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Abstract: The acoustic properties of a three-dimensional sonic crystal made of square-rod rigid
scatterers incorporating a periodic arrangement of quarter wavelength resonators are theoretically
and experimentally reported in this work. The periodicity of the system produces Bragg band
gaps that can be tuned in frequency by modifying the orientation of the square-rod scatterers with
respect to the incident wave. In addition, the quarter wavelength resonators introduce resonant band
gaps that can be tuned by coupling the neighbor resonators. Bragg and resonant band gaps can
overlap allowing the wave propagation control inside the periodic resonant medium. In particular,
we show theoretically and experimentally that this system can produce a broad frequency band
gap exceeding two and a half octaves (from 590 Hz to 3220 Hz) with transmission lower than 3%.
Finite element methods were used to calculate the dispersion relation of the locally resonant system.
The visco-thermal losses were accounted for in the quarter wavelength resonators to simulate the
wave propagation in the semi-infinite structures and to compare the numerical results with the
experiments performed in an echo-free chamber. The simulations and the experimental results
are in good agreement. This work motivates interesting applications of this system as acoustic
audible filters.
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1. Introduction

Periodic arrays of rigid scatterers embedded in a fluid are the analogues for the acoustic waves
of the crystalline structures for the electrons or the photonic crystals for the electromagnetic waves.
Such structures are known as Sonic Crystals (SCs) [1] and the exploitation of the periodic distribution
of scatterers in such structures have been intensively used to control the acoustic wave propagation.
Perhaps the most known property of such systems is the presence of band gaps, ranges of frequencies
in which the wave propagation is forbidden. The band gaps appear at high symmetry points in the
Brillouin zone due to the presence of a degeneracy of the band structure produced by the Bragg
interferences in the diffractive regime (λ ' a/2, λ being the wavelength of the incident wave and a the
lattice constant characterizing the periodicity of the structure). Many interesting physical phenomena
arise from this particular dispersion relation such as wave localization [2,3], excitation of evanescent
waves [4,5], and relevant applications concerns filtering [6] and wave guiding [7–9]. In particular,
many approaches have been proposed to degenerate the band and thus enlarge the band gaps [10–12].
Some possibilities consist of either reducing the total symmetry of the crystal in order to remove
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some band degeneracies, allowing the appearance of complete gaps [13] or optimizing the shape and
arrangement of the scatterers [14–18]. The dispersion relation is governed particularly by both the
periodicity and the shape of the scatterers providing different tools to tune the wave propagation.

Interesting properties can be obtained in the low frequency regime (λ� a) in periodic structures
if local resonators are used as scatterers. In acoustics, the pioneering works of Bradley [19] and
Sugimoto [20] theoretically and experimentally examined the propagation of sound waves in a
waveguide loaded periodically with local resonators (quarter wavelength and Helmholtz resonators).
In these systems two different mechanisms are responsible of the generation of band gaps. The Bragg
interferences produce the band gap due to the periodicity, while the resonances produce other band
gaps when the frequency of sound waves coincides with the natural frequency of the resonators.
The latter induces an hybridization between the resonance and the dispersion of the non resonant
periodic structure. This feature has been used to introduce the concept of acoustic metamaterials with
resonant band gaps at lower frequencies than the Bragg band gap [21–23], as well as to improve the
absorption capabilities of porous materials in the low frequency regime [24].

In this article we exploit the idea of the coupling of the local resonant scatterers to generate
multiple resonances that can be combined with the effect of periodicity in order to produce a
broadband frequency region with high transmission loss. We experimentally and theoretically study
the propagation properties of a three-dimensional SC made of square cross-section rod rigid scatterers
incorporating a periodic arrangement of quarter wavelength resonators of circular cross-section.
Particularly, we analyze different configurations in which the coupling between the resonators in
the structure generates multiple resonances that are designed to be close to the Bragg band gap.
This combined effect produces an overlap of the stop bands that can be used to strongly reduce the
transmission in a broadband range of frequencies. In particular, we experimentally and theoretically
show that the system can produce a broad frequency band gap exceeding two and a half octaves (from
590 Hz to 3220 Hz) with transmission lower than 3% in this whole frequency range. Finite element
methods are used to study the dispersion relation of the locally resonant system. The visco-thermal
losses are accounted for in the quarter wavelength resonators to study the wave propagation in the
semi-infinite structures and to compare numerical results with the experimental ones performed in an
echo-free chamber.

