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Abstract: In this study, amine-terminated succinic acid-modified magnetic nanoparticles (MSA@TEPA)
have been successfully synthesized using a facile two-step procedure as a new effective adsorbent
for the removal of malachite green from aqueous solutions. The MSA@TEPA was characterized by
scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), zeta potential,
thermal gravimetric analysis (TGA), and X-ray diffraction (XRD) analysis. The parameters influ-
encing the adsorption capacity of MSA@TEPA, such as pH (3–8), contact time (t: 5–480 min), initial
concentrations of MG dye (Co: 20–200 mg/L), and adsorbent mass (0.05–0.5 g), were evaluated. It
was observed that, under specified experimental conditions (Co: 25 mg/L, pH: 7.1, T: 298 K, agitation
rate: 100 rpm, and t: 420 min), the MSA@TEPA nanocomposite exhibits excellent adsorption efficiency
(97.74%) for MG dye. The adsorption kinetics follow the PSO model, and the equilibrium data were
fitted to the Langmuir isotherm with a maximum adsorption capacity of up to 282.65 mg/g. The ther-
modynamic parameters indicated that the adsorption process of MG dye was an exothermic process.
After five consecutive cycles, MSA@TEPA nanocomposite still show good adsorption efficiency for
MG dye. It is assumed that, because of the presence of amine group, adsorption mainly occurred
through electrostatic interaction and H-bonding. In conclusion, the study shows a new and effective
adsorbent with high adsorptive capacity, easy magnetic separation using an external magnetic field,
and reusability for MG dye elimination from aqueous solutions.

Keywords: amine-terminated succinic acid; tetraethylenepentamine (TEPA); magnetic nanocomposite;
malachite green (MG)

1. Introduction

Synthetic organic dyes are the most harmful water pollutants to the environment
and human health because of their carcinogenic, mutagenic, and teratogenic behavior [1].
Different dyes are extensively used as colors in the paper, textile, leather, cosmetic, and
plastic industries [2–4]. It is estimated that around 7 × 105 tons of dyestuff are manufactured
each year and about 15% of the organic dyes are discharged into the aqueous environment,
causing potential health hazards [3,5,6]. Malachite Green (MG, C23H25N2Cl) is a cationic
dye generally applied for coloring cotton, silk, leather, and paper products. It is also
employed in aquaculture as a fungicide. By nature, MG is hazardous and toxic to human
beings and other living organisms and its presence in a water environment causes damage
to the liver, kidney, and respiratory system. Furthermore, it causes carcinogenic, mutagenic,
and teratogenic effects on human cells [7–9]. Due to its noxious effects on living beings, it
is therefore necessary to remove MG dye from wastewater.

Various physicochemical and biological techniques such as precipitation, membrane
processes, coagulation, photocatalytic degradation, adsorption, chemical oxidation, ion
exchange, and so on, have been applied for the elimination of dyes from contaminated
water [10–12]. Amongst these, the adsorption technique has received significant attention
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from researchers because it is promising, efficient, low-cost, eco-friendly, and economically
viable for water treatment [11,13–15]. Various adsorbent materials, including polymers [16],
zeolites [17], activated carbon [18], metal-organic frameworks (MOF) [19], mesoporous sil-
ica [20], high-availability sustainable biomass (rock melon skin (RMS) [21] and Artocarpus
odoratissimus leaves [22]), and cellulosic biochar [23] have been used for the elimination of
dyes from wastewater. But, owing to their small size, some of these adsorbents suffer from
the difficulty of separating them from aqueous solutions. To solve this problem, separation
using a magnetic nanoparticle adsorption technique has attracted a lot of attention due to
its remarkable properties of being a rapid and effective method, its biocompatibility, high
reusability, as well as its high efficiency after regeneration cycles [24]. For example, iron
oxide (magnetite) nanoparticles, with a large specific surface area and high magnetic nature,
can be used as an easy-to-isolate adsorbent from aqueous solutions via a magnet and are of
good chemical stability [25]. However, magnetic nanoparticles have disadvantages, such as
the fact that they are unstable under acidic conditions, oxidize in air, and aggregate due to
the strong dipole–dipole magnetic attraction between nanoparticles. To overcome these
problems, large numbers of compounds with magnetic natures and different functional
groups have been developed. Various magnetic nanocomposites, such as cobalt ferrite
silica magnetic nanocomposite [26], Fe3O4@chitosan@ZIF-8 [27], magnetic biochar [28],
poly(methyl methacrylate)/graphene oxide-Fe3O4 [28], MgO/Fe3O4 nanoparticles [29],
and sodium alginate-coated Fe3O4 nanoparticles [30], were used to remove MG from
aqueous solutions.

