

Supplementary Materials: Structure and Optical Properties of K_{0.67}Rb_{1.33}Al₂B₂O₇ Crystal

Qian Huang^{+§}, Lijuan Liu ^{*+}, Mingjun Xia⁺, Yi Yang^{+§}, Shu Guo^{+§}, Xiaoyang Wang⁺, Zheshuai Lin⁺, Chuangtian Chen⁺

Figure S1. X-ray powder diffraction patterns of KRABO

Figure S2. X-ray powder diffraction patterns of KRABO after heated at 1200°C

Table S1. Crystal da	ta and structure	refinement f	or KRABO
----------------------	------------------	--------------	----------

Empirical formula	K0.67 Rb1.33Al2B2O7		
Formula weight	327.61		
Wavelength(Å)	0.71073		
Crystal system	trigonal		
Space group	P321		
Call manamatana(Å)	a=b=8.6352(12)		
Cell paremeters(A)	c=8.6433(17)		
Volume(Å)	558.15(16)		

Z	3
Density(g/cm ³)	2.924
F(000)	462
Crystal size(mm ³)	0.109×0.105×0.05
R indices[I $\geq 2\sigma(I)$]	0.0418
R indices(all data)	0.0464

Table S2. Atomic coordinates and equivalent isotropic displacement parameters for KRABO

Atom	x	У	Z	Ueq(Å ²)
Rb1	0.64258(12)	0	1/2	0.0135(4)
K1	0.64258(12)	0	1/2	0.0135(4)
Rb2	0.69061(13)	0	0	0.0141(5)
K2	0.69061(13)	0	0	0.0141(5)
Al1	1.00000	0	0.3028(3)	0.0054(51)
Al2	2/3	1/3	0.1851(6)	0.0128(15)
A13	1/3	-1/3	0.2164(6)	0.0145(19)
O1	1.00000	0	1/2	0.021(4)
O2	0.2768(6)	-0.1782(6)	0.2812(6)	0.011(2)
O3	0.9463(6)	0.1581(6)	0.2304(6)	0.0083(19)
O4	0.6072(7)	0.4871	0.2500(8)	0.020(3)
O5	2/3	1/3	-0.0158(14)	0.031(4)
B1	0.6682(15)	0.6624(15)	0.2526(12)	0.010(4)

Table S3. Calculated linear and nonlinear optical properties coefficients

	d 11	nx	ny	nz	Δn(1064 nm)
KRABO	0.395	1.55604	1.55604	1.50198	0.054

It is well known that the energy band gaps calculated by standard DFT method are smaller than the measured values, due to the discontinuity of exchange-correlation energy. The scissor operators¹ were adopted to shift all the conduction bands to match the calculated band gaps with the measured values. Based on the scissor-corrected electron band structure, the imaginary part of the dielectric function was calculated according to the electron transition from the valence bands (VB) to conduction band (CB). Consequently, the real part of the dielectric function is obtained by the Kramers-Kronig² transform and the refractive index is determined. The SHG coefficients d_{ij} were obtained by the formula developed by our group³.

References

- 1. Godby, R. W.; Schluter, M.; Sham, L. J., SELF-ENERGY OPERATORS AND EXCHANGE-CORRELATION POTENTIALS IN SEMICONDUCTORS. *PhRvB* **1988**, *37* (17), 10159-10175.
- 2. Palik, E. D., Handbook of Optical Constants of Solids. Academic Press: New York, 1985.
- (a) Lin, J.; Lee, M. H.; Liu, Z. P.; Chen, C. T.; Pickard, C. J., Mechanism for linear and nonlinear optical effects in beta-BaB2O4 crystals. *PhRvB* 1999, *60* (19), 13380-13389; (b) Lin, Z. S.; Jiang, X. X.; Kang, L.; Gong, P. F.; Luo, S. Y.; Lee, M. H., First-principles materials applications and design of nonlinear optical crystals. *Journal of Physics D-Applied Physics* 2014, *47* (25), 253001.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by icense (http://creativecommons.org/licenses/by/4.0/)

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).