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Abstract: We present here a fast and easily realized computational approach based on the finite
element methods with consistent and lumped mass matrices (CM-FEM and LM-FEM, respectively),
and the Bloch’s theorem, to calculate the elastic band structures of phononic crystals. Two improvements,
the adjustment of the introduction of Bloch’s theorem as well as weighting treatment of consistent
and lumped mass matrices, are performed. Numerical simulations show that convergence speed
is accelerated obviously. Furthermore, the method is verified by analytical solutions in specified
homogeneous cases. It is concluded that compared with CM-FEM or LM-FEM, the present method
gives higher precision results with sparser mesh and takes less time.

Keywords: phononic crystal; band structure; finite element method; mass matrix; weighting treatment;
convergence speed

1. Introduction

The propagation of elastic waves in phononic crystals (PnCs) has received considerable attention
in the past decades [1–4]. Most of the studies focus on the band gaps (BGs) in PnCs within which
there could be no propagation of elastic waves in these specific frequency ranges. Many technical
applications could be made possible owing to the understanding of the BGs property; acoustic filters [1],
improvements in the design of transducers [2], noise control [3], vibration absorbers [5], hypersonic
device [6], thermal conductance control [7], and optomechanical coupling control [8] are a few of those
applications, which could be realized and improved by PnCs. Accurate and efficient modeling and
simulation of BGs in PnCs are undoubtedly helpful in designing and manufacturing different devices.

Several methods have been developed in the attempts of calculating the BGs in PnCs. Among those,
the transfer matrix (TM) method is the only analytical method, but it is restricted to one-dimensional
PnCs [9,10]. Other methods, including the plane wave expansion (PWE) method [2,11], finite difference
time domain (FDTD) method [12,13], multiple scattering theory (MST) [14,15], finite element method
(FEM) [16,17], and lumped-mass (LM) method [18,19]. Despite the effort made by these studies, the
convergence and computational efficiency are always highly mentioned due to the approximation
of finite situation. The sparse discretization provides rough approximation while fine discretization
causes better approximation but low computational efficiency. Thus, the models of relevant PnCs are
usually somewhat simple for these limitations. Therefore, a method that could provide high precision
results and high computational efficiency simultaneously is a better choice to study complex PnCs.
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The idea that precise results might be obtained by combining LM and PWE methods is appealing
because the results of the two methods converge to the exact solution from the opposite directions [18].
However, this idea could unlikely to be implemented because: (1) convenient and efficient computational
process cannot be easily realized as their mathematical calibrations are performed by different
manners; and (2) it is difficult to control their convergence speeds with the same order. We think
FEM is a potential method for solving the above-mentioned problems. The well-known supporting
evidence for the finite element theory are: the consistent mass matrix underestimates the mass
effects and gives higher Eigen frequencies (upper limit) than the exact ones, while the lumped mass
matrix overestimates the mass effects and gives lower Eigen frequencies (lower limit) with similar
mathematical calibrations [20]. Therefore, it is reasonable to assume that the true solution of the Eigen
frequencies should be located between the upper and lower limits after applying the Bloch’s theorem.

Several different FEMs have been developed to unveil the relationship between the wave
propagation properties and the periodicity of materials [21–26]. With the help of softwares, such
as ATILA [27–29], MSC.MARC [30], Comsol [31,32], etc., some convenient approaches with little
programming could be achieved. Generally, the common process of BGs calculation in PnCs can be
summarized as follows: First, establish the local governing equation in an element with the consistent
or lumped mass matrices. Second, assemble the globe governing equation and introduce Bloch’s
theorem. Third, establish the global governing equation of Eigenvalue problem. Fourth, solve the
Eigenvalue. However, the present computational process cannot calculate efficiently. On the one hand,
the consistent mass matrix (or the lumped mass matrix) would underestimate (or overestimate) the
mass effects. On the other hand, solving a large number of Eigenvalue problems consumes too much
time. To overcome the above-mentioned disadvantages, the application of both consistent mass matrix
and lumped mass matrix with specific weight function treatment, as well as the optimization of the
introduction of Bloch’s theorem, will be discussed in this paper.

