

Communication

Filling tricompartmental ligands with Gd^{III} and Zn^{II} ions: some structural and MRI studies

Julio Corredoira-Vázquez ¹, Matilde Fondo ¹, Jesús Sanmartín-Matalobos ¹, Pablo Taboada ² and Ana M. García-Deibe ^{1,*}

- ¹ Department of Inorganic Chemistry. Faculty of Chemistry. Campus Vida. Universidade de Santiago de Compostela. E 15782 Santiago de Compostela. SPAIN. ¹<u>julio corredoira@hotmail.com</u> (J.C.-V.); <u>matilde.fondo@usc.es</u> (M.F.); <u>jesus.sanmartin@usc.es</u> (J.S.-M.)
- 2 Instituto de Investigaciones Sanitarias (IDIS), Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidade de Santiago de Compostela E 15782 Santiago de Compostela, Spain.³ pablo.taboada@usc.es (P.T.)
- * Correspondence: <u>ana.garcia.deibe@usc.es</u>; Tel.: +34-981814237

Contents

Table S1. X-ray crystallographic data for Gd and Zn2Gd	S2			
Table S2. Main geometric parameters for Gd				
Figure S1. Comparison of the XRD patterns for ZnGd and [ZnDy(HL)(NO3)(OAc)(MeOH)](NO3) 1.25MeOH·0.25H2O	S4			
Figure S2. IR spectra for ZnGd' and [ZnDy(HL)(NO3)(OAc)(MeOH)](NO3)·1.25MeOH·0.25H2O	S5			
Figure S3. Ellipsoid diagram for a second [Zn2Gd(L)(OH)(H2O)5] ³⁺ unit present in Zn2Gd	S6			
Table S3. Main geometric parameters for Zn2Gd	S7			
Table S4. Continuous Shape measures calculations for Gd and Zn_2Gd	S8			
Figure S4. Coordination polyhedra for the Gd ^{III} centre present in unit 2 of Zn₂Gd.	S8			
Table S5. H bonds found for Zn2Gd	S9			
Figure S5. Sticks view of the asymmetric unit of Zn₂Gd showing the multiple H-bonds between cations, anions and occluded solvent molecules	S 10			
molecules	510			
Figure S6. Space-tilled views of portions of the 2D-H-bonded layers formed by Zn ₂ Gd	S11			

Formula	C33H38GdN7O20	C126H183Br12Gd4N31O89Zn8
M_r	1009.95	5666.90
Crystal dimensions (mm)	$0.20\times0.15\times0.04$	$0.18 \times 0.12 \times 0.04$
Crystal System	Monoclinic	Triclinic,
Space group	$P2_1/m$	<i>P</i> -1
<i>a, b, c</i> (Å)	10.0285(3), 17.8274(6), 11.8469(3)	12.7030(9), 17.5773 (11), 22.5949 (14)
α, β, γ (°)	90, 109.744(2), 90	107.655 (3), 94.421 (3), 101.334(3)
θ Ranges (°)	1.8 - 30.5	1.24 - 25.25
<i>V</i> (ų), μ/ mm⁻¹	1993.50(11), 1.755	4664.1(9), 5.084
Z	2	1
F(000)	1016	2784
$D_x/g \cdot cm^{-3}$	1.682	2.018
-h, h / -k, k / -l, l	-14, 14 / -25, 25 / -16, 16	-14, 15 / -21, 18 / -26, 27
Total, unique, $[I > 2\sigma(I)]$ reflec.	38749, 6256, 5454	66747, 16866, 9074
No. of reflect., restraints, param.	6256, 0, 328	16866, 1593, 1222
Rint	0.051	0.0984
Final <i>R, wR</i>	0.0376, 0.824	0.07443, 0.1272
R, wR (all data)	0.481, 0.854	0.1587, 0.2150
$\Delta Q_{\max}, \Delta Q_{\min} (e/Å^3)$	0.967, -1.559	4.589, -3.033