2. Experimental Set-Up

The resonant scatterers are infinitely long square-rod scatterers made of exotic wood (acoustically
rigid for the ranges of frequencies analyzed in this work) with side length l. Each scatterer incorporates
a 1D periodic array of quarter wavelength resonators with periodicity az. These quarter wavelength
resonators are made by drilling cylindrical holes of radius R and length L in one of the faces of the
square-rod scatterer. The resonant square-rod scatterers are placed in a square array of periodicity a.
Figure 1a shows the scheme of a resonant square-rod scatterer showing the parameters of the basic
unit cell of the crystalline structure analyzed in this work. Figure 1b shows the scheme of the finite
array analyzed in this work as well as a picture of the SC in the anechoic chamber. As shown in the
inset of the Figure 1b the unit cell can be rotated by an angle θ with respect to the center of the resonant
square-rod scatterer, adding a degree of freedom to tune the dispersion relation of the system.

The experimental prototype consists of a 16× 6 array, located on a square lattice with constant
a = 7.5 cm with a vertical periodicity of the quarter wavelength of az = 5 cm. The scatterers have a
side length l = 5 cm. The quarter wavelength resonator has a diameter of 2R = 3.5 cm and length
L = 4 cm. Finally, the scatterers are 2 m long and incorporate 29 quarter wavelength resonators in their
central parts.

All the acoustic measurements are performed using a microphone B&K 1/4” type 4135 (B&K,
Naerum, Denmark). The acoustic source was the loudspeaker Genelec 8351A (Genelec, Olivitie,
Finland). The movement of the microphone in the anechoic chamber is controlled by a 1D robotized
arm (Zaber LSQ, Vancouver, Canada) designed to move the microphone over a 1D trajectory with
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a step of 1 cm. The acquisition of the acoustic signal is preformed using a Stanford SR 785 analyzer
(Stanford Research Systems, Inc., Sunnyvale, USA). The movement of the robotized arm and the
acquisition are synchronized by a computer. Once the robotized system has positioned the microphone,
the acoustic source generates a swept sine signal and the microphone detects it. The analyzer provides
the frequency domain signals (module and phase for each frequency).

(a) (b)

Figure 1. (a) Scheme of the resonant square-rod scatterer showing two unit cells. The horizontal
planes delimit the bounds of the unit cell; (b) Scheme of the finite Sonic Crystals (SC) made of
N rows of scatterers. Four points, xi with (i = 1, 2, 3, 4), are used to evaluate the transfer matrix
elements. The insets represent a picture of the SC in the anechoic chamber used in the experimental
characterization and the definition of the angle of rotation of the unit cell, θ, with respect to the x-axis.

In the approach considered here, the loudspeaker used to generate the acoustic field in the
anechoic chamber is placed in xs = 0 and a single microphone was used to measure the transfer
functions between the signal provided to the loudspeaker and the sound pressure at four locations
shown in Figure 1b. The loudspeaker and the microphone are aligned in the middle height of the
structure and only propagation in the x− y plan, i.e., along the ΓXMΓ is considered. Those transfer
functions are denoted P1 to P4. The wave front can be considered planar because the loudspeaker is
placed far enough from the SC although it produces a spherical wave front. However, the amplitude
decay of the wave is considered as 1/

√
xi where xi is the distance between the loudspeaker and the

i-th location of the microphone. For the present purposes P1 to P4 may be considered to represent the
complex sound pressure at the four measurement locations x1 to x4, i.e.,

P1 = A
e−ıkx1
√

x1
+ B

eıkx1
√

x1
, P2 = A

e−ıkx2
√

x2
+ B

eıkx2
√

x2
,

P3 = C
e−ıkx3
√

x3
+ D

eıkx3
√

x3
, P4 = C

e−ıkx4
√

x4
+ D

eıkx4
√

x4
. (1)

Here, k represents the wavenumber in the ambient fluid and e+ıωt sign convention has been
adopted (ω = 2π f is the angular frequency with f the frequency). The four complex pressures, P1 to
P4, comprise various superpositions of positive- and negative-going waves in the up- and downstream
segments of the anechoic chamber. In the range of frequencies of interest in this work, f a/c ≤ 1,
only the fundamental grating plane mode is reflected back (specular reflection), so the reflected
waves can be approximated as plane waves. The higher grating order modes are evanescent and
their amplitudes decay rapidly away from the SC so that they disappear in the vicinity of the SC.
The complex amplitudes of those waves are represented by the coefficients A to D. Equation (1) yield
four equations for the coefficients A to D in terms of the four measured sound pressures, i.e.,
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A =
ı(
√

x1P1eıkx2 −√x2P2eıkx1)