Succinic acid (C4H6O4, SA) contains a dicarboxylic group that can serve as an active
site for heavy metal ions adsorption [31,32]. The modification of magnetite nanoparticles
using succinic acid (SA) leads to an improvement in the stability of magnetite nanoparticles
and increases the pollutant’s adsorption. Various amine-based sorbents, such as amino
functionalized graphenes [33], polyaniline (PANI)–Nickel ferrite (NiFe2O4) [34], and 3-
MPA@PMNPs [35], have been developed for the removal of MG dye from waste water. The
presence of amine groups in the structure of magnetic nanocomposites provide the desired
environment for the adsorption of metal ions [36], anionic metal species [37], and dyes [38].
Patil et al. prepared polyaniline–nickel ferrite magnetic nanocomposite as an adsorbent
for the removal of MG dye from an aqueous solution. They found that the adsorption
capacity was 4.09 mg/g at an optimum condition of 30 mg/L [34]. Hu et al. studied the
abilities of Fe3O4@SiO2 and Fe3O4@SiO2-NH2 for the removal of MG dye and found that
Fe3O4@SiO2-NH2 showed a good removal efficiency of MG dye (90%) compared with
Fe3O4@SiO2 (60%) [39]. Tetraethylenepentamine (TEPA) is an organic polyamine molecule
that contains five amino groups (two primary and three secondary functional groups) on
its structure, which can serve as a binding site for metal ions [40], dyes [41], and CO2 [42].
Ghasemi et al. used TEPFRCA and obtained the maximum adsorption of MG dye from the
solvent phase. They reported a maximum adsorption capacity of 333.3 mg/g through the
fast adsorption of MG dye from the solvent phase [43].

To the best of our knowledge, this was the first report of the design and synthesis
of amine-terminated succinic acid-modified magnetic nanoparticles (MSA@TEPA) as an
effective adsorbent using a facile two-step procedure. Firstly, magnetite nanoparticles
functionalized with succinic acid were prepared using an in situ co-precipitation method
and, next, were subsequently modified with tetraethylenepentamine (TEPA) via an ami-
dation reaction. Then, the obtained MSA@TEPA product was characterized through SEM,
FTIR, TGA, Zeta potential, and XRD analysis. The MSA@TEPA was used as an attractive
adsorbent material for MG dye removal. The different parameters that influence adsorption
processes, including, adsorbent dosage, initial MG concentration, solution pH, contact time,
and temperature, were investigated. In addition, the adsorption nature was investigated
through kinetic, isothermal, and thermodynamic parameters studies. Finally, this study
provides a new effective magnetic nanocomposite as an adsorbent with high adsorptive
capacity, easy magnetic separation using an external magnetic field, and reusability for MG
dye removal from aqueous solutions
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2. Materials and Methods
2.1. Materials

Tetraethylenepentamine (C8H23N5, ≥97%), malachite green hydrochloride, ferric chlo-
ride (FeCl3.6H2O), ferrous chloride (FeCl2.4H2O), and 1-ethyl-3-(3 dimethylaminopropyl)
carbodiimide (EDC) were purchased from Sigma–Aldrich, USA, India. Succinic anhydride
(C4H4O3, ≥99%) was purchased from Panreac, UK. Sodium hydroxide (NaOH, 97.5%),
Nitric acid (HNO3, 69–71), Hydrochloric acid (HCl, 37%), and ammonium hydroxide
(NH4OH, 25%) were purchased from Merck, Germany.