The present research is organized as follows with the main purpose of establishing an accelerated
finite element method for the band structures calculation in PnCs. First, the numerical modeling
and conventional FEMs are introduced in detail. Then, the governing equations are formulated for
each element through the application of the Bloch’s theorem. After the consideration of boundary
conditions, the generalized Eigenvalue equation is presented. Next, we give the weight function
treatment, determine the weight by the analysis of several instances, and verify the method according
to the analytical results. Finally, the computational efficiency of the method is discussed.

2. Theory

2.1. The Model

We use two-dimensional PnCs to illustrate the method. Two-dimensional PnCs have several
forms, including infinitely and finitely long rods embedded in a matrix with different elastic properties
and lattices. The cross-section shape of the scatterer could be arbitrarily selected. We consider a system
consisting of infinitely long cylinders embedded in a homogeneous material. A cross section of such a
system is shown in Figure 1. The lattice constant is a. We consider the z-axis to be parallel to the axis of
the cylinders and the wave propagation in the x-y plane. Because of the periodicity, a cell contains all
the properties of PnCs and we use the quadrilateral isoperimetric element with four nodes to mesh it.

If no damping and forcing terms exist, the governing equation for the motion of any point p in
the homogeneous elastic medium is given by [33]:

ρ
..
up “ pλ` µq∇∇ ¨ up ` µ∇ ¨∇up (1)

where ρ is the density; up is the displacement vector; λ is the Lamé constant; µ is the shear modulus;
and ∇ is the nabla differential operator.
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Considering the wave propagation in the x-y plane, the wave equation for the z component is
decoupled from the equations for the x and y component (hereinafter referred to as the Z mode and
XY mode, respectively).

ρ
..
uz “ µ∇2uz (2)

ρ
..
uxy “ pλ` µq∇∇ ¨ uxy ` µ∇2uxy (3)

where uxy is the displacement in the x-y plane and uz is the displacement along the z-axis.
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Figure 1. (a) A cross section of the PnC consisting of infinitely long cylinders embedded in a 
homogeneous material; (b) a cell of the PnC; and (c) the meshed cell. 
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where ux, uy and uz are the displacements in x, y and z directions at any point in an element;

Ni “

«

Ni 0
0 Ni

ff

, Ni is the shape function; ue
i “

#

ue
ix

ue
iy

+

; ue
ix, ue

iy, ue
iz are the displacement

components of the node i in x, y and z directions, respectively; and i = 1,2,3,4.
The equilibrium equation in an element is given as:

me ..
ue
` keue “ 0 (6)

where me and ke are the element mass matrix and element stiffness matrix and ue is the nodal
displacement vector. me can be a consistent or lumped mass matrix. The lumped mass matrix is
generally adopted for software. The method of mass lumping or diagonalization is introduced in many
books, and more details can be seen in Chapter 17 of reference [34].

Finally, using the well-known assembly principle, the equilibrium equation of the entire structure
could be given.
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2.3. Application of the Bloch’s Theorem in an Element

Generally, the Bloch’s theorem is applied to the global matrices for the whole model. For the
method that uses just one kind of mass matrix, the treatment is suitable. However, one can see that
we will use two kinds of mass matrices below; therefor, the global mass matrices should be generated
twice. Thus, the repetition of introducing the Bloch’s theorem to the global matrices would lead to
cumbersome calculation. To facilitate the calculation, we apply the Bloch’s theorem in each element,
which requires less computational operations, as well as physical memory.

