Supporting Information

Metal–organic framework membranes: from fabrication to application in gas separation.

Osama Shekhah, Valeriya Chernikova, Youssef Belmabkhout, Mohamed Eddaoudi*

King Abdullah University of Science and Technology, Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, Functional Materials Design, Discovery and Development research group (FMD³), Thuwal 23955-6900, KSA. * Correspondence: mohamed.eddaoudi@kaust.edu.sa; Tel.: +966-12-808-1245

(m) (K) (ba	essure ar)
-------------	---------------

*

Table S1. Comparison of permeation properties of pure MOFs membranes reported in the literature for sorption-driven reverse selective CO₂/H₂ separation. (the data plotted for the reported polymers in Figure 71, b in the article is taken from the https://membrane-australasia.org/polymer-gas-separation-membranes/)

MOF	Support, Method	Perm (mol/(m	eance ^2*s*Pa))	Perm (Bai	eation rrer)	H ₂ /CO ₂	l	Т	Р	Ref.
	F F	H2	CO ₂	H2	CO ₂	,	(m)	(K)	(bar)	
[Ni2(L-aspartic acid)2(1,2- bis(4- pyridyl)ethylene))]·(Guest)	Nickel meshes	1.02X10-6	4.52X10-8	6.09X10+4	2.70X10+3	22.6	2.0X10-5	298	1	[1]
ZIF-22	APTES-functionalized Ti ₂ O	1.70X10-7	2.00X10-8	2.03X10+4	2.39X10+3	8.5	4.0X10-5	323	1	[2]
ZIF-90	APTES-functionalized Al ₂ O ₃	2.50X10-7	3.48X10-8	1.49X10+4	2.08X10+3	7.2	2.0X10-5	473	1	[3]
ZIF-7	Al2O3, seeding	4.55X10-8	3.50X10-9	2.72X10+2	2.09X10+1	13.0	2.0X10-6	493	1	[4]
ZIF-69	Al ₂ O ₃	6.70X10-8	2.55X10-8	1.00X10+4	3.81X10+3	2.6	5.0X10-5	298	1	[5]
HKUST-1	Al ₂ O ₃ , seeding	7.48X10-7	1.48X10-7	5.59X10+4	1.11X10+4	5.1	2.5X10-5	298	1	[6]
NH2 -MIL-53(Al)	glass frit, seeding	2.67X10-6	9.80X10-8	1.20X10+5	4.39X10+3	27.3	1.5X10-5	288	1	[7]
ZIF-8	Al2O3 hollow fiber, seeding	4.32X10-7	1.22X10-7	2.58X10+3	7.29X10+2	3.5	2.0X10-6	298	1	[8]
JUC-150 [Ni2(L-aspartic acid)2(pyrazine)]	Nickel meshes	1.83X10-7	4.60X10-9	1.91X10+4	4.81X10+2	39.8	3.5X10-5	298	1	[9]
JUC-150 [Ni2(L-aspartic acid)2(bipy)]		1.82X10-6	1.65X10-7	2.45X10+5	2.22X10+4	11.0	4.5X10-5	298	1	
ZIF-100	polydopamine modified Al2O3	6.30X10-8	8.10 X10-10	1.88X10+3	2.42X10+1	77.8	1.0X10-5	298	1	[10]
Amine-modified Mg-MOF- 74/CPO-27-Mg	MgQ coods AlxQx	8.20X10-8	2.90X10-9	2.45X10+3	8.66X10+1	28.3	1.0X10-5	298	1	[11]
Mg-MOF-74/CPO-27-Mg	MgO seeas, Ai2O3	1.24X10-7	1.10X10-8	3.70X10+3	3.29X10+2	11.3	1.0X10-5	298	1	[11]

