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Abstract: A series of syringaldehyde imines with para-substituted anilines have been synthesized in a
good yield, and their crystal structures have been analyzed. The orientation of the syringaldehyde
hydroxyl group plays in important role in the intermolecular hydrogen-bonding pattern of the
molecules. The O–H. . .N hydrogen bonding interactions primarily determine the three-dimensional
packing of the molecules, even though they make up a relatively small percentage of intermolecular
interactions in the molecules. The three structures with the p-hydroxy group cis to the imine group
give hydrogen-bonded zigzag chains in the monoclinic crystals, while the structure with a trans
hydroxy group crystallize in a hexagonal space group (R3) and form hydrogen-bonded hexamers.
The hexagonal structure also displays Br. . .Br interactions, forming additional hexameric clusters. The
analysis of published p-hydroxyphenyl imine crystal structures from the Cambridge Crystallographic
Database revealed patterns in the length of the hydrogen bonding interactions based on steric
congestion around the hydroxyl group.

Keywords: concomitant polymorph; crystal structure; Schiff base; hydrogen bonding

1. Introduction

The German–Italian chemist, Hugo Schiff, developed a new class of organic com-
pound in 1864, the imine, or Schiff base [1]. The synthesis of Schiff base compounds
is simple; it is the condensation of an amine and a carbonyl to give a carbon–nitrogen
double bond. The simplicity of this synthesis has led to the extensive study of imines
because they can easily be synthesized and modified. This diverse chemistry has been
used to prepare a wide variety of Schiff bases that can be used as ligands in metal com-
plexes [2–5]. Hydroxy-substituted imine derivatives have been used as ligands for many
transition metals. Recently, the catechol-derived Schiff base ligands of thiacalixarene have
been shown to preferentially bind copper (II) ions and were subsequently used to prepare
copper-containing organic–inorganic materials [6].

Syringaldehyde is an aromatic aldehyde that is found in spruce, maple, [7,8] and oak
woods and is an important flavor component of whiskey [9,10]. Recently, syringaldehyde
has been shown to have biological activity [11], including antihyperglycemic activity [12,13],
antioxidant activity [14,15], and anti-inflammatory activity [16]. In fact, phenol-containing
Schiff bases often show biological activity. In a recent report by Aytac et al., a series of
Schiff base compounds with phenol rings were synthesized and shown to have not only
antioxidant activity, but many were inhibitors of acetylcholinesterase, butylcholinesterase,
and/or carbonic anhydrase [17].

A polymorph has been defined as “a solid crystalline phase of a given compound
resulting from the possibility of at least two crystalline arrangements of the molecules of that
compound in the solid state” [18]. Concomitant polymorphs are formed simultaneously in
the same crystallization medium and are much less frequently studied [19]. Concomitant
polymorphs are seen in a variety of molecules. Gong et al. found concomitant polymorphs
for methoxyflavone, a non-steroidal anabolic isoflavone [20]. Jones and co-workers found
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two concomitant polymorphs of a polyamide molecules, which differ in their hydrogen-
bonding patterns in the crystal [21]. The existence of polymorphs is important in many
industries, but especially in the pharmaceutical industry since different polymorphs will
have different properties [22]. While many a scientist who has tried to predict crystal
structures has been called a fool in the rain, by systematically studying the structures of
related molecules, crystal structure prediction may someday become a reality.

Our group is interested in the synthesis and crystal structures of Schiff bases, sul-
fonamides, and related molecules [23–25]. As part of our ongoing studies, we report the
synthesis, spectral properties, and crystal structures of three Schiff bases from the conden-
sation of syringaldehyde with several para-substituted aniline derivatives, including two
concomitant polymorphs of the bromo-substituted compound.