2.2. Synthesis of Magnetic Nanocomposite (MSA@TEPA)

Magnetic nanocomposites (MSA@TEPA) were prepared via a facile two-step procedure
involving preparing magnetic succinic acid (MSA) using an in situ co-precipitation method
and its subsequent modification with high nitrogen content tetraethylenepentamine (TEPA).
Firstly, the modified succinic acid magnetite nanoparticles were prepared as follows: 2.03 g
of ferric salt and 0.746 g of ferrous salt were dissolved separately in deionized water (75 mL,
0.1 HCl) with a molar ratio of 2:1 under N2 gas and magnetic stirring for 15 min, then
the mixture was moved into a round bottom flask. After that, 0.5 g of succinic acid was
added to the mixture of iron salts under nitrogen gas and magnetic stirring for 30 min, then
the mixture was heated at 75 ◦C followed by the dropwise addition of NH4OH (30 mL)
under mechanical stirring for 2 h until the pH reached 10. After mechanical stirring for
another 2 h, the black precipitate was separated using a magnet. The modified succinic acid
magnetite nanoparticles formed were washed with deionized water (Scheme 1). Secondly,
the obtained MSA nanocomposites were dispersed into a beaker containing 50 mL of
ethanol, followed by 0.931 g of EDC addition to this solution under ultra-sonication for
40 min. After 40 min of stirring, 10 mL of TEPA was added dropwise into the MSA
dispersion under magnetic stirring and nitrogen gas for 24 h. After the reaction completion,
the obtained magnetic nanocomposites (MSA@TEPA) were collected through magnetic
separation. Finally, the product was washed with de-ionized water and ethanol, and then
dried at 60 ◦C for 24 h (Scheme 1).

2.3. Adsorption Experiments

The removal of MG dye from aqueous media by MSA@TEPA was studied through
the batch elimination process. The different parameters that influence the efficiency of
MG removal, including solution pH (3–8), contact time (t: 5–480 min), adsorbent mass
(0.05–0.5 g), and initial concentrations of MG dye (Co: 20–200 mg/L), were studied. Gen-
erally, 20 mg of MSA@TEPA was added into an Erlenmeyer containing 20 mL of MG dye
solution (25 mg/L). Then, the sample pH was adjusted up to ~7.1 by NaOH/HCl solution.
Next, the sample was shaken at 100 rpm for the prescribed time (420 min) and then isolated
using a magnet. The residual concentration of MG dye in the supernatant was determined
using a UV–Vis spectrophotometer (Thermo Scientific, Evolution 600, Waltham, MA, USA)
at the wavelength of 617 nm. The equilibrium removal efficiency of MG dye and the
adsorption capacity (qe mg/g) were calculated using Equations (1) and (2), respectively.
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× 100 (1)
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qe = (Co − Ce)×
V
m

(2)

where Co and Ce (mg/L) represented the initial and final concentrations of MG dye,
respectively, qe (mg/g) is the adsorption capacity of MSA@TEPA toward MG dye, m (g) is
the mass of MSA@TEPA, and V (L) is the MG solution volume.

3. Results
3.1. Characterization of MSA@TPEA

The FT-IR spectra of magnetite nanoparticles, TEPA, MSA, MSA@TPEA, and MG-
loaded-MSA@TPEA, are displayed in Figure 1. The FT-IR spectra of MSA display broad
bands at 3442, 2947, 2872, (1648, 1382 cm−1) 1428, 1069, and 570 cm−1 that were assigned
to hydroxyl (-OH), asymmetrical and symmetrical of C-H, carboxyl (COOH), C-O, and
Fe-O bonds, respectively, indicating that the successful modification of succinic acid onto
magnetite nanoparticles [44]. For TEPA, the characteristics bands at (3272 and 3349 cm−1),
1451, and 1602 cm−1 were described as amino (NH2) and C-N-C and N-H bonds onto the
TEPA surface [45–47]. Compared with MSA, the band at 1632 cm−1 was described as the
C=O stretching vibration of -CONH- formed in the MSA@TPEA product. In addition, the
bands at 2855 and 2925 cm−1 (C-H stretching) became stronger in intensity, indicating the
large numbers of -CH2- introduced which proves that TEPA had been successfully bonded
on the surface of MSA through the reaction between the carboxyl group of MSA and the
amino group of TEPA [48,49]. The bands at 3435, 1483, 1260, 1057, and 570 cm−1 were
assigned to the NH/OH, C-N-C bond, C-N, C-O, and Fe-O bonds. Based on these results,
it is concluded that TEPA was grafted onto the MSA nanocomposite. After MG adsorption,
the bands of functional groups decreased in their respective intensities. The bands at 3435,
1631, and 1265 cm−1 for ν(-OH/NH), -CONH-, and C-N were decreased in intensity and
shifted to 3442, 1627, and 1251 cm−1, respectively. Based on these results, it was concluded
that MG dye was successfully adsorbed onto the MSA@TPEA surface.
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The thermal stability curve of the prepared magnetite nanoparticles and MSA@TEPA
nanocomposite is shown in Figure 2a. During the first step, the weight change in Fe3O4
and MSA@TEPA before 180 ◦C corresponds to the loss of moisture. The next two steps of
weight loss up (15%) at 370 ◦C and (21.5%) at 750 ◦C were related to the decomposition of
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the organic molecules (SA and TEPA) from the magnetite surface. The total weight loss of
MSA@TEPA and pure magnetite nanoparticles was 41.5% and 9%, respectively. The overall
TGA results indicate that the modified ratio of TEPA and SA onto magnetite nanoparticles
is about 32.5%, which confirmed the formation of MSA@TEPA synthesis.
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nanocomposite.

