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Abstract: A newly designed Co(II) complex, [Co3(L)(OAc)2(CH3OH)2]·CH3OH, by the reaction of
a bis(salamo)-type tetraoxime ligand (H4L) with Co(II) acetate tetrahydrate was synthesized and
characterized by elemental analyses, IR, UV-vis spectra and single-crystal X-ray crystallography.
The UV-vis titration experiment manifested that a trinuclear (L:M = 1:3) complex was formed. It is
worth noting that the two terminal Co(II) (Co1 and Co3) atoms of the Co(II) complex have different
coordination modes and geometries unreported earlier. Furthermore, through intermolecular
interactions (C–H···O, C–H···π and O–H···O), a 2D layer-like network is constructed. In addition,
the fluorescence behaviors, antimicrobial activities and electrochemical properties of H4L and its
Co(II) complex were investigated.

Keywords: complex; crystal structure; supramolecular interaction; luminescent study; cyclic
voltammetry; antimicrobial activity

1. Introduction

N2O2 salen-type ligands and their analogues have been the focus of increasing attention because
their metal complexes are used as catalysts of organic reactions [1–7], nonlinear optical materials [8–18],
electrochemical fields [19–22], ion recognition [23–25], supramolecular architectures [26–37], biological
fields [38–42], magnetic materials [43–46] and so forth. With respect to these complexes, phenoxo
bridging plays a key role in assembling metal ions and salen-type ligands.

To date, a novel salen-type analogue, salamo, has been studied originally [47–54]. Salamo-type
ligands and their metal complexes can resist the C=N exchange reaction. They are also useful as a building
block for larger supramolecules. In addition, if hydroxyl and naphthaleneol groups are introduced
to the salamo-type ligands, a highly versatile coordination ability and preferable practical property
are expected. Taking these factors into account, a new complex [Co3(L)(OAc)2(CH3OH)2]·CH3OH
containing naphthaleneol-based bis(salamo)-type tetraoxime ligand (H4L) was synthesized and
characterized by elemental analyses, IR, single-crystal X-ray crystallography and UV-vis titration.
Meanwhile, the electrochemical properties of the Co(II) complex were investigated by cyclic
voltammetry, and the fluorescent and antibacterial properties of H4L and its Co(II) complex were
also studied.

2. Experimental

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre
(CCDC) as supplementary publication, No. CCDC 1572529. Copies of the data can be obtained free of
charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Telephone: +(44)-01223-762910;
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Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk). These data can be also obtained free of charge at
www.ccdc.cam.Ac.uk/conts/retrieving.html.

2.1. Materials and Methods

2-Hydroxy-3-methoxybenzaldehyde (99%), methyl trioctyl ammonium chloride (90%),
pyridinium chlorochromate (98%) and boron tribromide (99.9%) were purchased from Alfa Aesar
(New York, NY, USA). Hydrobromic acid 33 wt% solution in acetic acid was purchased from J&K
Scientific Ltd. (Beijing, China). The other reagents and solvents were analytical grade reagents from
Tianjin Chemical Reagent Factory (Tianjin, China) and used as received.

C, H, and N analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis
instrument (Berlin, Germany). Elemental analysis for Co(II) was detected by an IRIS ER/S·WP-1
ICP atomic emission spectrometer (Berlin, Germany). 1H NMR spectra were determined by a
German Bruker AVANCE DRX-400 spectrometer (Bruker, Billerica, MA, USA). UV-vis titration was
recorded on a Shimadzu UV-2550 spectrophotometer (Shimadzu, Kyoto, Japan) in mixed solvent
(DMF/CH3OH = 1:1, v/v). IR spectra were recorded on a Vertex 70 FT-IR spectrophotometer
(Bruker, Billerica, MA, USA), with samples prepared as KBr (400–4000 cm−1) pellets. X-ray single
crystal structure was determined on a Agilent SuperNova Eos diffractometer (Bruker, Billerica,
MA, USA). Melting points were measured by the use of a microscopic melting point apparatus made
in Beijing Taike Instrument Limited Company (Beijing, China), and the thermometer was uncorrected.
Fluorescence spectra were recorded on a Hitachi F-7000 FL spectrophotometer (Hitachi, Tokyo,
Japan). Cyclic voltammetry measurements were performed using Chi 660 voltammetric analyzer
(CH Instruments, Austin, TX, USA) in DMF containing 0.05 mol L−1 tetrabutylammonium perchlorate.