2. Materials and Methods
2.1. General Experimental

The reagents were of reagent grade or better and obtained from standard commer-
cial sources. Melting points were collected using Mel-Temp equipment from Laboratory
Devices Inc. (Auburn, CA, USA) and are uncorrected. Infrared spectra were obtained
as solid samples using a Agilent Cary 630 FT-IR spectrometer equipped with a diamond
stage automated total reflectance attachment. NMR spectra were collected as solutions in
DMSO-d6 at a frequency of 500.13 MHz on a Bruker AVANCE III 500 MHz NMR spectrom-
eter. Mass spectroscopy data were collected using ESI positive ion mode with a Thermo
Scientific (San Diego, CA, USA) Q Exactive high resolution quadrupole mass spectrometer,
as approximately 10 ppm solutions in 50:50 methanol: 0.1% aqueous formic acid.

2.2. Synthesis and Crystallization

The synthesis of 4-bromo-N-[4-hydroxy-3,5-dimethoxybenzylidine]aniline, I, is given
as an example. A mixture of 1.722 g (10.01 mmol) 4-bromoaniline and 1.824 g (10.01 mmol)
3,5-dimethoxy-4-hydroxybenzaldehyde was refluxed for 40 min in 30 mL of absolute
ethanol. The mixture was cooled to room temperature and left at −4 ◦C overnight to
precipitate. The precipitate that formed was filtered, washed with diethyl ether, and
allowed to dry, yielding 2.291 g (68.06%) as a tan solid. Single crystals of Ia and Ib suitable
for X-ray diffraction were grown via the solvent diffusion of hexanes into an acetone
solution of the compound. MP: 153–154 ◦C. IR: 1619 cm−1 (C=N). 1H NMR (DMSO-d6):
δ 9.16 (br s, 1H, OH); 8.44 (s, 1H, CH=N); 7.55 (d, 2H, HAr, J = 8.7 Hz); 7.23 (s, 2H, HAr);
7.17 (d, 2H, HAr, J = 8.7 Hz); 3.83 ppm (s, 6H, OCH3). ESI-HRMS, C15H14BrNO3: m/z calc
(found), intensity: [M + H]+ 336.0236 (336.0238), 100%; 338.0215 (338.0216), 99%.

Similarly, 4-methoxy-N-[4-hydroxy-3,5-dimethoxybenzylidine]aniline, II, was pre-
pared from 1.249 g (10.14 mmol) p-anisidine and 1.831 g (10.10 mmol) syringaldehyde,
yielding 2.471 g (85.15%) as a white solid. Single crystals of II were grown via the evapora-
tion of an acetone solution of the compound. MP: 163–164 ◦C. IR: 1620 cm−1 (C=N). 1H
NMR (DMSO-d6): δ 9.02 (br s, 1H, OH); 8.46 (s, 1H, CH=N); 7.23 (d, 2H, HAr, J = 8.9 Hz);
7.21 (s, 2H, HAr); 6.96 (d, 2H, HAr, J = 8.9 Hz); 3.83 ppm (s, 6H, OCH3); 3.77 ppm (s, 3H,
OCH3). ESI-HRMS, C16H17NO4: m/z calc (found), intensity: [M + H]+ 288.1236 (288.1245),
100%.

4-Hydroxy-N-[4-hydroxy-3,5-dimethoxybenzylidine]aniline, III, was prepared from
1.010 g (10.05 mmol) p-aminophenol and 1.857 g (10.12 mmol) syringaldehyde, yielding
1.6794 g (61.16%) as a brown solid. Single crystals of III were grown via the solvent
diffusion of hexanes into a THF solution of the compound. MP: 222–223 ◦C. IR: 1620 cm−1

(C=N). 1H NMR (DMSO-d6): δ 9.38 (br s, 1H, OH); 8.95 (br s, 1H, OH); 8.42 (s, 1H, CH=N);
7.18 (s, 2H, HAr); 7.12 (d, 2H, HAr, J = 8.8 Hz); 6.78 (d, 2H, HAr, J = 8.8 Hz); 3.83 ppm (s, 6H,
OCH3). ESI-HRMS, C15H15NO4: m/z calc (found), intensity: [M + H]+ 274.1080 (274.1098).
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2.3. Data Collection and Refinement

The data were collected with a Bruker APEX II CCD diffractometer at 100 (2) K using
MoKα radiation (λ = 0.71073 Å). The data were processed and corrected for absorption
using the Bruker SAINT+ software package version 2015, which includes SADABS for
absorption correction [26]. The structures were solved using direct methods using SHELXS-
2017, and the data were refined using SHELXL-2017 [27]. All non-H atoms were refined
anisotropically. Hydrogen atoms attached to carbon were assigned positions based on the
geometries of their attached carbons. Hydrogen atoms bonded to oxygen and nitrogen
were assigned positions based on the Fourier difference map. See Table 1 for the final
refinement parameters. The figures were made using ORTEP3 [28], Mercury [29], and
CrystalExplorer [30].