Figure 2b shows the XRD pattern of the Fe3O4 and MSA@TEPA nanocomposite. The
diffraction patterns of both particles show eight peaks at 2θ = 30.35◦, 35.71◦, 43.53◦, 53.82◦,
57.26◦, 62.86◦, and 74.54, corresponding to (220), (311) (400), (422), (511), (440), and (533),
planes of cubic spinel Fe3O4. These results are in agreement with the magnetite’s reflections
(JCPDS file No. 019-0629) [50]. When compared with Fe3O4, the peaks of magnetite
nanoparticles still exist in the XRD pattern of MSA@TEPA as well as the intensities of peaks
in MSA@TEPA being almost the same as the pure magnetite nanoparticles, suggesting
that the modification of magnetite with SA and TEPA did not change the phase of Fe3O4
nanoparticles [51]. The mean crystallite sizes (D) of Fe3O4 nanoparticles and MSA@TEPA
nanocomposites were calculated using the Scherer equation:

D =
kλ

β cosθ
(3)

where K is a constant (0.94), λ (λ = 0.154 nm) is the X-ray wavelength, and β and θ are
the line broadening at half-maximum intensity (FWHM) and the Bragg angle, respectively.
The mean crystallite size for Fe3O4 nanoparticles and MSA@TEPA nanocomposite were
11.8 and 13.07 nm, respectively. The morphology of MSA@TEPA before and after MG dye
adsorption is shown in Figure 3. It can be seen that, before adsorption, the MSA@TEPA
has an irregular rough surface (Figure 3a,b) while, after MG dye adsorption, the surface of
MSA@TEPA seems to be smooth, indicating the successful adsorption of MG dye on the
MSA@TEPA surface (Figure 3c).
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3.2. Optimization of Adsorption Process Conditions
3.2.1. Effect of pH

It is known that the molecular structure of MG depends on the pH solution. In strongly
basic conditions, the structure of malachite green converts to a carbinol base and loses its
color owing to the reaction of OH with MG dye. Thus, the adsorption of MG by MSA@TEPA
was investigated in the pH range from 3 to 8.1, as shown in Figure 4a. It can be seen that the
efficiency of MG removal and adsorption capacity of MSA@TEPA was gradually increased
from 28.82%, (9.01 mg/g) to 88.320%, (27.60 mg/g) with increasing solution pH from 3 to
6.1, respectively, and it reached a maximum value of 93.31%, (29.16 mg/g) at pH 7.1 [52].
The low MG removal at lower pH was assigned to the existence of protons (H+) which
might be because of the electrostatic repulsion between cationic MG ions and the protonated
MSA@TEPA surface. On the other hand, with the pH increase, the positive charge of amine
groups on the adsorbent surface decreases, thus, the electrostatic interactions with cationic
MG+ increase, which leads to an improvement in the efficiency of MG dye removal. The
zeta potential results further support the pH results, as depicted in Figure 4a. It can be
seen that the pHPZC of MSA@TEPA was 6.7, indicating that the surfaces of MSA@TEPA are
positively charged at pH < pHPZC and negatively charged at pH > pHPZC. The different
researchers also reported that low pH favors high adsorption, e.g., the MG adsorption on
TiO2 nanoparticles/anthracite [53] and reduced graphene oxide [54] reached a maximum
value at pH = 8 and 8, respectively.
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3.2.2. Effect of Adsorbent Dosage

