evaporation to form a struc-
turally colored film. (a) Phase diagram showing the transition from isotropic to cholesteric phase
(blue dots) upon increasing CNC concentration and the corresponding equilibrium pitch (red di-
amonds). (b) Atomic force microscopy image of individual cellulose nanocrystals. (c) Polarized
optical microscopy image of a typical fingerprint pattern of the cholesteric phase. (d) Photograph of a
typical CNC film and (e) the corresponding SEM cross-section showing the characteristic left-handed
helical structure. ((a–d) Adapted under the terms of the CC-BY Creative Commons Attribution 4.0
International license (https://creativecommons.org/licenses/by/4.0 accessed on 1 June 2023). [109]
Copyright 2018 and with Permission by John Wiley and Sons from [18]. Copyright Clearance Center;
(d,e) adapted with permission from [113]. Copyright 2018 American Chemical Society).

Films formed through the self-assembly of cellulose nanocrystals often exhibit capti-
vating colors due to the helical arrangements of cholesteric liquid crystals. The orientation
and pitch of these structures determine the photonic bandgap, with the ability to modify the
pitch allowing for alterations in perceived color. When the helix’s pitch approximated the
wavelengths of visible light, the CNC films exhibited striking iridescent structural colors.

https://creativecommons.org/licenses/by/4.0
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These chiral nematic CNC films can be considered as one-dimensional photonic crystals and
this manipulation relies on Bragg-like reflections that generate various colors [82,115–118].

The precise optical properties that can be developed in CNC films depends on many
parameters, which leads to the development of a variety of tunable photonic CNC materials
and technologies. The effects of water evaporation (evaporation at different relative humid-
ity) and initial CNC concentration have been investigated by several groups [18,82,113]
and it was possible to obtain CNC films covering most the visible spectrum [119]. Later,
Tran et al. [113,120] modified the evaporation time of CNC suspensions and obtained CNC
films in the suspensions´ slow evaporation resulted in blue-shifted films. Utilizing differ-
ential evaporation, CNC films with gradients could be designed. They also discovered
that the application of a cellulose acetate mask on top of a drying CNC suspension led to
patterns with higher resolutions [113]. They also showed that the obtained colored patterns
could be tuned, from red to blue, depending on the stage of self-assembly when the masks
were applied.

Despite their capacity to generate films with vibrant colors, cellulose nanocrystals
(CNCs) possess certain constraints that result in limited productivity. The process of self-
assembly is highly susceptible to disruptions and may necessitate an extended period
of several days for the complete evaporation of water. Chen et al. [121] developed a
protocol consisted in a preliminary treatment of CNC suspensions through ultrasonication.
They discovered that the duration of ultrasonication, volume of the suspension, and the
application of vacuum were determinant in the preparation of iridescent CNC films. The
resulting films exhibit striking and vibrant colors, when compared with those obtained with
slower water evaporation techniques. Another influent parameter that was investigated
was the surface upon which the CNC suspension is cast on [122–124]. Several surfaces were
tested (including aluminum, silicon wafers, mica and polystyrene) and different optical
properties were obtained, meaning that substrate surface properties, such as wettability
and hydrophobicity, influence the self-assembly behavior of the CNCs.

Not only altering CNC suspensions can have impact on the characteristics of chiral
nematic CNC films. Also, external factors, including temperature and additives, can have
influence on the properties of CNC films. The introduction of energy through methods such
as heating or sonication gave rise to CNC films with an enhanced helical pitch, allowing
the production of films with adjustable chiral photonic properties [125–129].