We just give the derivation in XY mode and a similar process in Z mode can be easily achieved.
Because of the periodic array of materials in PnCs, the system satisfies the Bloch’s theorem [35].
In addition, the free-vibration motion is simple harmonic [36]. Thus, the displacements of any point p
in the cell are given as:

up “

$
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%
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“ vpexpi pk ¨ r´ωtq “
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expi
`

kxx` kyy´ωt
˘

(7)

where vp is the amplitude vector, it has the same translational periodicity as the PnC; k = (kx,ky) is the
wave vector; r = (x,y) is the coordinate; ω is the circular frequency; t is time.

Thus, in XY mode, the displacements of the four nodes in Equation (4) are given as:

ue
i “ ve

i expi
`

kxxi ` kyyi ´ωt
˘

, i “ 1, 2, 3, 4 (8)

where ve
i “

#

ve
ix

ve
iy

+

, ve
ix and ve

iy are the amplitude components of node i in x and y

directions, respectively.
Substituting Equation (8) into Equation (4) gives the displacement of any point in an element as:

uxy “ Tve
xyexp p´iωtq (9)

where ve
xy “
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fi

ffi

ffi

ffi

fl

; T i “

«

expi
`

kxxi ` kyyi
˘

0
0 expi

`

kxxi ` kyyi
˘

ff

,

i = 1,2,3,4.
Substituting Equation (9) into Equation (6), the equilibrium equation in an element is given as:

keTve “ ω2meTve (10)

Evidently, the matrices keT and meT depend on the selected coordinate system in Equation (10).
The following treatment can solve the problem.

Let T i “

«

expi
`

´kxxi ´ kyyi
˘

0
0 expi

`

´kxxi ´ kyyi
˘

ff

, i = 1,2,3,4, and

T “

»

—

—

—

–

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 T4

fi

ffi

ffi

ffi

fl

, we get

TkeTve “ ω2TmeTve (11)

or
keve “ ω2meve (12)
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where ke
and me are the new element stiffness and mass matrices, respectively. They are both Hermitian

positive definite matrices.

2.4. The Boundary Treatment

The formation and settlement of the Eigenvalue problem also depend on the treatment of boundary
conditions. A sparse mesh of the cell in Figure 1b is illustrated in Figure 2. A, B, C and D are the four
corner points of the cell. P is a mesh node located on the left boundary, and Q is the mesh node on the
right boundary, which is one period away from P. Mesh nodes M and N have a similar situation as
Q and P.
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Figure 2. The sparse mesh of a cell. A, B, C and D are four corner points. P is a mesh node located
on the left boundary, and Q is the mesh node on the right boundary which is one period away from
P. Mesh nodes M and N have a similar situation.

If the basis vectors of the cell are a1 and a2, due to the periodicity of v in Equation (8), we get

v prq “ v pr`ma1 ` na2q (13)

where m and n are both integers.
Thus, for the points shown in Figure 2, we have the following rules.

vQ “ vP, vM “ vN, vD “ vC “ vB “ vA (14)

where the subscript denotes the corresponding mesh node.
Thus, the degree of freedom (DOF) information of P is the same as that of Q. Similarly, The DOF

information of M is the same as that of N. A, B, C and D all have the same DOF information. When the
global matrix is assembling, for example, the DOF numbers of Q should be set as those of P. That is the
boundary treatment method. In order to apply the method, the mesh must maintain periodicity on the
boundary. Uniform distribution of the same number of nodes on the opposite sides is the easiest way.

2.5. The Generalized Eigenvalue Problem

Considering the same assembly principle of global matrix as the conventional FEM and the
above-mentioned boundary treatment rules, the generalized Eigenvalue problem could be given as:

Kv “ ω2Mv (15)

where K and M are the new global stiffness matrix and global mass matrix, respectively, and they are
both Hermitian positive definite matrices. v is the global amplitude vector.
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Because of the property of the Hermitian positive definite matrix [37], Equation (15) has only real
Eigenvalues, and could be transformed into a real symmetric generalized Eigenvalue problem. Let

K “ KR ` iKI, M “ MR ` iMI, v “ vR ` ivI (16)

where the subscripts R and I denote the real and imaginary parts of a complex number, respectively.
Substituting Equation (16) into Equation (15) gives:

«

KR ´KI

KI KR

ff#

vR

vI

+

“ ω2

«

MR ´MI

MI MR

ff#

vR

vI

+

(17)

Solving the Eigenvalue problem, the frequency dispersion relation of wave propagation could be
given. Considering the Bloch’s theorem and symmetrical feature of cell, the wave vectors, captured
along the edge of the irreducible Brillouin zone, could be enough to determine the frequency ranges
of BGs.