2 sin(k(x1 − x2))
, B =

ı(
√

x2P2e−ıkx1 −√x1P1e−ıkx2)

2 sin(k(x1 − x2))
,

C =
ı(
√

x3P3eıkx4 −√x4P4eıkx3)

2 sin(k(x3 − x4))
, D =

ı(
√

x4P4e−ıkx3 −√x3P3e−ıkx4)

2 sin(k(x3 − x4))
. (2)

The latter coefficients provide the input data for subsequent transfer matrix calculations. Here,
the transfer matrix is used to relate the sound pressures and normal acoustic particle velocities on the
two faces of the SC respectively located at x0 and xd as in Figure 1b, i.e.,[

P
V

]
x0

=

[
T11 T12

T21 T22

] [
P
V

]
xd

. (3)

In Equation (3), P is the exterior sound pressure and V is the exterior normal acoustic particle
velocity. The pressures and particle velocities on the two opposite surfaces of the SC may easily be
expressed in terms of the positive- and negative-going wave component amplitudes, i.e.,

P(x0) =
1√
x0

(
Ae−ıkx0 + Beıkx0

)
, V(x0) =

1√
x0

(
Ae−ıkx0 − Beıkx0

ρc

)
,

P(xd) =
1√
xd

(
Ce−ıkxd + Deıkxd

)
, V(xd) =

1√
xd

(
Ce−ıkxd − Deıkxd

ρc

)
. (4)

where ρ is the ambient fluid density and c is the ambient sound speed. Thus, when the plane wave
components are known from measurements of the complex pressures at the four locations, the pressures
and the normal particle velocities at the two opposite surfaces of the SC can be determined.

It is then of interest to determine the elements of the transfer matrix since, as will be shown below,
the elements of that matrix may be directly related to the properties of the SC. Then, instead of making
a second set of measurements it is possible to assume the reciprocal nature of the SC. Thus, given
reciprocity and symmetry, it follows that

T11 = T22, (5)

T11T22 − T12T21 = 1. (6)

The transfer matrix elements can be expressed directly in terms of the pressures and velocities on
the two opposite surfaces of the SC. Therefore, if the transmission coefficient is defined as T = C/A,
and if we consider anechoic termination, i.e., D = 0, it can be expressed in function of the elements of
the transfer matrix

T =
2
√

xdeık(xd−x0)

(
√

x0(T11 + T12/(ρc) + (ρc)T21 + T22))
. (7)

In what follows, we will focus on the transmission coefficient, all the configurations not
being necessarily symmetric. In particular, the configuration depicted in Figure 4 is reciprocal but
not symmetric.

3. Numerical Characterization

Due to the complexity of the geometry of the resonant square-rod scatterers Finite Elements
Method (FEM) is chosen to solve both the eigenvalue and the scattering problems. Therefore it is
necessary to define the symmetry, discretize the domain and consider the boundary conditions for
each configuration. In the following subsections we will give the details for each configuration. In a
general way, we discretize the domains at least with 10 points for the minimal analyzed wavelength,
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λmin. The study has been performed only along the ΓXMΓ direction and in a range of normalized
frequencies, f a/c, from 0 to 0.8, therefore λmin = 0.8a.

3.1. Eigenvalue Problem

The eigenvalue problem is solved to obtain the dispersion relation of the periodic medium.
The problem ω(k) is solved using only the unit cell of the crystal and applying the Floquet-Bloch
periodic conditions. The properties of the Bloch states constrain the solution to a unit cell with Bloch
vectors in the first Brillouin zone. The unit cell is shown in Figure 1a. Neumann boundary conditions,
representing rigid walls, are considered on the walls of the scatterer. At the interface between the
quarter wavelength resonator and the surrounding medium the continuity of the pressure and normal
acoustical particle velocity are imposed. By fixing the wavevector, k, in the irreducible Brillouin zone
of the unit cell we can obtain the eigenfrequencies for each wavevector. These features transform the
unit cell in a bounded domain to solve the problem with the next boundary condition at the borders of
the unit cell

p(−→r +
−→
R ) = p(−→r )eı

−→
kB ·
−→
R , (8)

where
−→
R is the lattice vector and

−→
kB is the Bloch vector that scans the first irreducible Brillouin zone.