As previously mentioned, cellulose possesses attractive qualities for optical and pho-
tonic applications, thanks to its refractive index, transparency, dielectric properties, and
birefringence [130–132]. These combined characteristics enable the development of relevant
technologies in the field of photonics. The crystal structure of cellulose plays a crucial
role in modulating its optical properties, resulting in vibrant colors and establishing it
as a valuable contender for sustainable bio-based optical materials. The self-assembly of
cellulose nanocrystals offers a promising and cost-effective approach to producing optical
materials on a large scale [74]. Given that sustainability and the circular economy are
crucial concerns today, several scientists are exploring the potential use of cellulose derived
from biomass and waste materials in photonic and its capacity to form chiral nematic struc-
tures upon drying, which exhibit fascinating optical and photonic properties [133–137].
Recent investigations in this field have primarily concentrated on understanding the
self-assembly dynamics of helicoidal structures and optimizing them to achieve desired
polarization responses.

Cellulose nanocrystals in water suspensions behave as lyotropic liquid crystals form-
ing a chiral nematic phase above a critical concentration. It is well known that such an
organization can be retained in solid films and give rise to an intense colored appearance.
In several studies, researchers have characterized their optical response via optical and
scanning electron microscopy, imaging scatterometry, and angle-resolved reflectance mea-
surements [138–140]. Wilts et al. go further by showing that the experimental results can
be well explained by computational modeling using the finite-difference time-domain
method [140]. They performed 3-D finite-difference time-domain (FDTD) calculations,
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using a commercial-grade Maxwell equation solver, Lumerical FDTD Solutions 8.16, to
simulate the polarization-dependent light scattering from a liquid-crystalline, helicoidal
stack of cellulose in the wavelength range 350–700 nm. They examined the variation in
reflectance with changing angles of a cellulose film formed through self-assembly and their
findings demonstrate that the significant disparity in circular polarization is maintained
across a wide range of incident light angles. This reflectance behavior can be effectively
explained through the use of finite-difference time-domain modeling. Previous research
has indicated that the color characteristics of these films can be manipulated by adjusting
the self-assembly conditions of CNCs. Together, these studies contribute to a more holistic
understanding of the angle-dependent color appearance in helicoidal layers, which holds
potential for the development of sustainable colored materials, such as responsive dyes or
food colorants.

6. Cellulose-Based Composite Materials with Structural Color

As mentioned before, the self-assembly of CNCs into a chiral nematic structure is
tolerant to additives, which has allowed incorporation of additives and enabled the cre-
ation of a range of interesting materials, such as thin-films [141,142], hydrogels [143–148],
and organosilicas [149–151] (Figure 6). Incorporating additives provides a means to fine-
tune the optical and mechanical properties of the resulting CNC-based materials. For
instance, pure CNC thin films are known for their toughness but lack flexibility, besides
by introducing hydroxypropyl cellulose (HPC) or chitosan/chitin into the matrix, the
cellulose-based composite material’s flexibility can be significantly improved [152–158].
Previous research in this field has also explored the incorporation of inorganic materials
like metallic nanoparticles [159–162], infiltration of proteins or amino acids [163–166] or
the addition of organic units through careful surface modification [153,167], resulting in
materials that exhibit unique chiroptical properties and are capable of changing color under
applied pressure [152,154,155,168–173].

The optical properties of films are also dependent on surface roughness, as no surface
of a biobased material is completely flat and, as shown previously, its surface roughness
will directly impact its interaction with light [174]. In fact, surface patterning and successful
production of highly precise structures in a predeterminate configuration can be employed
to create light interactive-structures, where nanoscale and microscale patterns are generated
to control diffraction, scattering, or light outcoupling. Various lithographic techniques,
involving similar steps but differ in processing and curing specifics, can be applied. Initially,
the material to be modified is uniformly distributed across a surface, followed by the
application of a mask or mold, and finally, through chemical and/or physical treatments,
the modified surface is obtained [175,176]. Several protocols process of obtaining modified
surfaces on structural colored cellulosic-based materials using photolithography [174,177],
soft lithography [178–180], and nanoimprint lithography [181–184] were documented.

Wolfberger et al. [177] described an easy and versatile efficient patterning method for
cellulose thin films by means of photolithography and enzymatic digestion. Depending
on the conditions of development, either negative and positive type cellulose structures
can be obtained, offering lateral resolutions down to the single-digit micro meter range by
means of contact photolithography. These photochemically structured cellulose thin films
are successfully implemented as dielectric layers in prototype organic thin film transistors.