The influence of prepared MSA@TEPA mass on the efficiency of MG elimination was
tested by varying the mass of MSA@TEPA between 0.005 and 0.05 g against a solution
volume of 25 mL of 25 mg/L MG dye, as shown in Figure 4b. The efficiency of MG
removal improved from 59.04% to 96.74% with an increase in the amount of MSA@TEPA
nanocomposite from 0.005 to 0.02 g. Meanwhile, the adsorption capacity of MSA@TEPA
toward MG reduces from 73.80 to 33.23 mg/g with the increasing amount of MSA@TEPA
nanocomposite from 0.005 to 0.02 g. The reduction in the adsorption capacity of MSA@TEPA
may be because of the aggregation of adsorption sites resulting in a decrease in the total
adsorption surface area available for the MG dye [55]. Therefore, 0.02 g mass of adsorbent
was selected as an optimum value for the rest of the experiments.

3.2.3. Effect of Contact Time

The influence of equilibrium time on the adsorption of MG onto MSA@TEPA was
investigated at various shaking times in the range of 5 to 480 min. The time-dependence
efficiency of MSA@TEPA for MG removal is given in Figure 4c. By increasing the time
from 5 to 360 min, the MG removal and adsorption capacity efficiency gradually increases
from 25.47% to 94.32%, respectively, then slowly decreases until it reaches an equilibrium
at 360!min with maximum removal (97.74%) and adsorption capacity (61.09 mg/g). This
might be due to the sufficient time interaction between the MSA@TEPA adsorbent and the
MG dye molecules [56]. At 5 min, the MG dye removal efficiency was 25.47% while, at
the equilibrium time of 30 min, this reached a maximum value of 46.19%. As already re-
ported, the MG adsorption on the AC@ATPA composite [57] and Fe3O4@ATPA@AMPA [58]
reached maximum adsorption capacity values of 14 mg/g and 58.9 mg/g at equilibration
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times of 240 and 120 min, respectively. Thus, the optimum contact time was selected to be
420 min.

3.2.4. Effect of Initial Concentration and Temperature

The effect of MG concentration on the adsorption process was investigated at different
initial concentrations between 20 and 200 mg/L under specific experimental conditions
(m: 0.02 g; pH; 7.1; time: 420 min; T: 298 K; and agitation rate: 100 rpm), as displayed in
Figure 4d. It can be seen that, with an increase in the initial concentration of MG dye from
25 to 350 mg/L, the MG removal efficiency decreases from 97.11% to 59.90%, while the
adsorption capacity of MSA@TEPA toward MG dye increases from 29.72 to 262.06 mg/g.
The increase in adsorption capacity with the increase in the initial MG concentration is
because the higher the initial concentration of MG dye, the more collisions with active
adsorption sites on the adsorbent surface, as well as the increase in the driving force of
mass transfer leading to an increase in the adsorption capacity. At 25 mg/L, the MG dye
removal efficiency was 97.11% while, at 100 mg/L, this reached the maximum value of
90.02%. The maximum adsorption capacity on the adsorbent was 262.06 mg/g at 25 ◦C.
Figure 4d also reveals that, at higher temperatures, the sorption capacity is low. This means
that the adsorption of MG dye on the adsorbent is an exothermic process.

3.3. Adsorption Modeling
3.3.1. Adsorption Isotherm

To better understand the maximum adsorption capacity of MSA@TEPA toward MG
dye and also to study the mechanism of binding between MG dye and MSA@TEPA, differ-
ent isotherm models, like the Langmuir [59], Freundlich [60], and Dubinin–Radushkevich
(D-R) [61] isotherm models, were used. The nonlinear forms of these models are pro-
vided in Supplementary Information, Text S1. Table 1 gives a comparison between these
isotherm models, and the obtained graph is shown in Figure 5a–c. The R2 of Langmuir
model (R2 = 0.99314) is higher than that of the Freundlich (R2 = 0.96181) and Dubinin–
Radushkevich (R2 = 0.8876) models, indicating that the MG adsorption onto MSA@TEPA
follows the Langmuir isotherm model with qe (282.65 mg/g). This indicates a monolayer
homogenous adsorption of the MG molecules on the MSA@TEPA surface. All these results
indicate that our prepared MSA@TEPA adsorbent showed good adsorption capacity for
MG when compared with other various magnetic adsorbents like magnetic hydroxyapatite
nanoparticles (208.06 mg/g) [62], MGO@Cellulose@Lipase (51.87 mg/g) [63], GO/Fe3O4
(96.9 mg/g) [64], and magnetic cobalt oxide nanoparticles (238.10 mg/g) [65].