For our configurations, the unit cell is a cubic one, therefore
−→
R = (na−→ux + ma−→uy + laz

−→uz ). In this work
we will not consider the effect in the z-direction, therefore we study the dispersion relation considering
the variation of the kBx = [0, π/a] and kBy = [0, π/a] in the first irreducible zone of Brillouin of a cubic
lattice having kBz = 0.

3.2. Scattering Problem

Considering the wave propagation in free space (unbounded acoustic domain) no wave is
assumed to be reflected from infinity. This is known as the Sommerfeld condition. The solutions of
exterior Helmholtz problems that satisfy the Sommerfeld conditions are called radiating solutions.
Using FEM it is only possible to obtain some approximation of the radiating solutions in unbounded
domains by applying some artificial boundaries in the numerical domain. We use the perfectly matched
layers (PML) technique for this purpose.

The geometry considered in this work is shown in Figure 2. We considered a semi-infinite slab
made of N resonators along the x-direction; periodic boundary conditions are used in the y and z
directions therefore the structure is infinite in y and z directions but finite in the x one. A plane
wave impinges the structure from the negative x-axis and the PML condition is considered at the
perpendicular parts of x-domain to numerically reproduce the Sommerfeld condition in this direction.
The acoustic field will be evaluated in the yx-plane, crossing the unit cell in the middle of resonator.

Figure 2. Semi infinite slab of N = 7 resonators. Periodic boundary conditions are considered in the y
and z directions while perfectly matched layers (PML) conditions are considered in the boundaries of
the x direction. A plane wave impinges the slab from the negative values of the x-axis.
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The losses in the quarter wavelength resonators are accounted for by considering the Zwikker
and Kosten model [25], which provides the expression for the equivalent density and bulk modulus in
the cylindrical tube of radius R as,

ρeq = ρ
[
1− 2(−ıω/ν)−1/2G

(
R(−ıω/ν)1/2

)
/R
]−1

, (9)

Keq = γP0

[
1− 2(γ− 1)(−ıω/ν′)−1/2G

(
R(−ıω/ν′)1/2

)
/R
]−1

, (10)

where ν = 1.47 10−5 m2s−1 is the kinematic viscosity of air, ω is the angular frequency of the wave,
ν′ = 2.22 10−5 m2s−1 is the thermal diffusivity of air, and the function G(x) is defined as,

G(x) =
J1(x)
J0(x)

, (11)

where Jn is the Bessel function of n−th order and first kind.

4. Results

Before studying the periodic structures, we start by analyzing the transmission through one row of
resonant square-rod scatterer with θ = π/2. This will allow us to characterize the resonant frequency
of the quarter wavelength resonator. Figure 3a shows the transmission coefficient, |T|2, for this
system. Numerical simulations with and without losses in the resonators are plotted using continuous
and dashed black lines respectively. Red open circles show the measured transmission coefficient.
The minimum of transmission appears at the resonant frequency of the quarter wavelength resonators.
In fact, if we numerically evaluate the acoustic pressure field at this frequency, f a/c = 0.3824, we can
observe (see Figure 3b) that the resonance is activated and that the acoustic field is localized inside
the resonators. Notice that for this configuration the effect of the losses is not sensitive. However, we
maintain the presence of losses because, this effect is not negligible when the number of scatterers and
so of resonators increases, as we will see in the following subsections.
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Figure 3. Characterization of a row of 16 resonant square-rod scatterers with θ = π/2. (a) Transmission
coefficient, |T|2, of a row of 16 resonant square-rod scatterer. Continuous (Dashed) line represents
the numerical predictions with (without) losses in the resonators. Red open circle cuvre represents
the experimental measurement obtained with the method explained in Section 2. Green circle curve
represents the numerical value of the transmission coefficient at the resonant frequency of the quarter
wavelength resonators, f a/c = 0.3824; (b) Pressure field numerically obtained by solving the scattering
problem, as shown in Section 3, at the resonance frequency of the quarter wavelength resonators.
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4.1. Single Resonant SC Made of Square-Rod Scatterers with Quarter Wavelengths Resonators

The dispersion relation numerically obtained for a SC made of resonant square-rods with θ = π/2
is shown in Figure 4a with black lines. In order to compare with the non resonant case, we have
represented the band structures for the same square-rods without the quarter wavelength resonators
(red lines) [18]. While the non resonant structure does not present band gaps, the SC with the resonant
square-rod scatterers presents a band gap (grey area in Figure 4a) around the resonant frequency of the
quarter wavelength resonators, due to the hybridization of the resonance with the background medium.