ZIF-8	1H,1H,2H,2H- perfluoroalkyltriethoxysilane s modified Al2O3	2.66X10-7	1.55X10-8	1.59X10+4	9.26X10+2	17.2	2.0X10-5	473	1	[12]
ZIF-67	porous Al2O3 tube, from Cobalt carbonate	5.70X10-7	1.30X10-7	2.89X10+3	6.60X10+2	4.4	1.7X10-6	323	1	[13]
2D sheet Zn2(benzimidazole)4	porous Al2O3 tube, from GO coated ZnO	1.50X10-7	1.42X10-9	8.96X10+1	8.45X10-1	106.0	2.0X10-7	423	1	[14]
2D sheet Zn2(benzimidazole)4	porous Al2O3 tube, from ZnO	2.10X10-7	3.94X10-9	3.14X10+1	5.88X10-1	53.3	5.0X10-8	323,4 73	1	[15]
ZIF-8	reduced GO-modified PVDF hollow fibe. con-diffusion	6.79X10-7	2.72X10-8	3.04X10+2	1.22X10+1	25.0	1.5X10-7	298	1	[16]
ZIF-8-on-ZIF-67	Al2O3, LbL	1.20X10-8	9.00E-10	1.29X10+1	9.68X10-1	13.3	3.6X10-7	298	1	[17]
ZIF-8/2D g-C3N4	Al2O3, spin LbL	6.70X10-8	1.60X10-9	4.80X10+1	1.15X10+0	41.9	2.4X10-7	298	1	[18]
ZIF-8	polyacrylonitrile, PAN, electrophoretic nuclei assembly	9.90X10-8	1.36X10-8	1.48X10+2	2.03X10+1	7.3	5.0X10-7	298	1	[19]
2D sheet Zn2(benzimidazole)4	AlsOs	6.51X10-7	5.20X10-9	1.94X10+1	1.55X10-1	125.2	1.0X10-8	293	1	[20]
2D sheet Zn2(benzimidazole)4	ALO3	9.00X10-7	5.42X10-9	2.69X10+1	1.62X10-1	166.0	1.0X10-8	393	1	[20]
CAU-10-H (Al, 1,3-benzene dicarboxylic acid)	Al2O3	3.80X10-9	3.62E-10	6.81X10+1	6.49X10+0	10.5	6.0X10-6	473	2	[21]
ZIF-9	APTES-functionalized Al ₂ O ₃	7.43X10-6	5.00X10-7	1.11X10+6	7.47X10+4	14.9	5.0X10-5	298	1	[22]
COF-300				1.10X10+5	1.83X10+4	6.0	4.5X10-5	298	1	
Zn2(bdc)2(dabco)				2.80X10+5	4.00X10+4	7.0	1.2X10-4	298	1	
ZIF-8	SiO2 disk			1.20X10+5	1.32X10+4	9.1	6.0X10-5	298	1	[23]
(COF-300)-(Zn2(bdc)2(dabco))				1.30X10+5	1.03X10+4	12.6	9.7X10-5	298	1	
(COF-300)-(ZIF-8)				1.10X10+5	8.15X10+3	13.5	1.0X10-4	298	1	

NH2-MIL-125	Al ₂ O ₃			4.25X10+3	5.20X10+2	8.2	2.0X10-6	298	1	[24]
CuBTC/MIL-100	polydopamine modified	8.80X10-8	1.13X10-9	5.26X10+3	6.77X10+1	77.6	2.0X10-5	298	2	(05)
CuBTC/MIL-100	CuBTC	1.05X10-7	1.18X10-9	6.27X10+3	7.05X10+1	89.0	2.0X10-5	358	2	[25]
MIL-96(Al)	Al ₂ O ₃ , toluene seeding	5.30X10-7	6.09X10-8	1.11X10+4	1.27X10+3	8.7	7.0X10-6	298	1	[2(]
MIL-96(Al)	Al ₂ O ₃ , DMF seeding	3.80X10-7	5.76X10-8	2.27X10+3	3.44X10+2	6.6	2.0X10-6	298	1	[26]
ZIF-8	APTES, Titania- functionalized PVDF hollow fiber	2.01X10-5	2.86X10-6	6.00X10+4	8.53X10+3	7.0	1.0X10-6	293	1	[27]
ZIF-8	Al2O3	1.40X10-8	1.87X10-9	9.20X10+0	1.23X10+0	7.5	2.2X10-7	298	1	[28]
NH2-MIL-53	ammoniated PVDF hollow fibe	5.42X10-6	1.78X10-7	1.30X10+5	4.26X10+3	30.4	8.0X10-6	298	1	[29]
ZIF-7-NH2 coated PEBAX 1657	Al ₂ O ₃	1.00X10-7	5.26X10-9	5.97X10+3	3.14X10+2	19.0	2.0X10-5	298	1	[30]
Zn2(bim)4 nanosheets	Al ₂ O ₃	1.20X10-6	1.35X10-8	3.58X10+0	4.03X10-2	89.0	1.0X10-9	298	1	[31]
MOF-5	Al ₂ O ₃	4.70X10-6	1.05X10-6	3.51X10+5	7.84X10+4	4.5	2.5X10-5	298	1	[32]
MOF-5 oriented	graphite-coated Al ₂ O ₃	8.30X10-7	2.10X10-7	9.92X10+4	2.51X10+4	4.0	4.0X10-5	298	1	[33]
HKUST-1	Al ₂ O ₃ hollow fiber, seeding	7.25X10-8	5.50X10-9	2.82X10+3	2.14X10+2	13.2	1.3X10-5	313	1	[34]
ZIF-8	Al ₂ O ₃	6.04X10-8	1.33X10-8	7.22X10+3	1.59X10+3	4.5	4.0X10-5	298	1	[35]
ZIF-8	Al2O3, seeding	1.87X10-6	5.00X10-7	1.40X10+5	3.73X10+4	3.7	2.5X10-5	298	1	[36]
ZIF-8/GO	Al2O3	1.45X10-7	6.46X10-9	1.52X10+4	6.75X10+2	22.4	3.5X10-5	523	1	[37]
ZIF-7	Al ₂ O ₃ , polyethyleneimine assisted seeding	7.40X10-8	1.10X10-8	3.32X10+2	4.93X10+1	6.7	1.5X10-6	473	1	[38]
ZIF-95	APTES-functionalized Al2O3	2.46X10-6	7.04X10-8	2.20X10+5	6.31X10+3	34.9	3.0X10-5	298	1	[39]
MIL-53	Al2O3, seeding	4.90X10-7	1.10X10-7	1.17X10+4	2.63X10+3	4.5	8.0X10-6	298	1	[40]