The research findings of Mihi et al. [178] introduced a groundbreaking approach
to fabricating photonic crystals and plasmonic structures using a derivative of cellulose
through the nanostructuring method known as soft lithography. Through the periodic
nanostructuring of the cellulose film, its transparency is effectively eliminated, leading to
the emergence of vibrant colors in its reflective properties, contingent upon the specific pat-
tern employed during the molding process. By leveraging this innovative technique, which
is both highly scalable and cost-effective, as an alternative to the conventional self-assembly
of cellulose nanocrystals, a superior nanostructure is rapidly and reproducibly generated
on the polymer substrate [185]. This process offers a wide spectrum of iridescent colors
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solely reliant on the size and morphology of the resultant structures. The resulting photonic
crystals can be nanoimprinted onto diverse substrates to confer photonic capabilities on
surfaces lacking this characteristic, such as paper. This technology exhibits immense po-
tential as photonic ink and finds practical applications in domains like anti-counterfeiting
technology, packaging, decorative paper, labels, and sensors, among others [174]. When
these structures are coated with a thin layer of metal, they acquire plasmonic properties
while retaining their flexibility, thereby intensifying the colors displayed. Additionally, the
biodegradability and water solubility of the cellulose derivative can be adjusted based on
the specific type employed. These plasmonic structures are ideal for disposable sensors,
enabling Raman emission, or enhancing the light emitted by a dye [178].
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al. conducted experiments using a laboratory-scale roll-to-roll imprinting system to create 
cellulose acetate films, CNF films, and TEMPO-CNF films with pillar structures imprinted 
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Figure 6. (a) CNC/HPC mixed in different weight ratios demonstrating the ability to tune the
reflected color across the visible spectrum. Insets are of the chiral nematic structure at low and high
amounts of CNC, scale bar = 3.5 cm. (Adapted with permission from [155]. Copyright 2020 American
Chemical Society). (b) Photographs of solid CNC films containing different amounts of glycerol (G)
(Reprinted with permission from [186]. Copyright 2018 American Chemical Society). (c) Photographs
showing the structural colors of CNC/GlU (glucose) films (6 cm in diameter) with different weight
percentage (wt%) compositions (CNC/GLU = 100/0, 66/34, 55/45, 52/48, 46/54 or 39/61) with
UV–vis transmission spectra. (Adapted with permission under a Creative Commons Attribution 4.0
International License from [187]). (d) Structural color generated by micropatterned cellulose film.
(Adapted with permission from [131], under available under Creative Commons license).
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In industrial settings, thermal imprinting has been implemented using roll-to-roll
processing, which can also be utilized in thermal nanoimprinting lithography. Mäkelä et al.
conducted experiments using a laboratory-scale roll-to-roll imprinting system to create
cellulose acetate films, CNF films, and TEMPO-CNF films with pillar structures imprinted
using a Ni-mold [181,182,184]. The formation of these structures was heavily influenced
by the temperature, speed, and pressure applied during the process. The resulting films
exhibited varying levels of surface roughness, leading to different levels of transparency.
When white light passed through the microstructures, diffraction colors such as blue,
red, and green were observed, showcasing the potential for applications in optics and
electronics [181–183].

Considering the cost of production and application in lithography, high-throughput
techniques like soft lithography and roll-to-roll lithography tend to be more cost-effective,
while photo and e-beam lithography are often more expensive due to their limited scalabil-
ity [188]. However, it should be noted that different surface patterning methods present
varying restrictions on the achievable feature size of the fabricated surface structures.