If we pay attention to the ΓX direction, i.e., normal to the SC interface as it is plotted in Figure 1b
three band gaps are present (see Figure 4b). The first one due to the hybridization band around the
resonant frequency of the quarter wavelength resonators; the second one is produced by the Bragg
interferences inside the SC due to the periodicity around f a/c = 0.5; and the third one is produced by
the coupling of the second Bragg band gap and the second resonant mode of the resonators (see the
eigenvector (iii) in Figure 4a).
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Figure 4. Characterization of the locally resonant SC with the scatterers placed with θ = π/2. (a) shows
the dispersion relations for the resonant SC (black lines) in comparison with the ones without the
quarter wavelength resonator, i.e., just square-rod scatterers (red lines). The grey area represents
the band gap opened by the presence of the resonators in the SC. Insets (i), (ii) and (iii) represent
the eigenvectors at frequencies shown in the dispersion relation with the green dots; (b) Upper
panel represents the solutions of the numerical predictions for the scattering problem at the resonant
frequency of the quarter wavelength resonators. Left panel represents the dispersion relation in the ΓX
direction. Grey areas represent the pseudo band gaps at this normal incidence. Right panel represents
the transmission coefficient of a finite slab made of six rows of resonant square-rods. Continuous
(Dashed) line represents the numerical predictions with (without) losses in the resonators. Red open
circles represent the experimental measurement.

The transmission coefficient is evaluated for a slab made of six rows of 16 resonant square-rod
scatterers with θ = π/2. The results are plotted in the right panel of Figure 4b. The three stop bands
are well recognized both numerically and experimentally in the transmission coefficient. We would
like to notice here the effect of the losses due to the visco-thermal effect in the quarter wavelength
resonators. The numerical transmission coefficient both with and without losses are plotted respectively
in continuous line and dashed line. As predicted in previous works [26–28], the effect of losses is
more important in the regions with high dispersion and small group velocity. In our problem, the
values of the transmission coefficient with losses is reduced by a factor larger than 2 around these
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particular regions. From now on, all the numerical results concerning the transmission coefficient will
be performed accounting for the losses.

4.2. Multi-Resonant SC Made of Square-Rod Scatterers with Quarter Wavelengths Resonators

Using the degree of freedom offered by the possible rotation of the resonant scatterers around their
principal axis, we can evaluate several configurations that exploit the coupling between the resonators
to produce additional resonances in the range of frequencies of interest. These coupling introduce
more band gaps in the dispersion relation and broaden the frequency range of low transmission
through the structure. In this sense, we evaluate three different configurations. The first configurations
consist of facing two neighbor resonant square-rod scatterers as shown in Figure 5a. In this kind of
arrangement two different situations are possible: the first one when the incident direction is the ΓX′

(Conf. 1) and the second one when the incident wave follows the ΓX direction (Conf. 2). Finally, the
third configuration (Conf. 3) consists of facing four different resonant square-rod scatterers as shown
in Figure 5b.

2
a

2a

x

y

l

X

M

L

(a)

x

y
X'

X

M

a

l

2
a

L

(b)

Figure 5. (a) Unit cell of the configurations facing two different resonant square-rod scatterers; (b) Unit
cell facing four different resonant square-rod scatterers.

Figure 6 shows the results for the configurations 1 and 2 with two resonant square-rod scatterers
facing one with each other. Figure 6a represents the results for the case in which the incident wave is
propagating along the ΓX′ direction (Conf. 1) while in the Figure 6b, the case in which the incident
wave is propagating along the ΓX direction (Conf. 2) is analyzed. In both cases additional band
gaps are opened due to the coupling between the resonators and the transmission is strongly reduced
in these regions. In particular, six band gaps are opened in the Figure 6b. Both experimental and
numerical transmission coefficients present deeps in transmission due to the presence of these band
gaps. This configuration behaves like a strongly selective frequency filter.