Ni-MOF-74	Al2O3, seeding	0.0000127	0.0000014	9.48X10+5	1.05X10+5	9.1	0.000025	298	1	[41]
ZIF-7-8	Al ₂ O ₃ , microwave	0.0000003	0.00000006	1.79X10+3	3.58X10+2	5.0	0.000002	298	1	[42]

 Table S2. Comparison of permeation properties of pure MOFs membranes reported in the literature for diffusion-driven H2/CO2 separation. (the data plotted for the reported polymers in Figure 71, a in the article is taken from the https://membrane-australasia.org/polymer-gas-separation-membranes/)

MOF	Support	Permeation (Barrer)		Permeation (Barrer)		Permeation (Barrer)		Permeation (Barrer)		Permeation (Barrer)		Permeation (Barrer)		Permeation (Barrer) CO2		CO ₂ /H ₂	Mix	gas	l (m)	T (K)	P (bar)	Ref.
		H2	CO ₂		%/%	CO ₂ /H ₂	(111)	(K)	(Dar)													
CAU-1	Al ₂ O ₃ hollow fiber, seeding	3.79X10+3	9.86X10+3	2.6			2.5X10-6	298	1	[43]												
	single crystal	5.26X10-1	7.17X10-1	1.4	10/90	0.36	0.00016	298	1													
[Cu2(benzoate)4(pyrazine)]n		5.26X10-1	7.17X10-1		20/80	1.29	0.00016	298	1													
		5.26X10-1	7.17X10-1		70/30	2.19	0.00016	298	1													
		5.26X10-1	7.17X10-1]	60/40	3.85	0.00016	298	1													
		5.26X10-1	7.17X10-1		50/50	4.08	0.00016	298	1	[44]												
[100] direction		5.26X10-1	7.17X10-1]	40/60	6.49	0.00016	298	1													
		5.26X10-1	7.17X10-1		30/70	14.17	0.00016	298	1													
		5.26X10-1	7.17X10-1		20/80	18.20	0.00016	298	1													
		5.26X10-1	7.17X10-1]	10/90	32.65	0.00016	298	1													
sod-ZMOF	Al ₂ O ₃	35.8	94.1	2.6	70/30	5.20	0.00005	298	2	[45]												
		710.9	8154.1	4.5	20/80	1.25	0.000014	298	2.7													
MOE E		710.9	8154.1		60/40	1.75	0.000014	298	2.7	[46]												
MOF-5	Al2O3, seeding	710.9	8154.1]	40/60	2.60	0.000014	298	2.7	[46]												
		710.9	8154.1		82/18	4.50	0.000014	298	2.7													
MOF-5,CO ₂ treated		5266.7	23709.7	4.5	98/2	5781.00	0.000014	298	5	[47]												