7. Light Responsive and Color-Stimuli-Responsive Cellulose-Based Materials

Stimuli-responsive displays exhibit a change in their properties (such as shape, wetta-
bility, adhesion, optical, electrical, thermal, and mechanical properties) when exposed to
external stimuli [189]. These displays hold significant potential for a wide range of applica-
tions, including on-demand drug delivery, tissue regeneration/repair, biosensing, smart
coatings, artificial muscle drug delivery, diagnostics, biosensors, and textiles [189,190].
Within the field of stimuli-responsive materials, there is a growing interest in biocom-
patible and biodegradable materials based on lignin [191], hemicelluloses [192], and
cellulose [193–195]. Among these stimuli-responsive materials, cellulose has been the
most extensively studied for light stimulation and photo-responsive applications (Figure 7).

Considering the limited light absorption of cellulose in the visible spectrum, cellulose-
based materials with light-responsive properties can be created by modifying cellulose
with a light-responsive molecule or by incorporating light-responsive polymers, leveraging
supramolecular interactions. Light-responsive cellulose materials have been developed
through derivatization or graft copolymerization of a chromophore (such as spiropyran or
coumarin) onto the cellulose backbone (or its derivatives) [196,197]. These light-responsive
cellulose materials exhibit optically active sites that find applications in photo recording
devices, liquid crystal displays, and other light-sensitive applications [198].

It is possible to produce dynamic optical or phototunable materials that undergo
color changes when exposed to a specific light wavelength, by modifying cellulose and
cellulose derivatives [176,199]. Optical materials that respond to multiple wavelengths can
be achieved via electrostatic interactions between light-responsive cellulosic materials and
carbon nanodots [200]. Ai et al. combined photo-responsive cellulose with carbon nanodots
and were able to produce photo-triggering and reversible chromic materials, that responded
to both UV and visible light. Light-responsive cellulosic materials containing imidazole
salt groups and spiropyran groups were immobilized on the surfaces of negatively charged
carbon nanodots. In this system, the carbon nanodots absorbed UV light (365 nm) and
emitted blue fluorescence. With increasing UV irradiation time, the intensity at 460 nm
(blue fluorescence) decreased and the intensity at 658 nm (red fluorescence) increased.
The material eventually became fully red as a result of this photoinduced fluorochromic
phenomenon. Finally, by changing the concentration of carbon nanodots in the ink, different
colors and shades were obtained, imparting high versatility to these materials [200,201].

It is also possible to adjust the mechanical and optical properties of thin, transparent
cellulosic films by altering the precursor liquid crystalline properties and adding CNCs.
As described by Fernandes et al. [99] cellulosic films can be produced with customized
mechanical and structural color characteristics, resembling the natural structures found in
flower petals.
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Figure 7. (a) Photograph demonstrating the flexibility of a CNC/polymer composite. (b) Pressure sen-
sitive chiroptical properties of a melamine-urea-formaldehyde/CNC composite thin film. (Reprinted
with permission from [152]. Copyright 2013 American Chemical Society). (c) Thermal-responsiveness
of 3D printed HPC-gelatin-poly(acrylamide-coacrylic acid) objects. Color variations of a 3D printed
object under different temperatures. And Overall appearance of the object at 20 ◦C (Left) and 40 ◦C
(Right). (Adapted from [151] Copyright © 2023 the Author(s). Published by PNAS. This article is
distributed underCreative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC
BY-NC-ND)).

Zhang et al. proposed a printable structural color ink composed of cholesteric cellulose
liquid crystals together with gelatin and a thermal-responsive hydrogel [151]. The ink
exhibits vivid structural colors and printability due to its constituents. Based on this, Zhang
and co-workers print a series of graphics and three-dimensional (3D) objects with vivid
color appearances. The HPC cholesteric mesophase contributes to structural coloration and
the incorporation of gelatin improves the printability of the ink. Combined with in situ
photo-crosslinking of this polymer, the cholesteric mesophase can be retained in the gel
state, resulting in vivid metallic structural colors of the HPG hydrogel. Due to the thermal
responsiveness of both HPC and PACA polymer, these printed objects show visible color
changes around body temperature (Figure 7c). Zhang et al. developed a 3D printing setup
and fabricate a series of graphics and 3D photonic objects, even with multiple colors. Since
it is able to be processed as liquid at increased shear rates and relax back to a self-supporting
gel state with the reduced shear, it is therefore versatile for large-scale production with
well-established industrial processing techniques. The main constituents of the HGP ink are
HPC and gelatin, which are edible, cost-effective, and biocompatible. Further modifying
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the formulation of the ink can be studied, such as replacing the responsive hydrogels with
natural derived alternatives and this system can be extended to daily-life commodities
including colorant-free decorations in food industry, drugs, and cosmetics, as well as
wearable biosensors or customized bionic skins. These performances, together with the
biocompatibility of the constituents, indicate that the present ink represents a leap forward
to the next-generation environmentally friendly 3D photonic printing and would unlock a
wide range of real-life applications.