2.6. The Weight Function Treatment

The element mass matrix in the above process could be the consistent mass matrix or the lumped
mass matrix, corresponding to the CM-FEM and LM-FEM, respectively. According to the finite element
theory, the consistent mass matrix gives higher Eigen frequencies than the exact ones, while the lumped
mass matrix causes lower Eigen frequencies.

For a given wave vector, one can get two circular frequencies ωa and ωb corresponding to
the generalized Eigenvalue problems using the consistent and lumped mass matrices, respectively.
We prefer to use the natural frequencies, which are given as f a = ωa/2π and f b = ωb/2π. It is assumed
that when the mesh approaches the limiting case, f aÑf and f bÑf, where f is the exact solution.

Due to the exact solution must be located between f a and f b, it is reasonable to give the exact
solution f as:

f “ q fa ` p1´ qq fb (18)

where q is the weight, q P r0, 1s.
Choosing the suitable weight, Equation (18) could give the higher accuracy solution than f a or f b,

even in the case of rather sparse mesh.

3. Results and Discussion

3.1. Determination of the Weight

We use three PnCs examples, including square lattice of cylindrical inclusions in a matrix, square
lattice of square prism inclusions in a matrix and triangular lattice of cylindrical inclusions in a
matrix, which are shown in Figures 3 and 4. The lattice constant are all 0.02 m, the diameter
of cylindrical inclusion are all 0.012 m, and the side length of the cross section of square prism
inclusion is also 0.012 m. We consider the cases with lead inclusions and vulcanized rubber matrix.
The material parameters [38] of lead and rubber employed in the calculations are λLead = 4.23ˆ 1010 Pa,
µLead = 1.49 ˆ 1010 Pa, ρLead = 11,600 kg/m3 and λRubber = 5.44 ˆ 106 Pa, µRubber = 3.4 ˆ 105 Pa,
ρRubber = 1300 kg/m3. In a recent paper [39], the elastic modulus of silicon rubber was studied and
the P-wave modulus has been given as a value of the order of GPa. However, the vulcanized rubber
has never been done the similar test, thus we still use the material parameters in [38]. The choose of
material parameters is also based on the consideration of possibly high contrast between scatterers
and matrix, in order to give a severe test condition.
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embedded in vulcanized rubber. The lattice constant is 0.02 m and the diameter of the cylindrical 
inclusion is 0.012 m. 
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section of inclusion is 0.012 m. 

Figure 4. (a) The mesh of a cell with a triangular lattice of cylindrical inclusions in a matrix.
The corresponding irreducible Brillouin zone is shown as the shadow region in (b).