MOF	Support, Method	Perm (mol/(m	eance ^2*s*Pa))	Perm (Bai	eation rrer)	CO ₂ /CH ₄	1	Т	Р	Ref.
		CH4	CO ₂	CH4	CO ₂		(m)	(K)	(bar)	
MOF-5	Al2O3	1.38X10-7	0.00000015	5.75X10+3	6.27X10+3	1.1	0.000014	298	3	[48]
ZIF-8	Al ₂ O ₃	2.41X10-6	0.0000169	6.49X10+4	4.54X10+5	7.0	0.000009	295	1	[49]
Co3(HCOO)6	silicon wafer, seeding	4.1513X10-7	0.00000225	1.49X10+4	8.06X10+4	5.4	0.000012	298	1	[50]
ZIF-69	Al ₂ O ₃ , seeding	8.6X10-9	2.36X10-8	1.03X10+3	2.82X10+3	2.7	0.00004	298	1	[51]
[Cu2(ndc)2(dabco)]	Al2O3	4X10-9	1.4X10-8	2.39X10+2	8.36X10+2	3.5	0.00002	298	1	[52]
Bio-MOF-1	stainless steel tube, seeding	0.00000046	0.00000119	2.06X10+4	5.33X10+4	2.6	0.000015	298	1.4	[53]
Bio-MOF-13	stainless steel tube,	0.00000082	0.0000031	1.71X10+4	6.48X10+4	3.8	0.000007	298	1	[54]
Bio-MOF-14	seeding	0.00000118	0.00000416	4.58X10+4	1.62X10+5	3.5	0.000013	298	1	[34]
ZIF-7-8	Al ₂ O ₃ , microwave	1.4X10-8	0.00000006	8.36X10+1	3.58X10+2	4.3	0.000002	298	1	[42]
sod-ZMOF	Al2O3	1.8 X10-10	6.3 X10-10	2.69X10+1	9.41X10+1	3.5	0.00005	298	2	[45]
MIL-100(In)	Al2O3	2.4658X10-7	0.0000009	3.68X10+3	1.34X10+4	3.7	0.000005	298	2	[55]
ZIF-8-ZnAl-NO3 LDH composite membrane	Al ₂ O ₃	7.5786 X10- 10	9.7763X10-9	4.53X10+1	5.84X10+2	12.9	0.00002	363	1	[56]
CAU-1	Al2O3 hollow fiber, seeding	8.9189X10-8	0.00000132	6.66X10+2	9.86X10+3	14.8	0.0000025	298	1	[57]

Table S3. Comparison of permeation properties of pure MOFs membranes reported in the literature for CO₂/CH₄ separation. (the data plotted for the reported polymers in Figure 72, a in the article is taken from the https://membrane-australasia.org/polymer-gas-separation-membranes/)

Table S4. Comparison of permeation properties of pure MOFs membranes reported in the literature for CO ₂ /N ₂ separation. (the data plotted fo
the reported polymers in Figure 72, b in the article is taken from the https://membrane-australasia.org/polymer-gas-separation-membranes/)

MOF	Support, Method	Permeance (mol/(m^2*s*Pa))		Perme (Bai	eation rrer)	CO ₂ / N ₂	1	Т	Р	Ref.
		N2	CO ₂	N2	CO ₂		(m)	(K)	(bar)	
MOF-5	Al2O3	1.82927X10-7	0.00000015	5.75X10+3	6.27X10+3	0.8	0.000014	298	3	[48]
ZIF-69	Al ₂ O ₃ , seeding	1.06X10-8	2.36X10-8	1.03X10+3	2.82X10+3	2.2	0.00004	298	1	[51]
ZIF-7-8	Al2O3, microwave	0.000000024	0.00000006	8.36X10+1	3.58X10+2	2.5	0.000002	298	1	[42]
sod-ZMOF	Al2O3	7.3 X10-11	6.3 X10-10	2.69X10+1	9.41X10+1	8.6	0.00005	298	2	[45]
MIL-100(In)	Al2O3	2.85714X10-7	0.0000009	3.68X10+3	1.34X10+4	3.2	0.000005	298	2	[55]
ZIF-8-ZnAl-NO3 LDH composite membrane	Al2O3	2.44048X10-9	9.7763X10-9	4.53X10+1	5.84X10+2	4.0	0.00002	363	1	[56]
CAU-1	Al2O3 hollow fiber, seeding	5.04X10-8	0.00000132	6.66X10+2	9.86X10+3	26.2	0.0000025	298	1	[43]

Table S5. Comparison of permeation properties of pure MOFs membranes reported in the literature for C2H4/C2H6 separation. (the data plottedfor the reported polymers in Figure 73, a in the article is taken from the [58])

MOF	Support, Method	Perm (mol/(m	eance ^2*s*Pa))	Perme (Bai	eation rrer)	C2H4/C2H6	l	Т	Р	Ref.
	II ,	C2H4	C ₂ H ₆	C2H4	C2H6	,	(m)	(K)	(bar)	
MOF-5	Al ₂ O ₃	0.00000018	6.66667X10-9	1.34X10+3	4.98X10+2	2.7	0.000025	298	1	[59]