Table S1. X-ray crystallographic data for Gd and Zn_2Gd

Atoms	Distance (Å) Atoms		Distance (Å)
Gd(1)-O(3)	2.315(3)	N(1)-C(7)	1.299(4)
Gd(1)-O(1)	2.363(2)	N(1)-C(8)	1.465(5)
Gd(1)-O(1)#1	2.363(2)	N(2)-C(11)	1.478(4)
Gd(1)-O(4)	2.398(3)	N(2)-C(9)	1.480(4)
Gd(1)-O(1W)	2.408(3)	N(2)-C(10)	1.485(4)
Gd(1)-O(2)#1	2.487(2)	O(1)-C(1)	1.291(4)
Gd(1)-O(2)	2.487(2)	O(2)-C(2A)	1.232(4)
Gd(1)-O(11)	2.535(2)	O(3)-C(13)	1.290(5)
Gd(1)-O(11)#1	2.535(2)	O(4)-C(14A)	1.234(5)
Gd(1)-N(10)	2.959(4)	N(10)-O(12)	1.233(5)
		N(10)-O(11) ^{#1}	1.261(3)
Atoms	Angle (°)	Atoms	Angle (°)
O(3)-Gd(1)-O(1)	74.26(8)	O(1)#1-Gd(1)-O(11)	65.49(8)
O(3)-Gd(1)-O(1)#1	74.26(8)	O(4)-Gd(1)-O(11)	139.81(8)
O(1)-Gd(1)-O(1)#1	147.59(17)	O(1W)-Gd(1)-O(11)	73.20(9)
O(3)-Gd(1)-O(4)	72.99(11)	O(2)#1-Gd(1)-O(11)	112.00(8)
O(1)-Gd(1)-O(4)	81.85(8)	O(2)-Gd(1)-O(11)	146.10(8)
O(1)#1-Gd(1)-O(4)	81.85(8)	O(3)-Gd(1)-O(11)#1	75.94(10)
O(3)-Gd(1)-O(1W)	145.86(12)	O(1)-Gd(1)-O(11)#1	65.49(8)
O(1)-Gd(1)-O(1W)	105.14(8)	O(1)#1-Gd(1)-O(11)#1	113.40(8)
O(1)#1-Gd(1)-O(1W)	105.14(8)	O(4)-Gd(1)-O(11)#1	139.81(8)
O(4)-Gd(1)-O(1W)	141.15(11)	O(1W)-Gd(1)-O(11)#1	73.20(9)
O(3)-Gd(1)-O(2) ^{#1}	132.61(8)	O(2) ^{#1} -Gd(1)-O(11) ^{#1}	146.10(8)
O(1)-Gd(1)-O(2) ^{#1}	131.93(8)	O(2)-Gd(1)-O(11)#1	111.99(8)
O(1) ^{#1} -Gd(1)-O(2) ^{#1}	68.51(9)	O(11)-Gd(1)-O(11)#1	50.02(11)
O(4)-Gd(1)-O(2)#1	73.64(8)	O(3)-Gd(1)-N(10)	75.80(11)
O(1W)-Gd(1)-O(2)#1	73.81(9)	O(1)-Gd(1)-N(10)	89.81(6)
O(3)-Gd(1)-O(2)	132.60(8)	O(1)#1-Gd(1)-N(10)	89.82(6)
O(1)-Gd(1)-O(2)	68.51(9)	O(4)-Gd(1)-N(10)	148.80(10)
O(1)#1-Gd(1)-O(2)	131.93(8)	O(1W)-Gd(1)-N(10)	70.05(11)
O(4)-Gd(1)-O(2)	73.64(8)	O(2)#1-Gd(1)-N(10)	130.71(8)
O(1W)-Gd(1)-O(2)	73.81(9)	O(2)-Gd(1)-N(10)	130.71(7)
O(2)#1-Gd(1)-O(2)	65.19(11)	O(11)-Gd(1)-N(10)	25.04(5)
O(3)-Gd(1)-O(11)	75.94(10)	O(11)#1-Gd(1)-N(10)	25.04(5)
O(1)-Gd(1)-O(11)	113.40(8)		

Table S2. Main geometric parameters for Gd

^{#1} x,-y+1/2,z

Figure S1. Powder XRD patterns for ZnGd (red) and [ZnDy(HL)(NO₃)(OAc)(MeOH)](NO₃)·1.25MeOH·0.25H₂O (blue) [ref 15 in the text]

Figure S2. IR spectra for ZnGd and [ZnDy(HL)(NO₃)(OAc)(MeOH)](NO₃)·1.25MeOH·0.25H₂O [15]

Figure S3. Ellipsoid diagram for a second [Zn₂Gd(L)(OH)(H₂O)₅]³⁺ moiety present in (**Zn₂Gd**). This unit can be considered as unit 2, so all the atoms contain a 2 as first figure in the numbering scheme. It also corresponds to the (*S*,*S*,*S*) enantiomer