Table 1. The values of parameters for each isotherm model.

Model
MG Dye

298 K 308 K 318 K

Langmuir
qm, mg/g 282.65 267.6503 240.50
KL (L/mg) 0.071 0.042 0.029
RL 0.360 0.487 0.579
R2 0.99314 0.98715 0.99509
Freundlich
Kf, (mg/g) (L/mg)1/n 51.51 36.39 26.11
n 2.91 2.62 2.46
R2 0.96181 0.96088 0.96888
Dubinin–R
qs, mg/g 232.9 205.0 179.24
KD-R (mol2 KJ−2) 27.28 49.78 80.55
E (kJ mol−1) 0.135 0.100 0.053
R2 0.8876 0.82899 0.87887
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3.3.2. Adsorption Kinetic

To understand the MG adsorption mechanism on the MSA@TEPA surface, the ex-
perimental data were assessed using nonlinear kinetic models like the pseudo-first-order
(PFO) [66], pseudo-second-order (PSO), and Elovich models [67]. These kinetic parameter
models are given in Supplementary Information, Text S2. The adsorption kinetic parameter
values of MG dye onto the MSA@TEPA surface are illustrated in Table 2, and the obtained
graph is shown in Figure 5d. The correlation coefficients for the PSO model (R2 = 0.9871)
are greater than that of the Elovich (R2 = 0.9731) and PFO (R2 = 0.9448) models, indicat-
ing that the MG adsorption follows the PSO kinetic model. Furthermore, the calculated
qe,exp. (mg/g) value is close to the PSO model qe,cal. (mg/g) value, suggesting that the
adsorption process seems to be a chemisorption process, which might result from the
electrostatic attraction between the MG dye and the functional groups of the MSA@TEPA
nanocomposite [68,69].

Table 2. The values of parameters for each kinetic model.

Co
(mg/L)

qe,exp.
(mg/g)

Pseudo-First-Order Pseudo-Second-Order Elovich

qe,cal.
(mg/g)

K1
(1/min) R2 qe2,cal.

(mg/g)

K2
(g/mg-
min)

R2 A (mg/g
min) B (mg/g) R2

25 61.23 57.21 0.023 0.9448 63.36 0.00053 0.9871 6.42 0.089 0.9731
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3.3.3. Adsorption Thermodynamics

The data obtained from the adsorption isotherm process were analyzed to assess the
thermodynamic parameters, namely the standard entropy change (∆S◦), standard enthalpy
change (∆H◦), and Gibbs energy (∆G◦). The following equations were used to calculate
these parameters (4)–(6) [70]:

∆G◦ = −RT lnKc (4)

Kc = M.wt × 1000 × KL (5)

lnKc =
∆S◦

R
− ∆H◦

RT
(6)

where KL (L/g) is the Langmuir model constant, KC referred to the adsorption equilibrium
constant as calculated from Equation (4) [70], and M.wt is the molecular weight of MG
dye. The corresponding thermodynamic parameter values are listed in Table 3. The
negative ∆G◦ values obtained for the adsorption of MG dye at all studied temperatures
(298–318 K) indicate the spontaneity of the adsorption process. The negative ∆H◦ value
(−34.76 (kJ/mol) suggests the exothermic nature of the adsorption process. Furthermore,
the value of enthalpy changes also shed light on the type of adsorption mechanism, as
for physisorption (∆H◦ < 20 kJ/mol), for electrostatic interaction (20 < ∆H◦ < 40 kJ/mol),
and for chemisorption (80 < ∆H◦ < 450 kJ/mol) [71]. As in our case, the value of ∆H◦

was −34.76 (kJ/mol), suggesting the electrostatic interaction of MG on the MSA@TEPA
surface [71,72]. The negative values of ∆S◦ indicate a degree of disorder of the adsorbed
MG at the solid/liquid interface, which is a normal and general phenomenon.