MOF	Support, Method	Permeance (mol/(m^2*s*Pa))		Permeation (Barrer)		mix	1	Т	Р	Ref.	
		C ₃ H ₆	C3H8	3 C3H6 C3H8 C3H6/C3H8		(m)	(K)	(bar)			
ZIF-8	Al2O3 , counter- diffusion	2.7799X10-8	6.46488E-10	1.25X10+2	2.90X10+0	43.0	0.0000015	298	1	[61]	
ZIF-8	A12O3	8.09X10-9	1.97317E-10	2.42X10+2	5.89X10+0	41.0	0.00001	298	1	[62]	
ZIF-8	Al2O3 , counter- diffusion	2.5X10-9	4.23729E-11	5.97X10+2	1.01X10+1	59.0	0.00008	298	1	[63]	
ZIF-8	Al2O3, secondary growth	0.000000011	3.66667E-10	8.21X10+1	2.74X10+0	30.0	0.0000025	298	1	[64]	
ZIF-8	PAI hollow fiber, IMMP	1.4405X10-8	9.47697E-11	3.49X10+2	2.29X10+0	152.0	0.0000081	298	1	[65]	

Table S6. Comparison of permeation properties of pure MOFs membranes reported in the literature for C₃H₆/C₃H₈ separation. (the data plotted for the reported polymers in Figure 73, b in the article is taken from the [60])

Table S7. Comparison of permeation properties of pure MOFs membranes reported in the literature for C4H10/i-C4H10 separation. (the data plotted for the reported polymers in Figure 73, c in the article is taken from the [66])

MOF	Support, Method	Perme (Bai	eation rrer)	C4H10/i-	1	Т (К)	Р	Reference
		C4H10	i-C4H10	C4H10	(m)		(bar)	(DOI)
ZIF-90	carbon hollow fibers, fluidic processing technique	192	16	12	0.0000031	298	1	[67]

References

1.	Kang, Z.; Fan, L.; Wang, S.; Sun, D.; Xue, M.; Qiu, S. In situ confinement of free linkers within a stable mof membrane for highly improved gas separation properties. <i>CrystEngComm</i> 2017 , <i>19</i> , 1601-1606.
2.	Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Molecular-sieve membrane with hydrogen permselectivity: Zif-22 in Ita topology prepared with 3-aminopropyltriethoxysilane as covalent linker. <i>Angew. Chem. Int. Ed.</i> 2010 , <i>49</i> , 4958-4961.
3.	Huang, A.; Dou, W.; Caro, J. Steam-stable zeolitic imidazolate framework zif-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 2010 , 132, 15562-15564.
4.	Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. Zeolitic imidazolate framework zif-7 based molecular sieve membrane for hydrogen separation. J. Memb. Sci. 2010 , 354, 48-54.
5.	Liu, Y.; Hu, E.; Khan, E.A.; Lai, Z. Synthesis and characterization of zif-69 membranes and separation for co2/co mixture. <i>J. Memb. Sci.</i> 2010 , <i>353</i> , 36-40.
6.	Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Step-by-step seeding procedure for preparing hkust-1 membrane on porous α-alumina support. <i>Langmuir 2011, 27,</i> 4309-4312.
7.	Zhang, F.; Zou, X.; Gao, X.; Fan, S.; Sun, F.; Ren, H.; Zhu, G. Hydrogen selective nh2-mil-53(al) mof membranes with high permeability. Adv. Funct. Mater 2012 , <i>22</i> , 3583-3590.
8.	Huang, K.; Dong, Z.; Li, Q.; Jin, W. Growth of a zif-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. <i>Chem. Commun.</i> 2013 , <i>49</i> , 10326-10328.
9.	Kang, Z.; Xue, M.; Fan, L.; Huang, L.; Guo, L.; Wei, G.; Chen, B.; Qiu, S. Highly selective sieving of small gas molecules by using an ultra- microporous metal-organic framework membrane. <i>Energy Environ. Sci.</i> 2014 , 7, 4053-4060.
10.	Wang, N.; Liu, Y.; Qiao, Z.; Diestel, L.; Zhou, J.; Huang, A.; Caro, J. Polydopamine-based synthesis of a zeolite imidazolate framework zif- 100 membrane with high h2/co2 selectivity. <i>J. Mater. Chem. A</i> 2015 , <i>3</i> , 4722-4728.
1	 Wang, N.; Mundstock, A.; Liu, Y.; Huang, A.; Caro, J. Amine-modified mg-mof-74/cpo-27-mg membrane with enhanced h2/co2 separation. Chemical Engineering Science 2015, 124, 27-36.
12.	Wu, X.; Liu, C.; Caro, J.; Huang, A. Facile synthesis of molecular sieve membranes following "like grows like" principle. J. Memb. Sci. 2018, 559, 1-7.
13	3. Nian, P.; Cao, Y.; Li, Y.; Zhang, X.; Wang, Y.; Liu, H.; Zhang, X. Preparation of a pure zif-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for h2 separation. CrystEngComm 2018 , 20, 2440-2448.
14.	Li, Y.; Liu, H.; Wang, H.; Qiu, J.; Zhang, X. Go-guided direct growth of highly oriented metal-organic framework nanosheet membranes for h2/co2 separation. <i>Chem. Sci.</i> 2018 , <i>9</i> , 4132-4141.
15.	Li, Y.; Lin, L.; Tu, M.; Nian, P.; Howarth, A.J.; Farha, O.K.; Qiu, J.; Zhang, X. Growth of zno self-converted 2d nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. <i>Nano Res.</i> 2018 , <i>11</i> , 1850-1860.
-	16. Li, W.; Shi, J.; Li, Z.; Wu, W.; Xia, Y.; Yu, Y.; Zhang, G. Hydrothermally reduced graphene oxide interfaces for synthesizing high- performance metal-organic framework hollow fiber membranes. <i>Adv. Mater. Interfaces</i> 2018 .