8. Tapping the Engineering and Industrial Potential

As described in previous paragraphs, structural coloration refers to the phenomenon
where colors are produced by the physical structure of an object rather than by pigments
or dyes. Examples of natural beauty, such as the brilliant-blue feathers of a kingfisher,
iridescent hues of butterfly wings, and metallic shimmering chitin covers of beetles, are
based on structural color. Mimicking them is both a desire and a huge challenge for
chemical manufacturers, as the structures are complex and the use of new technologies in
coloration have been explored for industrial purposes, mimicking the color brilliance of
nature in a more efficient and economical way. Due to its versatility, structural color can be
used in many ways, especially to ensure long-lasting colors for applications ranging from
coatings to cosmetics.

One of the main applications of structural coloration is related with anti-counterfeiting
measures. Structural coloration can be used to create unique and intricate patterns that are
difficult to replicate, making it an effective tool for anti-counterfeiting measures. These pat-
terns have been laboratory and prototype tested and can be incorporated into currency, iden-
tification cards, and valuable products to ensure their authenticity. References [201–210]
provide some examples of prototypes and demonstrations of cellulose-based materials
with structural colors in anti-counterfeiting applications and provide more information
on the fabrication methods, properties, and potential applications of these materials in
the industry.

Structural coloration can also be utilized in displays and signage to create vibrant and
eye-catching visual effects. By manipulating the structure and arrangement of microscopic
elements, such as nanostructures or photonic crystals, it is possible to produce colors that
are more vibrant and stable than those achieved with traditional pigments or dyes. Some
examples and laboratorial prototypes of cellulose-based structural colored displays can be
found in references [18,139,211–214].

Color is a vital element in decoration and architecture, serving as a powerful tool
to create atmosphere, express emotions, and shape perception. It enables individuals to
showcase their personal style and personality while defining the ambiance of a space.
Colors have the ability to influence mood, energy levels, and productivity, with each
hue evoking different emotions and setting specific atmospheres. The strategic use of
color can visually alter the size and proportion of a room and direct attention to focal
points, establishing a visual hierarchy. In essence, color plays a vital role in decoration
and architecture and the incorporation of structural coloration into architectural elements,
interior design, and decorative applications have been tried and performed worldwide. By
integrating materials with specific structures, it is possible to create surfaces that exhibit
different colors depending on the angle of observation, resulting in visually striking and
dynamic environments [215]. Some examples demonstrate how structural coloration can be
incorporated into architectural and design elements all over the world, adding a dynamic
and visually captivating dimension to the built environment, are: the Lotus Temple, New
Delhi, India (the temple’s exterior is composed of white marble panels that feature a series
of intricate, petal-like shapes, resulting in an iridescent effect that changes with the position
of the sun); Elbphilharmonie, Hamburg, Germany (the Elbphilharmonie concert hall boasts
a glass facade that showcases a striking interplay of colors; the surface of the glass panels
is textured with small, geometric shapes that reflect and refract light, and the building’s
appearance changes depending on the angle of view and the lighting conditions); Beijing
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National Aquatics Center (Water Cube), Beijing, China (an iconic structure from the 2008
Olympic Games, features a unique façade made of lightweight ethylene tetrafluoroethylene
cushions; these cushions have a pattern of air-filled cells that scatter and reflect light and,
as a result, the building’s surface exhibits a shimmering effect with ever-changing hues);
Barcelona Pavilion, Barcelona, Spain (the pavilion’s interior walls feature polished and
veined marble panels, which have a unique structural arrangement, that creates a subtle
iridescent effect, adding depth and visual interest to the space); Opéra Bastille, Paris,
France (has a distinctive façade composed of large glass blocks with an irregular surface
texture, causing light to refract and create a play of colors; so, depending on the angle and
intensity of the sunlight, the building appears to change colors, ranging from blue to green
to golden hues). Taking into account the innumerous advantages, also related with the
increasing concerns on environmental impact, several groups of scientists are studying the
use of cellulose-based materials in decoration and architecture. Examples of references
that explore the use of cellulose-based materials with structural coloration in architectural
design, decoration, and coatings can be found in detail in references [151,216–218]. These
references provide insights into the design principles, fabrication methods, and potential
applications of these materials in creating visually appealing and sustainable architectural
elements. Please note that while these references discuss the application of cellulose-
based materials with structural coloration in decoration and architecture, it’s important
to conduct further research and explore specific case studies for detailed examples and
practical implementations in this field.