2.2. Synthesis of H4L

1,2-Bis(aminooxy)ethane, 2-hydroxy-1-naphthaldehyde and 2,3-dihydroxynaphthalene-1,
4-dicarbaldehyde were synthesized according an analogous procedure reported earlier [55,56].
The major reaction steps of H4L and its Co(II) complex are given in Scheme 1.
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Scheme 1. Syntheses route to H4L and its complex. 

2,3-Dihydroxynaphthalene-1,4-dicarbaldehyde (216.0 mg, 1.0 mmol) was added to an ethanol 
solution (60 mL) of 2-[O-(1-ethyloxyamide)]oxime-2-naphthol (492.5 mg, 2 mmol). The suspension 
solution was stirred at 40 °C for 15 h. After cooling to room temperature, the precipitate was filtered 
and washed successively with ethanol and ethanol-hexane (1:4). The product was dried in vacuo, and 
355.3 mg of a yellow crystalline solid was obtained. Yield: 570.0 mg (85.1%), m.p. 201–203 °C. Anal. 

Scheme 1. Syntheses route to H4L and its complex.

2,3-Dihydroxynaphthalene-1,4-dicarbaldehyde (216.0 mg, 1.0 mmol) was added to an ethanol
solution (60 mL) of 2-[O-(1-ethyloxyamide)]oxime-2-naphthol (492.5 mg, 2 mmol). The suspension
solution was stirred at 40 ◦C for 15 h. After cooling to room temperature, the precipitate was filtered
and washed successively with ethanol and ethanol-hexane (1:4). The product was dried in vacuo,
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and 355.3 mg of a yellow crystalline solid was obtained. Yield: 570.0 mg (85.1%), m.p. 201–203 ◦C.
Anal. Calcd for C38H32N4O8 (%): C, 67.85; H, 4.79; N, 8.33. Found: C, 67.83; H, 4.80; N, 8.36. 1H NMR
(400 MHz, DMSO) δ 10.72 (s, 4H), 9.14 (s, 2H), 9.05 (s, 2H), 8.67 (d, J = 8.5 Hz, 2H), 8.51 (dd, J = 6.5,
3.3 Hz, 2H), 7.85 (dd, J = 15.7, 8.4 Hz, 4H), 7.50 (s, 2H), 7.36 (s, 4H), 7.21 (d, J = 8.9 Hz, 2H), 4.62 (s, 8H).

2.3. Synthesis of the Co(II) Complex

A solution of cobalt(II) acetate tetrahydrate (14.95 mg, 0.06 mmol) in methanol (3 mL) was added
dropwise to a solution of H4L (13.44 mg, 0.02 mmol) in chloroform (4 mL) at room temperature. After
stirring for 20 min, the color of the mixed solution turned to brown; the solvent was allowed to partially
evaporate for two weeks at room temperature, after which nigger-brown block-shaped single crystals
suitable for X-ray diffraction studies were obtained. Anal. Calcd for C45H46Co3N4O15 (%): C, 51.00;
H, 4.38; N, 5.29; Co, 16.68. Found: C, 50.79; H, 4.33; N, 5.37; Co, 16.48.

2.4. Crystal Structure Determination of the Co(II) Complex

Intensity data of the Co(II) complex was recorded at 293(2) K employing a Agilent SuperNova
Eos diffractometer with a monochromated Mo-Kα radiation (λ = 0.71073 Å) source. Crystal decay
was not observed during the data collections. Multiscan absorption corrections were applied using
the SADABS software (Bruker, Billerica, MA, USA). The structure was solved by using Fourier
difference method and refined by the full-matrix least-squares method on F2 using the SHELXTL [57]
crystallographic software package (Bruker, Billerica, MA, USA). The non-hydrogen atoms were
generated anisotropically. All hydrogen atoms were positioned geometrically. A summary of the
crystal data and final details relevant to the structure determination is listed in Table 1.

Table 1. Crystal data and structure refinement parameters for the Co(II) complex.