Table 1. Data collection parameters.

Compound Ia (Br-m) Ib (Br-h) II (OMe) III (OH)

CCDC Deposit No. 2277669 2320930 2277668 2277671
Chemical formula C15H14BrNO3 C15H14BrNO3 C16H17NO4 C15H15NO4

Mr 336.18 336.18 287.30 273.28
Crystal system, space

group
Monoclinic,

P21/c
Trigonal,

R3
Monoclinic,

P21/c
Monoclinic,

P21
Temperature (K) 100 (2) 100 (2) 100 (2) 100 (2)

a, b, c (Å)
13.3573 (3) 27.7665 (6) 10.4238 (10) 6.1284 (5)
13.7075 (3) 27.7665 (6) 12.4291 (12) 11.5549 (9)
15.6427 (4) 9.6043 (3) 13.1323 (13) 9.6717 (7)

a, β, γ (◦)
90 90 90 90

100.440 (1) 90 122.2470 (10) 98.233 (4)
90 120 90 90

V (Å3) 2816.69 (11) 6412.7 (3) 1439.0 (2) 677.82 (9)
Z 8 18 4 2

Radiation type Mo Kα Mo Kα Mo Kα Mo Kα

µ (mm−1) 2.925 2.891 0.096 0.098
Crystal size (mm) 0.22 × 0.16 × 0.12 0.50 × 0.04 × 0.04 0.33 × 0.26 × 0.18 0.14 × 0.10 × 0.08

Diffractometer Bruker APEX-II CCD
Absorption correction Multi-scan SADABS

Tmin, Tmax 0.59, 0.72 0.67, 0.89 0.95, 0.98 0.95, 0.99
No. of measured,
independent, and

observed [I > 2σ(I)]
reflections

71,268, 5987, 5627 40,757, 2832, 2633 21,013, 3053, 2826 19,802, 2938, 2855

Rint 0.0194 0.0251 0.0174 0.0244
(sin θ/λ)max (Å−1) 0.634 0.619 0.632 0.638

R[F2 > 2σ(F2)], wR(F2), S 0.0205, 0.0558, 1.081 0.0188, 0.0487, 1.047 0.0323, 0.0863, 1.034 0.0256, 0.0653, 1.047
No. of reflections 5987 2832 3053 2938
No. of parameters 369 185 194 189
H-atom treatment H atoms treated by a mixture of independent and constrained refinement

∆ρmax, ∆ρmin (e Å−3) 0.882, −0.892 0.464, −0.179 0.273, −0.205 0.190, −0.180

Computer programs: Bruker APEX2, Bruker SAINT, SHELXS97 [27], SHELXL97 [27], ORTEP-3 for Windows [28],
and WinGX publication routines [28].

3. Results and Discussion
3.1. Synthesis and Spectroscopic Characterization

The compounds were synthesized by refluxing equimolar mixtures of syringaldehyde
and para-substituted aniline in ethanol (Scheme 1). The bromo and methoxy compounds
precipitated upon the cooling of the solutions, while the volume of the hydroxy complex
solution had to be reduced in volume to induce precipitation. All the three compounds
have bands for the C=N stretch with very similar infrared frequencies. The 1H NMR
spectra are all remarkably similar, with the common groups all having signals with similar
chemical shifts. The diagnostic imine CH peak for all three compounds is at approximately
8.40 ppm, and the syringaldehyde methoxy peak is at 3.83 ppm for all of the compounds
(copies of the IR, 1H NMR, and HRMS spectra for all of the compounds can be found in
Supplementary Material).
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ecules are remarkably similar (Figure 5). The second aromatic rings from the aniline mol-
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Figure 1. ORTEP diagram of compound Ia with thermal ellipsoids shown at the 50% probability 
level and hydrogen atoms as spheres of arbitrary size. 