- 17. Knebel, A.; Wulfert-Holzmann, P.; Friebe, S.; Pavel, J.; Strauß, I.; Mundstock, A.; Steinbach, F.; Caro, J. Hierarchical nanostructures of metal-organic frameworks applied in gas separating zif-8-on-zif-67 membranes. *Chem. Eur. J.* **2018**, *24*, 5728-5733.
- 18. Hou, J.; Wei, Y.; Zhou, S.; Wang, Y.; Wang, H. Highly efficient h<inf>2</inf>/co<inf>2</inf>separation via an ultrathin metal-organic framework membrane. *Chemical Engineering Science* **2018**, *182*, 180-188.
- 19. He, G.; Dakhchoune, M.; Zhao, J.; Huang, S.; Agrawal, K.V. Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports. Adv. Funct. Mater **2018**, *28*.
- 20. Peng, Y.; Li, Y.; Ban, Y.; Yang, W. Two-dimensional metal–organic framework nanosheets for membrane-based gas separation. *Angew. Chem. Int. Ed.* **2017**, *56*, 9757-9761.
- 21. Jin, H.; Wollbrink, A.; Yao, R.; Li, Y.; Caro, J.; Yang, W. A novel cau-10-h mof membrane for hydrogen separation under hydrothermal conditions. *J. Memb. Sci.* **2016**, *513*, 40-46.
- 22. Huang, Y.; Liu, D.; Liu, Z.; Zhong, C. Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation. *Ind. Eng. Chem. Res.* **2016**, *55*, 7164-7170.
- 23. Fu, J.; Das, S.; Xing, G.; Ben, T.; Valtchev, V.; Qiu, S. Fabrication of cof-mof composite membranes and their highly selective separation of h2/co2. *J. Am. Chem. Soc.* **2016**, *138*, 7673-7680.
- 24. Friebe, S.; Mundstock, A.; Unruh, D.; Renz, F.; Caro, J. Nh2-mil-125 as membrane for carbon dioxide sequestration: Thin supported mof layers contra mixed-matrix-membranes. *J. Memb. Sci.* **2016**, *516*, 185-193.
- 25. Li, W.; Zhang, Y.; Zhang, C.; Meng, Q.; Xu, Z.; Su, P.; Li, Q.; Shen, C.; Fan, Z.; Qin, L., *et al.* Transformation of metal-organic frameworks for molecular sieving membranes. *Nat. Commun.* **2016**, *7*, 11315.
 - 26. Knebel, A.; Friebe, S.; Bigall, N.C.; Benzaqui, M.; Serre, C.; Caro, J. Comparative study of mil-96(al) as continuous metal-organic frameworks layer and mixed-matrix membrane. *ACS Appl. Mater. Interfaces* **2016**, *8*, 7536-7544.
- 27. Hou, J.; Sutrisna, P.D.; Zhang, Y.; Chen, V. Formation of ultrathin, continuous metal-organic framework membranes on flexible polymer substrates. *Angew. Chem. Int. Ed.* **2016**, *55*, 3947-3951.
 - 28. Liu, Y.; Peng, Y.; Wang, N.; Li, Y.; Pan, J.H.; Yang, W.; Caro, J. Significantly enhanced separation using zif-8 membranes by partial conversion of calcined layered double hydroxide precursors. *ChemSusChem* **2015**, *8*, 3582-3586.
- 29. Li, W.; Su, P.; Zhang, G.; Shen, C.; Meng, Q. Preparation of continuous nh<inf>2</inf>-mil-53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient h<inf>2</inf>purification. J. Memb. Sci. **2015**, 495, 384-391.
- 30. Chang, H.; Wang, Y.; Xiang, L.; Liu, D.; Wang, C.; Pan, Y. Improved h2/co2 separation performance on mixed-linker zif-7 polycrystalline membranes. *Chemical Engineering Science* **2018**, *192*, 85-93.
- 31. Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Metal- organic framework nanosheets as building blocks for molecular sieving membranes. *Science* **2014**, *346*, 1356-1359.
- 32. Liu, Y.; Ng, Z.; Khan, E.A.; Jeong, H.-K.; Ching, C.-b.; Lai, Z. Synthesis of continuous mof-5 membranes on porous α-alumina substrates. *Microporous Mesoporous Mater.* **2009**, *118*, 296-301.
- 33. Yoo, Y.; Lai, Z.; Jeong, H.K. Fabrication of mof-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. *Microporous Mesoporous Mater.* **2009**, *123*, 100-106.