Table 3. Thermodynamic adsorption parameters for the adsorption of MG dye on MSA@TEPA.

∆H◦ (kJ/mol) ∆S◦ (J/mol.K) ∆G◦ (kJ/mol)

298 K 308 K 318 K

−34.76 −32.29 −25.19 −24.71 −24.56

3.4. Proposed Adsorption Mechanism

After careful mathematical and experimental calculations, an adsorption mechanism
of MG on MSA@TEPA was proposed, as shown in Figure 6. As MSA@TEPA has five
amino groups on its surface, it might have an affinity to adsorb MG dye by electrostatic
interaction and H-bonding. The FT-IR analysis has affirmed that MSA@TEPA adsorbent
contains groups like amino, hydroxyl, and amide groups and, after MG adsorption on
MSA@TEPA, the intensities of most of the FT-IR bands were reduced and shifted to lower
wave numbers. For example, the bands at 3435, 1631, and 1265 cm−1 for ν(-OH/NH),
-CONH-, and C-N were decreased in intensity and shifted to 3442, 1627, and 1251 cm−1,
respectively, indicating that some sort of interaction (the H- bonding and electrostatic
interaction) was involved during MG adsorption onto MSA@TPEA. This also confirms the
successful MG adsorption onto MSA@TPEA surface. According to the pH results, as pH
increases, the positive charge of amine groups on the adsorbent surface decreases. Thus, the
chances of electrostatic interactions with cationic MG+ increase, which lead to the MG dye
removal efficiency. In conclusion, the interaction mechanism of MG onto the MSA@TEPA
surface can be summarized as follows: (i) H- bonding between nitrogen of N(CH3)2 and
-NH groups on the MSA@TEPA surface and (ii) electrostatic attraction between positive
charges of +N(CH3)2 on the MG dye surface and negative charges of amino groups on the
MSA@TEPA surface.
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3.5. Reusability of MSA@TEPA

To assess the reusability of MSA@TEPA nanocomposite, the removal of MG dye by
MSA@TEPA was also tested over five consecutive cycles and with different eluents such as
0.01 M HCl, ethanol, and HCl/ethanol mixture. The results exhibited that the desorption
efficiency was 32%, 73%, and 82% for HCl, ethanol, and HCl/ethanol mixture, respectively.
Therefore, the eluent HCl/ethanol mixture was selected for subsequent experimental
procedures. Figure 7 shows the reusability results of the MSA@TEPA nanocomposite. It
was observed that the adsorption efficiency of MG was reduced to 61% after five consecutive
adsorption–desorption cycles, which might be because of the depletion of adsorption active
sites for MG and incomplete desorption of MG dye from MSA@TEPA.
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4. Conclusions

In this study, amine-terminated modified succinic acid magnetite nanoparticles
(MSA@TEPA) were prepared effectively using a simple, environmentally friendly co-
precipitation method and were used as a new and efficient adsorbent for the elimination of
malachite green from an aqueous medium. The removal of MG dye from aqueous media
by MSA@TEPA was studied through the batch elimination process. MSA@TEPA were
characterized using FTIR, XRD, and SEM techniques and the results showed successful
modification of TEPA onto the MSA composite. MSA@TEPA exhibited good adsorption effi-
ciency (97.74%) for MG under the specified experimental conditions (pH: 7.1, Co: 25 mg/L,
T: 298 K, and t: 360 min). Such a good adsorption efficiency was attributed to the presence
of poly amino groups in the structure of MSA@TEPA. The Langmuir isotherm and PSO
kinetic models were applied and seemed to be the best-fitted models for the adsorption pro-
cess. Furthermore, the thermodynamic parameters showed that the adsorption of MG ions
onto MSA@TEPA was an exothermic process and occurred through electrostatic interaction
and H-bonding. After five consecutive cycles, the material still shows good adsorption
efficiency (61%) making it a highly reusable absorbent for MG dye. Finally, based on the
above results and discussion, it can be concluded that MSA@TEPA can function as highly
efficient adsorbents for MG removal, making the process cost-effective, environmentally
friendly, and sustainable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13091301/s1, Text S1: Adsorption isotherm, Text S2: Ad-
sorption kinetics.
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