Scheme 1. The compounds were synthesized by refluxing equimolar mixtures of syringaldehyde and
para-substituted aniline in ethanol.

3.2. Crystal Structures

Figures 1–4 are ORTEP plots of each of the structures. The bond distances and angles
are mostly similar in all of the molecules (Tables 2 and 3) and similar to those of the
other Schiff base molecules [30,31]. Structure Ia has two independent molecules in the
asymmetric unit (Z’ = 2), while the other three all have Z’ = 1. All the molecules have the
imine in the trans configuration, which is common for diarylimines [23,31–33], and they all
have the 3,5-methoxy groups, with their methyl groups oriented towards the imine end
of the molecule rather than towards the hydroxy end. This is likely to create more space
for the hydroxy group to participate in intermolecular O–H. . .N hydrogen bonding. In
fact, other than the orientation of the C17–O17–H17 bond in Ib, the syringaldehyde ends
of the molecules are remarkably similar (Figure 5). The second aromatic rings from the
aniline molecule in the synthesis have a variety of orientations (Figure 6), likely due to the
packing efficiency needs. In structure Ia, the only major difference in the two independent
molecules is the rotation of the C1–C6 benzene ring relative to the C9–C14 ring (Figure 7).
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Table 2. Selected bond distances (Å).

Bond Ia Ib II III

C6–N7 1.4262 (18), 1.4222 (18) 1.4265 (19) 1.4325 (13) 1.4278 (19)
N7–C8 1.2852 (19), 1.2840 (19) 1.281 (2) 1.2828 (13) 1.283 (2)
C8–C9 1.4633 (19), 1.4566 (19) 1.464 (2) 1.4678 (13) 1.468 (2)

C12–O17 1.3611 (17), 1.3529 (17) 1.3554 (18) 1.3609 (12) 1.363 (2)

Table 3. Selected bond angles (◦).

Bond Ia Ib II III

C6–N7–C8 115.68 (12), 114.79 (12) 116.88 (13) 116.16 (9) 117.50 (13)
N7–C8–C9 126.63 (13), 126.20 (13) 124.55 (14) 124.51 (9) 123.26 (14)

C11–O15–C16 116.99 (12), 116.55 (11) 116.80 (12) 116.82 (8) 116.73 (13)
C12–O17–H17 110.9 (15), 112.5 (17) 110.0 (17) 112.1 (12) 108.5 (18)
C13–O18–C19 116.51 (11), 166.31 (11) 116.76 (12) 116.57 (8) 117.04 (13)
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the molecules, showing the different rotations of the aniline moieties relative to the syringaldehyde
moieties. Molecule IaA is shown in green; IaB is shown in blue; Ib is shown in red; II is shown in
yellow; and III is shown in purple.
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Figure 7. Capped stick overlay of the two independent molecules in structure Ia. Molecule IaA is
shown in green, and IaB is shown in blue.

Structures Ia, II, and III crystallize in monoclinic space groups, and the molecules form
zigzag chains via the O–H. . .N hydrogen bonds (Figures 8–10 and Tables 4–6). In structures
Ia and II, the syringaldehyde O–H is involved in intermolecular hydrogen bonding, while
in III, the syringaldehyde hydroxy is primarily involved in an intramolecular hydrogen
bond with methoxy oxygen; however, the intermolecular O–H. . .N hydrogen bonds involve
the less sterically hindered hydroxy group from the aniline end of the molecule (Figure 10).
In all the three structures, the syringaldehyde O–H is orientated cis to the imine N=C bond,
resulting in the zigzag chains structures of Ia along a and II along c. However, in structure
Ib, the hydroxy group is orientated trans to the imine N=C bond, resulting in a hexagonal
structure composed of rings containing six imine molecules held together with O–H. . .N
hydrogen bonds (Figure 11 and Table 7).
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Table 4. Parameters (Å,◦) for hydrogen bonds and contacts in compound Ia.