We calculate the band structures of the three cases by CM-FEM and LM-FEM, respectively,
in order to give the results under the consistent and lumped mass matrices. The frequency dispersion
relations of wave propagation in XY and Z modes are shown in Figures 5–7. The results in Figures 5–7
respectively, correspond to the meshes that contains 393 nodes, 379 nodes and 367 nodes. In these
cases with sparse mesh, one can notice that although an agreement is found among the CM-FEM
and LM-FEM results, but the difference is becoming larger as the increase of frequency. One can
even see the apparent differences of the results locate in the fourth, fifth and sixth curves. Thus, FEM
with only one kind of mass matrix cannot give high accuracy results in the relatively high frequency
range, especially for the sparse mesh. Therefore the band structure calculation usually requires rather
fine mesh, in order to obtain precise enough results, while the computational efficiency cannot be
considered simultaneously.
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For the determination of the weight, we need the convergence behavior of results. We still use the
above-mentioned PnCs examples but consider different mesh levels. The convergence of the results
given by CM-FEM and LM-FEM are compared in Figures 8–10. The behaviors of the nine results of
the Z modes at the M point (points M1, M2, M3, M4, M5 and M6 in Figures 5b and 6b) and X point
(points X1, X2 and X3 in Figure 7b) are shown as functions of the number of nodes employed in a cell
with CM-FEM and LM-FEM. The dash lines illustrate the exact results that CM-FEM and LM-FEM
results finally both approach. The convergence tendencies verify that the CM-FEM results indeed
converge to the exact solution from the direction opposite to the LM-FEM results. Furthermore, clearly,
the convergence speed of both CM-FEM and LM-FEM results are very close. Therefore q = 0.5 is a
reasonable weight. So we give an easy estimate of exact solution as

f “
fa ` fb

2
(19)

Figures 8–10 also show the results given by Equation (19). Evidently, the new results have much
faster convergence speed than that of the other two methods.

Actually, in the conventional FEM, using the proper element type, such as the quadrilateral
element, the consistent mass formulation and the lumped mass formulation have the same order of
convergence [40]. From the numerical results, we can see that this feature still exists in the FEM for the
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band structure calculation of PnCs. The same order of convergence of the consistent and lumped mass
formulations gives the equal weight.
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3.2. Analytical Solution of Z Mode Wave Propagation

Although the dash lines in Figures 8–10 illustrate the exact results according to the convergence
tendencies of CM-FEM and LM-FEM, one should note that the analytical solution of the band structure
of PnCs that consists of different materials cannot be obtained, but that of the unique material can be
obtained. Thus, the analytical results of a unique material can be the references. Here, we just consider
the Z mode propagation of elastic waves in a unique material. The unique material is obtained from
replacing different materials in PnC by one material. Then, we can surely consider the unique material
also has the same periodicity and reciprocal lattice vectors as the original PnC.

According to the governing equation of motion

ρ
..
uz pr, tq “ µ∇2uz pr, tq (20)

using the harmonic solution
uz pr, tq “ vz prq exp p´iωtq (21)

the Eigenvalue problem is given as:

´ω2ρvz prq “ µ∇2vz prq (22)

According to the Bloch’s theorem,

vz prq “ w prq exp pik ¨ rq (23)

where w(r) has the same periodicity as the original PC. Clearly, exp(iGr) can be the solution of w(r),
where G is the reciprocal lattice vector. Finally, the frequency dispersion relation is given as:

ω2 “
µ

ρ
pG` kq2 (24)

We consider the same square lattice of cylindrical inclusions in the matrix, which is shown in
Figure 3a. The matrix and inclusions are both set as lead. The computation using the presented
method is based on the mesh of a cell in Figure 3a, which contains 934 nodes. The comparison of
the frequency dispersion relations obtained by Equation (24) and the presented method is shown
in Figure 11. Evidently, the results given by the presented method have a good agreement with the
analytical results. The high frequency results still have high accuracy. The maximum relative errors of
the two values corresponding to M point in Figure 11 are just 0.04% and 0.19%.
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3.3. Computational Efficiency

Besides, we discuss the computational efficiency. The presented method needs to solve two
generalized Eigenvalue problems for one wave vector, and nearly consumes double time. However,
the convergence speed of the presented method is much faster than those of CM-FEM or LM-FEM, so
a sparser mesh could give even the higher precision results. From Figures 8–10 one can clearly see
that the results of the presented method by employing no more than 400 nodes are fairly close to the
final convergence results, and they have even higher precision than the CM-FEM or LM-FEM results
given under the mesh with more than 900 nodes. We give the comparison of the time of calculating
all Eigenvalues in both XY and Z modes in Tables 1–3. The generalized Eigenvalue problems are
solved with the help of international mathematics and statistics library (IMSL). By using the presented
method, it achieves higher accuracy results and nearly 90% reduction in computational time, compared
with CM-FEM and LM-FEM. Evidently, the presented method has apparent advantages.