Figure 7 shows the numerical predictions and experimental results for the configuration with
four neighbor resonant square-rod scatterers facing one with each other (Conf. 3). Figure 7a shows the
dispersion relation of such a periodic distribution. Seven band gaps are opened in this configuration.
Different kind of phenomena are mixed in this system. On one hand, as in the previous structures, the
periodicity opens band gaps due to Bragg interferences as for example the first and second band gaps
around the eigenvector (i) (see the Figure 7b), and the resonances of quarter wavelength resonators
open band gaps due to this resonance, for example around the frequency of the eigenvector (iv).
However, the interest of such configuration is the coupling between the four scatterers. This opens
resonant band gaps at frequencies different from those of an isolated quarter wavelength resonator.
For example, band gaps around the frequencies of the eigenvectors (iii) and (v) result from coupling.
This concentration of band gaps in the range of frequencies of interest can be used to produce a broad
band of low transmission.
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Figure 6. Characterization of the configuration with face to face quarter wavelength. (a) Incident
wave radiating in the direction parallel to the axis of the quarter wavelength resonator. Upper panel
represents the eigenvectors at frequencies shown in the dispersion relation (left panel) with the green
dots. Left panel represents the dispersion relation in the ΓX direction. Grey areas represent the pseudo
band gaps at this incidence. Right panel represents the transmission coefficient of a finite slab made of
six rows of resonant square-rods. Continuous line represents the numerical predictions with losses in
the resonators. Red open circles represent the experimental measurement; (b) Incident wave radiating
in the direction normal to the axis of the quarter wavelength resonator. Upper panel represents the
eigenvectors at frequencies shown in the dispersion relation (left panel) with the green dots. Left panel
represents the dispersion relation at the ΓX direction. Grey areas represent the pseudo band gaps
at this incidence. Right panel represents the transmission coefficient of a finite slab made of 6 rows
of resonant square-rods. Continuous line represents the numerical predictions with losses in the
resonators. Red open circles represent the experimental measurement. Grey dashed lines in the mid
panels connecting Figure 6a,b shows the additional dispersion bands along the other main directions
of symmetry in the irreducible zone of Brillouin.

The transmission through a finite structure made of three unit cells of four faced resonant
square-rod scatterers (total N = 6 resonant square-rod scatterers in the x-direction) is analyzed
in the right panel of Figure 7a. In the numerical simulations (continuous line) we observe that the
band gaps predicted by the eigenvalue problem are reproduced in the transmission. Moreover, the
effect of the losses in the resonators destroys the transmission peaks that should be produced by the
flat bands in the dispersion relation. As previously mentioned, the flat bands having a small group
velocity and high dispersion, are strongly affected by the presence of losses in the system, destroying
any propagation around these areas. Experimentally, the transmission coefficient also reproduces the
band gaps predicted by these eigenvalue problem and is in agreement with the numerical evaluation of
the transmission coefficient. The slight differences between the experimental results and the numerical
ones, can be attributed to the presence of additional losses in the system, as for example those coming
from the viscothermal losses between the walls of the resonant square-rod scatterers that are not
considered in this work. Regarding the transmission of this system, we can see that the combined
effect of periodicity and coupled resonators produces an overlap of the band gaps that can be used to
strongly reduce the transmission in a broadband range of frequencies. In particular we experimentally
and theoretically show that this last system can produce a broad frequency band gap exceeding two
and a half octaves, from 590 Hz to 3220 Hz, with transmission lower than 3% in the whole range.
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Figure 7. Characterization of the configuration with four face to face quarter wavelength. (a) Left panel
represents the dispersion relation in the irreducible zone of Brillouin. Grey areas represent the pseudo
band gaps in this incidence. Right panel represents the transmission coefficient of a finite slab made of
six rows of resonant square-rods. Continuous line represents the numerical predictions with losses in
the resonators. Red open circles represent the experimental measurement; (b) Panels representing the
eigenvectors at frequencies shown in the dispersion relation (left panel of (a)) with the green dots.

5. Conclusions

In this work, we use acoustic waves to experimentally prove the physical properties of modulated
resonant systems made of resonant square-rod scatterers and to design broadband or selective filtering.
Extensive simulations and experimental results in order to show tunable transmission properties
of arrays made of resonant square-rod scatterers embedded in air are performed here. We have
experimentally and theoretically shown that by rotating some of the resonant square-rod scatterers of
a square array, one can easily activate the coupling between the resonators producing additional band
gaps in the dispersion relation as well as modifying the Bragg interferences. The combined effect of
the periodicity and the coupled resonances produces an overlap of the stop bands that can be used to
strongly reduce the transmission in a broadband range of frequencies. In particular, we experimentally
and theoretically show that the system can produce a broad frequency band gap exceeding two and a
half octaves (from 590 Hz to 3220 Hz) with transmission lower than 3% in the whole range. This work
could also be effectively extended to future realization of tunable systems for light, liquid, and other
waves, which will lead to great potential in ultrasonics, for example. The tunability we demonstrated
in this work could be applied to control not only the band gap but also other properties of the system.
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