D–H. . .A D–H H. . .A D. . .A D–H. . .A

C14A–H14A. . .O17B i 0.95 2.26 3.1771 (17) 163
C2A–H2A. . .O17A ii 0.95 2.60 3.3113 (18) 133
O17A–H17A. . .N7B 0.80 (2) 2.22 (2) 2.9442 (16) 151.7 (19)
C14B–H14B. . .O17A 0.95 2.36 3.2847 (17) 166
C1B–H1B. . .O18B iii 0.95 2.55 3.4854 (18) 169
C2B–H2B. . .O17B iii 0.95 2.53 3.2262 (19) 130
C4B–H4B. . .Br21 iv 0.95 2.88 3.7816 (15) 160

O17B–H17B. . .N7A v 0.76 (2) 2.17 (2) 2.8553 (17) 152 (2)
Symmetry codes: (i) x + 1, y, z; (ii) −x + 1, y + 1/2, −z + 1/2; (iii) −x, y − 1/2, −z + 1/2; (iv) −x + 1, −y, −z;
(v) x − 1, y, z.

Table 5. Parameters (Å,◦) for hydrogen bonds and contacts in compound II.

D–H. . .A D–H H. . .A D. . .A D–H. . .A

C14–H14. . .O17 i 0.95 2.24 3.1680 (12) 165
C8–H8. . .O20 ii 0.95 2.60 3.3906 (13) 141
C1–H1. . .O18 iii 0.95 2.57 3.5027 (13) 166

C19–H19B. . .O15 i 0.98 2.65 3.1313 (13) 110
O17–H17. . .N7 iv 0.87 (2) 2.10 (2) 2.9010 (12) 152.5 (17)

Symmetry codes: (i) x, −y + 3/2, z + 1/2; (ii) x, −y + 5/2, z − 1/2; (iii) −x, y + 1/2, −z + 1/2; (iv) x, −y + 3/2,
z − 1/2.

Table 6. Parameters (Å,◦) for hydrogen bonds and contacts in compound III.

D–H. . .A D–H H. . .A D. . .A D–H. . .A

C10–H10. . .O17 i 0.95 2.36 3.271 (2) 160
O20–H20. . .N7 ii 0.85 (3) 1.92 (3) 2.7693 (19) 176 (3)
O17–H17. . .N7 iii 0.81 (3) 2.54 (3) 3.0061 (18) 117 (2)
O17–H17. . .O18 0.81 (3) 2.21 (2) 2.6432 (18) 114 (2)

Symmetry codes: (i) −x + 1, y + 1/2, −z; (ii) −x, y + 1/2, −z + 1; (iii) −x, y − 1/2, −z.

Table 7. Parameters (Å,◦) for hydrogen bonds and contacts in compound Ib.

D–H. . .A D–H H. . .A D. . .A D–H. . .A

C14–H14. . .O17 i 0.95 2.29 3.1785 (18) 156
C19–H19. . .O18 i 0.98 2.52 3.1870 (19) 125
O17–H17. . .N7 ii 0.75 (2) 2.21 (2) 2.8819 (17) 150 (2)
O17–H17. . .O15 0.75 (2) 2.28 (2) 2.6659 (15) 113 (2)

Symmetry codes: (i) x − y + 2/3, x + 1/3, −z + 4/3; (ii) y − 1/3, −x + y + 1/3, −z + 4/3.
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3.3. Hirshfeld Analysis