34. Zhou, S.; Zou, X.; Sun, F.; Zhang, F.; Fan, S.; Zhao, H.; Schiestel, T.; Zhu, G. Challenging fabrication of hollow ceramic fiber supported cu3(btc)2 membrane for hydrogen separation. *J. Mater. Chem.* **2012**, *22*, 10322.

35. Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. *J. Am. Chem. Soc.* **2009**, *131*, 16000-16001.

- 36. Guerrero, V.V.; Yoo, Y.; McCarthy, M.C.; Jeong, H.K. Hkust-1 membranes on porous supports using secondary growth. *J. Mater. Chem.* **2010**, *20*, 3938-3943.
- 37. Huang, A.; Liu, Q.; Wang, N.; Zhu, Y.; Caro, J. Bicontinuous zeolitic imidazolate framework zif-8@go membrane with enhanced hydrogen selectivity. *J. Am. Chem. Soc.* **2014**, *136*, 14686-14689.
- 38. Li, Y.-S.; Liang, F.-Y.; Bux, H.; Feldhoff, A.; Yang, W.-S.; Caro, J.r. Molecular sieve membrane: Supported metalâ "organic framework with high hydrogen selectivity. *Angew. Chem. Int. Ed.* **2010**, *122*, 558-561.

39. Huang, A.; Chen, Y.; Wang, N.; Hu, Z.; Jiang, J.; Caro, J. A highly permeable and selective zeolitic imidazolate framework zif-95 membrane for h2/co2 separation. *Chem. Commun.* **2012**, *48*, 10981-10983.

- 40. Hu, Y.; Dong, X.; Nan, J.; Jin, W.; Ren, X.; Xu, N.; Lee, Y.M. Metal-organic framework membranes fabricated via reactive seeding. *Chem. Commun.* **2011**, *47*, 737-739.
 - 41. Lee, D.-J.; Li, Q.; Kim, H.; Lee, K. Preparation of ni-mof-74 membrane for co2 separation by layer-by-layer seeding technique. *Microporous Mesoporous Mater.* **2012**, *163*, 169-177.
- 42. Hillman, F.; Brito, J.; Jeong, H.K. Rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework membranes for tunable gas separations. *ACS Appl. Mater. Interfaces* **2018**, *10*, 5586-5593.
- 43. Yin, H.; Wang, J.; Xie, Z.; Yang, J.; Bai, J.; Lu, J.; Zhang, Y.; Yin, D.; Lin, J.Y. A highly permeable and selective amino-functionalized mof cau-1 membrane for co2-n2 separation. *Chem. Commun.* **2014**, *50*, 3699-3701.
- 44. Takamizawa, S.; Takasaki, Y.; Miyake, R. Single-crystal membrane for anisotropic and efficient gas permeation. *J. Am. Chem. Soc.* **2010**, *132*, 2862-2863.
- 45. Al-Maythalony, B.A.; Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; Pinnau, I.; Eddaoudi, M. Quest for anionic mof membranes: Continuous **sod**-zmof membrane with co₂ adsorption-driven selectivity. *J. Am. Chem. Soc.* **2015**, *137*, 1754-1757.
- 46. Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y.S. Gas separation properties of metal organic framework (mof-5) membranes. *Ind. Eng. Chem. Res.* **2013**, *52*, 1102-1108.
- 47. Rui, Z.; James, J.B.; Lin, Y.S. Highly co2 perm-selective metal-organic framework membranes through co2 annealing post-treatment. *J. Memb. Sci.* **2018**, 555, 97-104.
- 48. Rui, Z.; James, J.B.; Kasik, A.; Lin, Y.S. Metal-organic framework membrane process for high purity co2 production. *AIChE J.* **2016**, *62*, 3836-3841.
- 49. Venna, S.R.; Carreon, M.A. Highly permeable zeolite imidazolate framework-8 membranes for co2/ch4 separation. *J. Am. Chem. Soc.* **2010**, *132*, 76-78.
- 50. Zou, X.; Zhang, F.; Thomas, S.; Zhu, G.; Valtchev, V.; Mintova, S. Co3(hcoo)6 microporous metal-organic framework membrane for separation of co2/ch4 mixtures. *Chemistry* **2011**, *17*, 12076-12083.