Table 1. Comparison of the computational time in the case of square lattice of cylindrical inclusions in
the matrix (s).

Mode The Presented Method (393 nodes) CM-FEM (934 nodes) LM-FEM (934 nodes)

XY 504.4 4368.0 4340.8
Z 45.7 488.9 482.0

Table 2. Comparison of the computational time in the case of square lattice of square prism inclusions
in the matrix (s).

Mode The Presented Method (379 nodes) CM-FEM (936 nodes) LM-FEM (936 nodes)

XY 430.0 4204.6 4168.0
Z 37.7 477.9 463.8

Table 3. Comparison of the computational time in the case of triangular lattice of cylindrical inclusions
in the matrix (s).

Mode The Presented Method (367 nodes) CM-FEM (973 nodes) LM-FEM (973 nodes)

XY 391.7 4966.2 4933.8
Z 34.3 545.9 546.8

3.4. Extension To Three Dimensional Problem

Finally, we discuss the band structures of sonic wave propagation in water. The governing
equation of sonic wave has a similar expression to the governing equation of Z mode wave propagation
above. We first build a cubic lattice cell with a sphere inclusion embedded in matrix. Then, the materials
of matrix and inclusion are both set as water. A sparse mesh with tetrahedron element and 266 nodes
is shown in Figure 12. As discussed above, this case has analytical solution ω2 “ c2

0 pG` kq2, while
the calculations of the present method, CM-FEM and LM-FEM are performed simultaneously. The
results are plotted in Figure 13. Clearly, the present method has better agreement with analytical
solutions in wide frequency range. One interesting phenomena is observed that weight function q
is kept constant (0.5) with tetrahedron element. With the same mesh, the maximum relative error
by the present method can be neglected while the maximum relative error by CM-FEM or LM-FEM
exceeds 20%.
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4. Conclusions

The accelerated FEM we introduced in the band structures calculation is confirmed to have
a higher convergence speed and computational efficiency compared with other FEMs for similar
situations. The computational time can be reduced using the relative sparse mesh because of the fast
convergence of the presented method. Besides, the presented method is shown to be suitable for cases
with very high contrast in the material parameters between scatterers and matrix, such as lead and
vulcanized rubber.

The accelerated FEM is mainly based on giving suitable weights to the results under the consistent
and lumped mass matrices. Using the simple element type, such as the quadrilateral isoperimetric
element with four nodes utilized in this study, the consistent and lumped mass formulations
could have the same order of convergence. So we choose the weight as 0.5 and the quadrilateral
isoperimetric element is recommended in the band structures calculation of 2D PnCs. In the case of the
above-mentioned 3D problem, the weight of 0.5 is also selected. Furthermore, the introduction of the
Bloch’s theorem to the local governing equation improves the computational efficiency as well.

In this paper, the accelerated method is mainly illustrated and discussed for two-dimensional
solid/solid PnCs. Like other FEMs, this method is not limited to these cases. It can also be used
for one- and three-dimensional PnCs, as well as the drilled solid PnCs, fluid/solid and fluid/fluid
PnCs. Especially, the three-dimensional PnCs with complex geometry and material properties, as well
as the cases of the supercell which usually lead to the complex meshing with heavy computational
job [41]. These problems could be solved due to the present method with a sparse mesh. Considering
the CM-FEM/LM-FEM are widely applied in software, while the presented average treatment and
weighing values fixed as 0.5 can be easily implemented, the presented method provides a simple,
efficient and workable choice for BGs computation in PnCs. To perform the presented method, the
periodical mesh condition at the facing boundaries is obligated.
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For scientific research, the relevant two-dimensional and three-dimensional source programs [42]
can be downloaded for free, applied and modified.
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