Upon examination of the Hirshfeld surface plots for all five molecules (Figures 12–16),
several similarities are evident. In all five molecules, the imine nitrogen (N7) is a strong
hydrogen bond acceptor, as indicated by the deep red spot on the surface plot near the
atom. Syringaldehyde hydroxy hydrogen (H17) is the hydrogen bond donor to N7 in all but
molecule III, as evidenced by the red spots near H17 in the surface plots. Interestingly, the
syringaldehyde hydroxy group of molecule III is not involved in any strong intermolecular
hydrogen bonding interactions; the other hydroxy group is much less sterically hindered,
allowing it to preferentially hydrogen bond with the imine nitrogen N7 in III. Several of
the structures also show close contact between H10 and O17, which can be seen on the
Hirshfeld surface plots.
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For all five molecules, the most common form of intermolecular contact, by percent-
age of the surfaces, is with H…H, followed by C…H/H…C. For all but molecule Ia-B, 
O…H/H…O contact is the third most common, while it is the fourth most common in Ia-B, 
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Br…H/H…Br contact make up similar proportions of the totals. For all of the molecules, 
N…H/H…N contact is the fourth most common non-bromine interaction, but it is the clos-
est, and presumably strongest, form of contact in all of the structures. Interestingly, for 
the bromine-substituted compounds (Ia and Ib), only Ib has any Br…Br contacts (3.9%), 
while the Ia molecules have a small number of Br…C/C…Br contact points. The bromine 
atoms are on the outside of the hexamers in Ib (Figure 11), while the bromine atoms in 
structure Ia are less exposed (Figure 8). Additionally, there are very few C…C contact 
points (highest is 3.1% in Ia-A), and there is no evidence of strong π-π interactions. 
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Figure 16. Hirshfeld surface of the molecule of III, showing two faces of the molecule.

For all five molecules, the most common form of intermolecular contact, by percent-
age of the surfaces, is with H. . .H, followed by C. . .H/H. . .C. For all but molecule Ia-B,
O. . .H/H. . .O contact is the third most common, while it is the fourth most common in Ia-B,
which is slightly behind Br. . .H/H. . .Br (Figure 17). For molecules Ia and Ib, O. . .H/H. . .O
and Br. . .H/H. . .Br contact make up similar proportions of the totals. For all of the molecules,
N. . .H/H. . .N contact is the fourth most common non-bromine interaction, but it is the
closest, and presumably strongest, form of contact in all of the structures. Interestingly, for
the bromine-substituted compounds (Ia and Ib), only Ib has any Br. . .Br contacts (3.9%),
while the Ia molecules have a small number of Br. . .C/C. . .Br contact points. The bromine
atoms are on the outside of the hexamers in Ib (Figure 11), while the bromine atoms in
structure Ia are less exposed (Figure 8). Additionally, there are very few C. . .C contact
points (highest is 3.1% in Ia-A), and there is no evidence of strong π-π interactions.
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tances of 3.9450(3) Å. While this distance is longer than the sum of the commonly accepted 
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ures 19c–23c) hydrogen bonds, as indicated on the plots. While all of the structures show 
shorter O–H…N interactions compared to the O–H…O interactions, in molecule III, the O–
H…N interaction is significantly shorter than those in the other four molecules. This is 
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to the syringaldehyde hydroxy groups that are the imine nitrogen hydrogen-bonding 
partners in the other four molecules. The decreased steric hindrance allows for a shorter, 

Figure 17. Graph showing contributions of intermolecular interactions in the molecules.

Looking more closely at the Br. . .Br contact points in Ib, there are hexamers of Ib
molecules (Figure 18) held together by very weak halogen bond interactions, with Br. . .Br
distances of 3.9450(3) Å. While this distance is longer than the sum of the commonly
accepted Bondi van der Waals radii [34], it is within the sum of van der Waals radii as
determined by Chernyshov (2.00 Å) [35]. These weak halogen bond interactions account
for the 3.9% of Br. . .Br contact points in Ib.
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Figure 18. Rings of molecules in Ib formed by Br. . .Br interactions.

All five molecules have similar fingerprint plots (Figures 19–23). All of the fingerprint
plots show sharp “fangs” corresponding to O–H. . .O (Figures 19d, 20d, 21d, 22d and 23d)
and O–H. . .N (Figures 19c, 20c, 21c, 22c and 23c) hydrogen bonds, as indicated on the plots.
While all of the structures show shorter O–H. . .N interactions compared to the O–H. . .O
interactions, in molecule III, the O–H. . .N interaction is significantly shorter than those in
the other four molecules. This is likely due to the decrease steric hinderance of the aniline
para-hydroxy group compared to the syringaldehyde hydroxy groups that are the imine
nitrogen hydrogen-bonding partners in the other four molecules. The decreased steric
hindrance allows for a shorter, and presumably stronger, interaction compared to that of
the syringaldehyde hydroxy group.
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3.4. Hydrogen Bonding Analysis