Formula C45H46Co3N4O15
Formula weight 1059.65
Temperature (K) 293(2)
Wavelength (Å) 0.71073
Crystal system Monoclinic

Space group P 1 n 1
a (Å) 8.9831(3)
b (Å) 13.4177(4)
c (Å) 21.4815(7)
α (◦) 90.00
β (◦) 90.561(3)
γ (◦) 90.00

V (Å3) 2589.10(15)
Z, Dc (g cm−3) 2, 1.359

µ (mm−1) 1.015
θ Range (◦) 3.336–24.999

F(000) 1090
Crystal size (mm) 0.14 × 0.11 × 0.04

–10 ≤ h ≤ 10
Index ranges –15 ≤ k ≤ 15

–18 ≤ l ≤ 25

Reflections collected/unique 8775/5819 [Rint = 0.0350]
Completeness to θ = 24.999 99.7%

GOF 0.982
Data/restraints/parameters 5819/21/615

Final R1, wR2 indices 0.0362/0.0750

R1, wR2 indices (all data) 0.0405/0.0773

Largest differences peak and hole (e Å−3) 0.412/−0.339
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3. Results and Discussion

3.1. IR Spectra

The FT–IR spectra of the free ligand H4L and its corresponding Co(II) complex are given in
Figure 1. The ligand H4L and its Co(II) complex show various bands in the region of 400–4000 cm−1.
The ligand H4L has a broad absorption band at 3419 cm−1, which is the stretching vibration absorption
band of phenol hydroxyl group. The ligand H4L shows a characteristic band of C=N group at
1609 cm−1, which is shifted by 14 cm−1 in the Co(II) complex indicating that the Co(II) ions are
coordinated by oxime nitrogen atoms of completely deprotonated (L)4− units [58], which is similar to
previously reported Co(II) complexes. The Ar–O stretching vibration of the ligand appears at 1235 cm−1

while the Co(II) complex is observed at 1231 cm−1 implying that the Co(II) ions are coordinated by
oxygen atoms of phenolic groups of the (L)4− units [59]. In addition, a O–H stretching band can
be found at 3411 cm−1 in the Co(II) complex, which indicates the presence of methanol molecules,
which is in accordance with the results determined by X-ray diffraction.

Crystals 2017, 7, 277  4 of 15 

 

3. Results and Discussion 

3.1. IR Spectra 

The FT–IR spectra of the free ligand H4L and its corresponding Co(II) complex are given in 
Figure 1. The ligand H4L and its Co(II) complex show various bands in the region of 4000–400 cm−1. 
The ligand H4L has a broad absorption band at 3419 cm−1, which is the stretching vibration absorption 
band of phenol hydroxyl group. The ligand H4L shows a characteristic band of C=N group at 1609 
cm−1, which is shifted by 14 cm−1 in the Co(II) complex indicating that the Co(II) ions are coordinated 
by oxime nitrogen atoms of completely deprotonated (L)4− units [58], which is similar to previously 
reported Co(II) complexes. The Ar–O stretching vibration of the ligand appears at 1235 cm−1 while 
the Co(II) complex is observed at 1231 cm−1 implying that the Co(II) ions are coordinated by oxygen 
atoms of phenolic groups of the (L)4− units [59]. In addition, a O–H stretching band can be found at 
3411 cm−1 in the Co(II) complex, which indicates the presence of methanol molecules, which is in 
accordance with the results determined by X-ray diffraction. 

 
Figure 1. Infrared spectra of H4L and its Co(II) complex. 

3.2. UV-Vis Titration 

In the UV-vis titration experiment of the Co(II) complex, the solution of H4L in mixed solvent 
(DMF/CH3OH = 1:1, v/v) was changed from near colorless to light brown during the Co(II) acetate 
titration process. It can be seen from Figure 2 that the ligand H4L has two strong absorption peaks at 
313 and 355 nm, which can be assigned to π→π* type transition and indicates that the ligand H4L 
contains a large conjugation system. The former can be assigned to the π-π* transition of the 
naphthalene rings and the latter one to the π-π* transition of the oxime groups [60]. Upon 
coordination of the ligand, the intraligand π-π* transition of the naphthalene rings of the 
salicylaldehyde group appears at ca. 317 nm in the Co(II) complex. Compared with the free ligand 
H4L, the absorption band at ca. 355 nm disappears from the UV-vis spectrum of the Co(II) complex, 
which indicates that the oxime nitrogen atoms are involved in coordination to the Co(II) atoms. 
Moreover, the new absorption band is observed at ca. 385 nm for the Co(II) complex, and assigned to 
L→M charge-transfer (LMCT) transition which is characteristic of the transition metal complexes 
with N2O2 coordination sphere [61]. 

The H4L contains two salamo cavities and one O4 coordination environment and it is assumed 
that the coordination ratio of the Co(II) complex is 1:3. After the addition of 3.0 equiv of Co(II) acetate 
tetrahydrate, changes in UV-vis absorption intensity ceased. The result is consistent with the result 
of the elemental analyses mentioned above. 