The use of structural coloration in coatings and paints offers a wide range of possibil-
ities for achieving novel and aesthetically pleasing color effects in various industries, to
achieve unique and desirable color effects. By incorporating nanostructures or microstruc-
tures into the coatings, it is possible to produce coatings that reflect specific wavelengths of
light, resulting in colors that are highly vibrant, iridescent, and durable and resistant to
fading or discoloration over time. Structural coloration can be employed in automotive
and industrial finishes to create coatings that offer enhanced color options and improved
durability. By incorporating nanostructures into the paint, it is possible to achieve unique
color effects that change depending on the viewing angle. This creates an iridescent or
pearlescent appearance, giving the vehicle a distinct and eye-catching look. Manufacturers
can achieve metallic or pearlescent effects without the use of metallic pigments, resulting
in coatings that are more environmentally friendly and resistant to wear. One example is
Lexus Structural Blue with a unique paint technology developed by Lexus, a luxury vehicle
division of the Japanese automaker Toyota. Introduced in 2018, Lexus Structural Blue
possesses an innovative paint color that uses a complex manufacturing process to create a
vibrant and captivating blue shade inspired by the iridescent coloration of Morpho butterfly
wings. The process of applying the paint is intricate and time-consuming, adding to the
exclusivity of the color. It’s worth noting that Lexus Structural Blue is a highly specialized
paint option and is usually available on select high-end Lexus models as part of an optional
package. This example represents the commitment to innovation and craftsmanship, offer-
ing a striking and visually captivating option for those who appreciate unique automotive
finishes. Some works related with coatings and paints based on cellulosic materials would
be an important achievement to the industry, and some laboratorial studies showed already
that this could be a short-term achievement [120,151,219–223].

Another application is in the cosmetics industry. Structural coloration can be used
in makeup products, such as lipsticks or nail polishes, to create striking and long-lasting
colors. The reflective properties of structural colors can enhance the visual appeal and
provide a different look compared to traditional pigment-based cosmetics. Few popular
brands that are selling cosmetics that uses technology based on structural coloration are:
Fenty Beauty (the brand offers a wide range of innovative cosmetics, including prismatic
highlighters that provide a multidimensional glow); Urban Decay (is known for its highly
pigmented and innovative eyeshadows; they have a line of iridescent eyeshadows that
feature colorful reflections); MAC Cosmetics (is a leading brand in the cosmetics industry



Crystals 2023, 13, 1010 17 of 26

and offers a variety of products with structural color; MAC Cosmetics have holographic
lipsticks, iridescent eyeshadows, and prismatic highlighters in their lineup); Huda Beauty
(is known for its creative approach to cosmetics and have a line of holographic lipsticks and
prismatic highlighters that provide an intense glow); ColourPop (is an affordable cosmetics
brand that offers a variety of products with structural color; the brand has duochrome
eyeshadows and highlighters that provide a shimmering glow). Additionally, the cosmetics
industry is constantly evolving, so new brands and products may emerge in the market
over time, some of them inspired by laboratory-scale studies with cellulose-based materials
with structural color [224].