A Cambridge Structural Database search for p-hydroxyphenyl imine structures reveals
similar patterns in intermolecular O–H. . .N hydrogen bonding (search using CCDC Con-
Quest Version 2023.3.0. Only structures with no disorder and R values less than 10 were
considered. If more than one structure of a molecule was published, the reference at the low-
est temperature was used). For 40 structures (47 measurements) with two hydrogen atoms
ortho to the hydrogen-bonding hydroxyl group, the average O. . .N contact distance was
2.773 ± 0.051 Å, with a range of 2.687 Å–2.902 Å, which is very similar to the O20. . .N7 con-
tact distance in III (2.7693 (19) Å). When the search was conducted for structures with one
hydrogen atom and one non-hydrogen atom ortho to the hydroxyl group, the average O. . .N
contact distance was 2.843 ± 0.056 Å, with a range of 2.775 Å–2.979 Å, for 15 structures
with 21 measured hydrogen-bonding interactions. While the measurements are within
the margin of error of each other, the general trend with the average and range is a slight
lengthening of the interaction. When the search was conducted for structures with two
non-hydrogen groups in the ortho positions, only four structures (with five measurements)
were identified, with an average O. . .N contact distance of 2.882 ± 0.062 Å and with a range
of 2.802 Å–2.941 Å, which makes it the longest of the three types of structure. The O. . .N
distances in the reported structures are 2.9442 (16) Å and 2.8553 (17) Å for Ia, 2.8819 (17)
Å for Ib, and 2.9010 (12) Å for II. The average O. . .N contact distance in Ia, Ib, and II is
2.896 ± 0.037 Å, which is very similar to that of the previously reported structures. Again,
while the distances are statistically similar, the general trend is for longer hydrogen-bonding
distances as the steric hinderance around the hydroxyl group increases.

4. Conclusions

The orientation of the syringaldehyde hydroxyl group relative to the C-N=C-C imine
group plays a major role in the pattern of hydrogen bonding in syringaldehyde imine
molecules. The three crystal structures presented here with cis-syringaldehyde hydroxy
groups positioned relative to C-N=C-C imine give rise to hydrogen-bonded zigzag chains
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of molecules. The example with a trans-syringaldehyde hydroxy group positioned relative
to C-N=C-C imine crystalized in a hexagonal space group with six-membered rings formed
by the O–H. . .N hydrogen bonds. While O–H. . .N hydrogen bonding interactions make up
a relatively small percentage of the intermolecular contact types in the crystal structures,
they are the major driving force for the three dimensional packing of the molecules in their
crystals. We continue to investigate the factors that give rise to the cis- vs. trans- orientation
of the p-hydroxyl group in hopes of a better understanding of crystal packing and crystal
structure prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst14010099/s1, S1: copies of the IR, 1H NMR, and HRMS
spectra for all of the compounds. CCDC 2277668–2277671 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures (accessed on 27 December 2023).
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17. Aytac, S.; Gundogdu, O.; Bingol, Z.; Gulcin, İ. Synthesis of Schiff Bases Containing Phenol Rings and Investigation of Their
Antioxidant Capacity, Anticholinesterase, Butyrylcholinesterase, and Carbonic Anhydrase Inhibition Properties. Pharmaceutics
2023, 15, 779. [CrossRef]

18. McCrone, W.C. Polymorphism. In Physics and Chemistry of the Organic Solid State; Fox, D., Labes, M.M., Weissberger, A., Eds.;
Interscience: New York, NY, USA, 1965; Volume 2, pp. 725–767.

19. Bernstein, J.; Davey, R.J.; Henck, J.O. Concomitant polymorphs. Angew. Chem. Int. Ed. 1999, 38, 3440–3461. [CrossRef]
20. Gong, N.; Hu, K.; Jin, G.; Du, G.; Lu, Y. Concomitant polymorphs of methoxyflavone (5-methyl-7-methoxyflavone). RSC Adv.

2016, 6, 38709–38715. [CrossRef]
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