Figure 1. Infrared spectra of H4L and its Co(II) complex.

3.2. UV-Vis Titration

In the UV-vis titration experiment of the Co(II) complex, the solution of H4L in mixed solvent
(DMF/CH3OH = 1:1, v/v) was changed from near colorless to light brown during the Co(II) acetate
titration process. It can be seen from Figure 2 that the ligand H4L has two strong absorption peaks
at 313 and 355 nm, which can be assigned to π→π* type transition and indicates that the ligand
H4L contains a large conjugation system. The former can be assigned to the π-π* transition of the
naphthalene rings and the latter one to the π-π* transition of the oxime groups [60]. Upon coordination
of the ligand, the intraligand π-π* transition of the naphthalene rings of the salicylaldehyde group
appears at ca. 317 nm in the Co(II) complex. Compared with the free ligand H4L, the absorption band
at ca. 355 nm disappears from the UV-vis spectrum of the Co(II) complex, which indicates that the
oxime nitrogen atoms are involved in coordination to the Co(II) atoms. Moreover, the new absorption
band is observed at ca. 385 nm for the Co(II) complex, and assigned to L→M charge-transfer (LMCT)
transition which is characteristic of the transition metal complexes with N2O2 coordination sphere [61].

The H4L contains two salamo cavities and one O4 coordination environment and it is assumed
that the coordination ratio of the Co(II) complex is 1:3. After the addition of 3.0 equiv of Co(II) acetate
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tetrahydrate, changes in UV-vis absorption intensity ceased. The result is consistent with the result of
the elemental analyses mentioned above.Crystals 2017, 7, 277  5 of 15 
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3.3. Crystal Structure

The analysis of the crystal structure of the Co(II) complex indicates that the H4L to Co(II) ratio
is 3:1. The molecule structure and coordination configuration of the Co(II) complex are illustrated in
Figure 3. The parameter values of bond distances and angles are listed in Table 2.

Single-crystal X-ray diffraction analysis reveals that the Co(II) complex crystallizes in the
monoclinic system in the P 1 n 1 space group with Z = 2. The Co(II) complex is composed of three Co(II)
ions, one completely deprotonated (L)4− unit, two µ2-acetate ions, two methanol molecules participating
in coordination and one uncoordinated methanol molecule. Three coordination environments of the
(L)4− unit are occupied by three Co(II) atoms. From the coordination polyhedra of the Co(II) complex,
it can be seen that the geometrical configuration of Co1 and Co2 atoms are different from the Co3
atom. The three Co(II) atoms were bridged by the two µ2-acetate groups. Terminal Co3 atom is
penta-coordinated by two oxime nitrogen (N3 and N4) atoms, two deprotonated phenoxo-oxygen
(O5 and O8) atoms of the (L)4− unit and one oxygen (O11) atom of one µ2-acetate ion. The coordination
geometry of Co3 atom is best described as a tetragonal pyramid coordination motif (τ = 0.095) [62],
as shown in Figure 3b. Co1 and Co2 atoms are hexa-coordinated with distorted octahedral geometries.
The hexa-coordination of terminal Co1 atom is maintained by the N2O2 coordination sphere of the (L)4−

unit and one oxygen (O10) atom from the µ2-acetato bridge and another oxygen (O15) atom from the
coordinated methanol molecule. While the central Co(II) (Co2) atom possesses three phenoxo-oxygen
(O1, O5 and O4) atoms from the (L)4− unit and double µ2-acetato oxygen (O9 and O12) atoms and
another oxygen (O13) atom from the coordinated methanol molecule. It is worth noting that the two
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terminal Co(II) (Co1 and Co3) atoms of the Co(II) complex have different coordination modes and
geometries, which isn’t observed in the bis(salamo)-type complexes reported earlier [63].

Table 2. Selected bond lengths (Å) and angles (◦) of the Co(II) complex.