Another industry that sees the benefits of utilizing/exploring structural color is the
textile industry, as structural coloration can be used to create fabrics with unique and
iridescent color effects. By incorporating nanostructures or microstructures into textile
fibers, it is possible to produce fabrics that exhibit different colors depending on the viewing
angle. There are already textile brands that utilize structural color technology in their
products. Here are a few examples: The Unseen (a British fashion and materials exploration
company that specializes in creating color-changing and reactive textiles; they use structural
color technology to develop fabrics that can change color based on environmental factors
such as temperature, light, or air quality); The North Face (an outdoor clothing brand, has
collaborated with The Unseen to create a jacket called “The Black Series” that incorporates
structural color technology, which changes color in response to fluctuations in temperature,
creating a visually dynamic and unique garment); Pangaia (a sustainable fashion brand
that focuses on creating innovative and eco-friendly textiles; Pangaia have developed
a material called “Flowerdown”, which uses structural coloration inspired by butterfly
wings to produce vibrant and iridescent colors); Loomia (is a technology and materials
company that integrates smart fabrics into various industries, including fashion; they have
developed a fabric called “Loomia Colors”, which uses embedded electronics to control
the appearance and color of the textile, creating dynamic and customizable visual effects,
which can be particularly attractive for high-end fashion and specialty textile products).
As the field of textile innovation continues to grow, it’s possible that more brands will
incorporate this technology into their designs in more sustainable textiles and particularly
with cellulosic materials as anticipated by several researchers in the area [225–228].

These are just a few examples of how structure coloration can be used in diverse
industrial applications. As research in the field continues, more innovative uses and
practical applications of cellulose-based materials with structural coloration are likely
to emerge.

9. Conclusions and Future Directions

In conclusion, the study of structural color in cellulose-based materials offers exciting
opportunities for the development of functional photonic structures inspired by nature.
Through the exploration of natural photonic structures and the utilization of cellulose
and cellulose nanocrystals, researchers have made significant progress in understanding
the underlying principles and engineering artificial counterparts. The versatile nature
of cellulose-based materials, coupled with the ability to create ordered structures at the
nanoscale, opens up a wide range of possibilities for applications in various fields.

From the mimicking of natural photonic structures to the development of cellulose-
based composite materials with structural color, the potential applications are vast. These
materials hold promise in colorimetric sensors, optoelectronic devices, and even in areas
such as camouflage and decorative materials. Additionally, the advent of light-responsive
and color-stimuli-responsive cellulose-based materials introduces new avenues for dynamic
control and adaptability.

However, there are still challenges to address. Further research is needed to fully
comprehend and fine-tune the optical properties of cellulose-based materials, as well as
to develop cost-effective and scalable manufacturing processes. Additionally, exploring
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the integration of other functional materials and advancing the understanding of liquid
crystalline phases in cellulose can enhance the design and performance of these materials.

As we look to the future, the continued collaboration between researchers from diverse
fields, including materials science, chemistry, and biology, will be crucial in unlocking
the full potential of cellulose-based materials with structural color. By harnessing the
wealth of knowledge from nature and employing innovative strategies, we can create
functional photonic structures that not only replicate the beauty of natural colors but also
offer practical solutions to a range of technological challenges.

In summary, the exploration of structural color in cellulose-based materials presents
an exciting avenue for research and innovation. By drawing inspiration from nature and
leveraging the unique properties of cellulose, we can pave the way for a new generation of
functional materials with remarkable optical properties and diverse applications. More,
unlocking a wide range of real-life new applications, the utilization of 3D printing with
cellulosic hydrogels marks a substantial progress towards next-generation environmentally
friendly 3D photonic printing.
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