- 51. Liu, Y.; Zeng, G.; Pan, Y.; Lai, Z. Synthesis of highly c-oriented zif-69 membranes by secondary growth and their gas permeation properties. *J. Memb. Sci.* **2011**, *379*, 46-51.
- 52. Betard, A.; Bux, H.; Henke, S.; Zacher, D.; Caro, J.; Fischer, R.A. Fabrication of a co2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [cu2l2p](n) on a macroporous support. *Microporous Mater.* **2012**, *150*, 76-82.
- 53. Bohrman, J.A.; Carreon, M.A. Synthesis and co₂/ch₄ separation performance of bio-mof-1 membranes. *Chem. Commun.* **2012**, *48*, 5130-5132.
- 54. Xie, Z.; Li, T.; Rosi, N.L.; Carreon, M.A. Alumina-supported cobalt–adeninate mof membranes for co2/ch4 separation. *J. Mater. Chem. A* **2014**, *2*, 1239.
 - 55. Dou, Z.; Cai, J.; Cui, Y.; Yu, J.; Xia, T.; Yang, Y.; Qian, G. Preparation and gas separation properties of metal-organic framework membranes. *Z. Anorg. Allg. Chem.* **2015**, *641*, 792-796.
- 56. Liu, Y.; Pan, J.H.; Wang, N.; Steinbach, F.; Liu, X.; Caro, J. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. *Angew. Chem. Int. Ed.* **2015**, *54*, 3028-3032.
- 57. Yin, H.; Wang, J.; Xie, Z.; Yang, J.; Bai, J.; Lu, J.; Zhang, Y.; Yin, D.; Lin, J.Y.S. A highly permeable and selective amino-functionalized mof cau-1 membrane for co<inf>2</inf>separation. *Chem. Commun.* **2014**, *50*, 3699-3701.
- 58. Rungta, M.; Zhang, C.; Koros, W.J.; Xu, L. Membrane-based ethylene/ethane separation: The upper bound and beyond. *AlChE J.* **2013**, *59*, 3475-3489.
- 59. Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. Ethene/ethane separation by the mof membrane zif-8: Molecular correlation of permeation, adsorption, diffusion. *J. Memb. Sci.* **2011**, *369*, 284-289.
- Burns, R.L.; Koros, W.J. Defining the challenges for c3h6/c3h8 separation using polymeric membranes. *J. Memb. Sci.* 2003, 211, 299-309.
 Kwon, H.T.; Jeong, H.K. In situ synthesis of thin zeolitic-imidazolate framework zif-8 membranes exhibiting exceptionally high
 - Kwon, H.T.; Jeong, H.K. In situ synthesis of thin zeolitic-imidazolate framework zif-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. **2013**, 135, 10763-10768.
 - 62. Shah, M.N.; Gonzalez, M.A.; McCarthy, M.C.; Jeong, H.K. An unconventional rapid synthesis of high performance metal-organic framework membranes. *Langmuir* **2013**, *29*, 7896-7902.
 - 63. Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Diffusive separation of propylene/propane with zif-8 membranes. *J. Memb. Sci.* **2014**, *450*, 215-223.
- 64. Liu, D.; Ma, X.; Xi, H.; Lin, Y.S. Gas transport properties and propylene/propane separation characteristics of zif-8 membranes. *J. Memb. Sci.* **2014**, *451*, 85-93.
- 65. Eum, K.; Ma, C.; Rownaghi, A.; Jones, C.W.; Nair, S. Zif-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: Efficient propylene separation at elevated pressures. *ACS Appl. Mater. Interfaces* **2016**, *8*, 25337-25342.
 - 66. Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W.J. Mixed matrix formulations with mof molecular sieving for key energy-intensive separations. *Nat. Mater.* **2018**, *17*, 283-289.
- 67. Eum, K.; Ma, C.; Koh, D.-Y.; Rashidi, F.; Li, Z.; Jones, C.W.; Lively, R.P.; Nair, S. Zeolitic imidazolate framework membranes supported on macroporous carbon hollow fibers by fluidic processing techniques. *Adv. Mater. Interfaces* **2017**, *4*, 1700080-1700090.