Bond Lengths Bond Lengths

Co1–O1 2.075(4) Co2–O5 2.107(4)
Co1–O4 2.029(4) Co2–O9 2.086(4)

Co1–O10 2.070(4) Co2–O12 2.018(4)
Co1–O15 2.143(4) Co2–O13 2.142(5)
Co1–N1 2.068(4) Co3–O5 2.022(4)
Co1–N2 2.155(4) Co3–O8 1.950(4)
Co2–O1 2.123(4) Co3–O11 1.997(4)
Co2–O4 2.066(4) Co3–N3 2.042(4)

Bond Angles Bond Angles
O1–Co1–O4 83.33(15) O1–Co1–N1 85.63(16)

O9–Co2–O13 175.45(16) O5–Co3–O11 94.83(16)
O1–Co1–O10 91.26(15) O1–Co1–N2 165.68(16)
O12–Co2–O13 90.19(18) O5–Co3–N3 84.87(17)
O1–Co1–O15 92.68(15) O4–Co1–O10 89.68(15)
O5–Co3–O8 91.62(15) O5–Co3–N4 174.98(16

O4–Co1–O15 90.20(15) O10–Co1–O15 176.02(16)
O8–Co3–O11 109.57(17) O11–Co3–N3 123.21(18)
O4–Co1–N1 168.95(16) O10–Co1–N1 91.04(17)
O8–Co3–N3 127.22(17) O11–Co3–N4 90.18(17)
O4–Co1–N2 82.36(15) O10–Co1–N2 89.24(16)
O8–Co3–N4 86.48(17) N3–Co3–N4 92.58(17)

O15–Co1–N1 89.84(17) O1–Co2–O4 81.28(15)
Co1–O1–Co2 93.70(16) O1–Co2–O5 158.08(15)
O15–Co1–N2 86.80(16) N2–O3–C13 110.1(4)
Co1–O1–C1 129.6(4) O1–Co2–O9 89.69(15)
N1–Co1–N2 108.68(16) Co1–O4–Co2 96.82(17)
Co2–O1–C1 136.5(4) O1–Co2–O12 105.68(16)

Co1–O4–C16 128.3(4) Co2–O5–C17 111.6(3)
O1–Co2–O13 94.82(16) O4–Co2–O12 172.71(17)
Co2–O4–C16 113.2(3) Co3–O5–C17 128.5(3)
O4–Co2–O5 76.85(15) O4–Co2–O13 91.40(16)
Co2–O5–Co3 119.50(18) O5–Co2–O9 88.35(15)
O4–Co2–O9 88.62(15) O5–Co2–O12 96.12(15)
Co3–O8–C29 133.6(3) Co2–O12–C40 134.1(4)
O5–Co2–O13 87.22(15) Co2–O13–C42 128.4(4)
Co2–O9–C38 129.2(3) Co2–O13–C1A 124.7(17)
O9–Co2–O12 89.24(17) Co1–O15–C44 135.1(4)
Co1–O10–C38 128.7(4) Co1–N1–O2 124.9(3)
Co3–O11–C40 136.1(4) Co1–N1–C11 126.7(4)
Co1–N2–O3 126.3(3) Co3–N3–O6 118.7(3)
Co1–N2–C14 126.4(4) Co3–N3–C24 126.5(4)
Co1–O15–C44 135.5(4) Co1–O15–H15 114(2)
Co3–N4–O7 123.2(3) Co2–O13–H13 116(3)
Co3–N4–C27 127.6(4) Co1–O15–H15 115(2)
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Figure 3. (a) Molecular structure and atom numbering of the Co(II) complex with 30% probability
displacement ellipsoids (hydrogen atoms are omitted for clarity); (b) Coordination polyhedra for
Co(II) ions.

The intramolecular and intermolecular hydrogen bonds are shown in Figures 4–6. The relevant
values of the hydrogen bonds are listed in Table 3 [64]. With the help of intermolecular C–H···O,
C–H···π and O–H···O interactions [65], adjacent Co(II) complex moleculars can be linked into an
infinite 2D layer-like network. Moreover, the Co(II) complex is stabilized further by two C−H···π
weak hydrogen bonds [66–72] (Figure 4). The coordination entities are assembled via π···π stacking
interactions (Cg···Cg distances in range 4.627(4)−4.860(4) Å) to the supramolecular chain extending
along crystallographic [010] axis [73].

Table 3. Hydrogen bonding interactions (Å, ◦) of the complex.

D–X X···A D···A D–X···A Symmetry Codes

C6–H6–O8 0.9300 2.5900 3.382(9) 144.00 (x, 1 + y, z)
C12–H12A–O10 0.9700 2.4500 3.292(7) 145.00
C12–H12A–N2 0.9700 2.4700 2.871(7) 105.00
C12–H12B–O11 0.9700 2.4700 3.400(8) 160.00 (1/2 + x, 1 − y, 1/2 + z)
C13–H13A–N1 0.9700 2.5500 2.919(7) 102.00
C22–H22–O7 0.9300 2.5300 3.213(8) 130.00 (1/2 + x, −y, 1/2 + z)

C26–H26B–O11 0.9700 2.4200 3.262(8) 145.00
O13–H13–O8 0.87(2) 1.94(3) 2.723(6) 149(5)

O14–H14A–O9 0.8200 1.9100 2.715(6) 168.00
O15–H15–O14 0.86(3) 1.80(3) 2.637(7) 164(3) (1 + x, y, z)
C13–H13B–Cg1 2.87
C13–H13B–Cg2 2.99

Symmetry codes: Cg1 and Cg2 for the Co(II) complex are the centroids of Co3, O8, N4, C27–C29 and C28–C32, C37
atoms, respectively.
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3.4. Fluorescence Properties

The excitation and emission spectra of H4L and its Co(II) complex in mixed solvent
(DMF/CH3OH = 1:1, v/v) at room temperature are shown in Figure 7. The ligand shows an intense
photoluminescence. The Co(II) complex shows a slightly weak photoluminescence, manifesting that
fluorescent property has been influenced by the introduction of the Co(II) ions [74–76], which also give
rise to the variation in IR and UV-vis spectra of the Co(II) complex.
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3.5. Antimicobial Activities

Inhibitory bacterial experiments on commonly-used bacteria, namely E. coli and S. aureus,
were performed using the punch method. A small amount (0.1 mL) of a fresh overnight bacterial
suspension was added into autoclaved lysogeny broth (LB) agar, then the agar was poured into
sterile dishes. The concentration of the test compounds were 0.625, 1.25 and 2.5 mg/mL. 70 µL of
samples were added into a burrowed hole measuring 5 mm in diameter with transfer liquid gun when
the medium underwent solidification. Ampicillin was used as a reference standard with different
concentrations. After 6 h of incubation at 37 ◦C, the clear zones of inhibition were photographed.

The zones of DMF, complex, H4L and cobalt acetate also had apparent differences in antibacterial
activity among the two kinds of bacteria. The complex demonstrated more enhanced antimicrobial
activities than the ligand under the same conditions (2.5 mg/mL) and the ligand has a weak biological
activity; cobalt acetate also displayed little antimicrobial activity. Moreover, S. aureus exhibits stronger
antibacterial activity, whereas E. coli has weaker antibacterial activity (Figure 8a,b). The diameter of
inhibition zones of test compounds are illustrated in Figure 8c,d. As shown in Figure 8, this increase in
the antibacterial activities of the Co(II) complex was accompanied with an increase in concentration.
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3.6. Electrochemistry Studies

The voltammogram of the Co(II) complex is shown in Figure 9. The electrochemical measurement
was carried out in a standard three-electrode cell, consisting of a glassy carbon (GC) disc (U = 5 mm)
as working electrode, a platinum wire as auxiliary and a Ag/AgNO3 as reference with the scanning
rate of 50 mV s−1. There are two pairs of redox peaks during the electrolysis of the Co(II) complex
resulting from the redox reaction of Co(III)/Co(II) and Co(II)/Co(I), respectively. The first pair of
redox peaks are due to the electron transfer [77] between Co(III) and Co(II) during the electrolysis
of the Co(II) complex with potential Epa1 value of −0.769 V, Epc1 value of −0.865 V and current
iPa1 = 49.522 µA, iPc1 = −88.807 µA, the average potential E1/2 = −0.817 V, the potential difference
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between oxidation peak and reduction peak were 0.096 V and current ratio were −0.557. Another pair
of redox peaks are because the electron transfer between Co(II) and Co(I) during the electrolysis of the
Co(II) complex with potential Epa2 value of−0.865 V, Epc2 value of−1.258 V, current iPa2 =−3.340 µA,
iPc1 =−90.056 µA and the average potential E1/2 =−1.062 V, the potential difference between oxidation
peak and reduction peak were 0.393 V and current ratio were 0.0371. In short, the experimental data
reveal that electrolysis progress of the Co(II) complex is irreversible.
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4. Conclusions

In this investigation, the Co(II) complex with a bis(salamo)-type ligand has been synthesized
and characterized by IR, UV-vis spectra and X-ray crystallography. The Co(II) complex forms a
2D layer-like network by different intermolecular interactions. Hence, intermolecular non-classical
hydrogen-bonding interactions play a key role in the construction of supramolecular frameworks.
In addition, the luminance properties reveal that the Co(II) complex has a quality of fluorescent
quenching. Furthermore, antimicrobial and electrochemical properties of H4L and its Co(II) complex
were also studied.
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