Atoms	Distance (Å)	Atoms	Distance (Å)
Gd1-O101	2.374(9)	Gd2-O201	2.357(8)
Gd1-O102	2.386(9)	Gd2-O202	2.364(8)
Gd1-O11W	2.445(8)	Gd2-O21W	2.475(8)
Gd1-O12W	2.432(9)	Gd2-O22W	2.356(9)
Gd1-O13W	2.387(9)	Gd2-O23W	2.390(8)
Gd1-O14W	2.412(9)	Gd2-O24W	2.438(8)
Gd1-O1H	2.452(10)	Gd2-O2H	2.426(8)
Gd1-O104	2.587(11)	Gd2-O204	2.653(6)
Gd1-O105	2.721(9)	Gd2-O205	2.656(8)
Zn11-O101	1.967(12)	Zn21-O201	2.037(8)
Zn11-N101	1.996(12)	Zn21-N201	2.010(10)
Zn11-O1H	2.050(9)	Zn21-O2H	2.002(8)
Zn11-O10W	2.144(9)	Zn21-O20W	2.322(8)
Zn11-N103	2.219(14)	Zn21-N203	2.181(10)
Zn11-O103	2.224(9)	Zn21-O203	2.182(8)
Zn12-O1H	1.979(10)	Zn22-O2H	1.971(8)
Zn12-N102	2.006(12)	Zn22-N202	2.011(10)
Zn12-O102	2.051(10)	Zn22-O202	2.037(8)
Zn12-O103	2.057(9)	Zn22-O203	2.052(8)
Zn12-N104	2.238(13)	Zn22-N204	2.196(10)
Gd1…Zn11	3.4921(19)	Gd2…Zn21	3.4486(16)
Gd1…Zn12	3.460(2)	Gd2…Zn22	3.4358(17)
Zn11…Zn12	2.987(2)	Zn21…Zn22	2.972(2)
Atoms	Angle (°)	Atoms	Angle (°)
O102-Gd1-O105	60.2(3)	O202-Gd2-O205	60.(3)
O14W-Gd1-O11W	142.7(3)	O24W-Gd2-O21W	143.6(3)
O102-Gd1-O104	142.3(3)	O202-Gd2-O204	145.1(3)
N101-Zn11-O1H	174.3(5)	N201-Zn21-O2H	174.0(4)
O101-Zn11-N103	170.1(4)	O201-Zn21-N203	172.7(3)
O10W-Zn11-O103	166.2(4)	O20W-Zn21-O203	167.5(3)
O102-Zn12-N104	169.3(4)	O202-Zn22-N204	172.0(3)
O1H-Zn12-N102	146.1(4)	O2H-Zn22-N202	145.9(4)

 Table S3. Main geometric parameters for Zn2Gd

Table S4. Continuous Shape measures calculations for Gd and Zn ₂ Gd							
Geometries	for coc	rdination number 9					
MFF-9	13 Cs	Muffin					
HH-9	12 C2v	Hula-hoop					
JTDIC-9	11 C3v	Tridiminished icosahedron J63					
TCTPR-9	10 D3h	Spherical tricapped trigonal prism					
JTCTPR-9	9 D3h	Tricapped trigonal prism J51					
CSAPR-9	8 C4v	Spherical capped square antiprism					
JCSAPR-9	7 C4v	Capped square antiprism J10					
CCU-9	6 C4v	Spherical-relaxed capped cube					
JCCU-9	5 C4v	Capped cube J8					
JTC-9	4 C3v	Johnson triangular cupola J3					
HBPY-9	3 D7h	Heptagonal bipyramid					
OPY-9	2 C8v	Octagonal pyramid					
EP-9	1 D9h	Enneagon					

Gd

Structure	e [ML9]	MFF-9	HH-9	JTDIC-9	TCTPR-9	JTCTPR-9	CSAPR-9	JCSAPR-9
		2.284,	6.730,	13.437,	3.582,	5.478,	3.25	51, 4.507
CCU-9	JCCU-9	JTC-9	HBPY-9	OPY-9	EP-9			
7.751,	9.109,	14.575	5, 14.71	.8, 22.4	52, 32.92	29		
Zn₂Gd								
Unit 1								
Structure	e [ML9]	MFF-9	HH-9	JTDIC-9	TCTPR-9	JTCTPR-9	CSAPR-9	JCSAPR-9
		1.130,	8.455,	12.429,	2.055	4.655,	1.480,	2.994,
CCU-9	JCCU-9	JTC-9	HBPY-9	OPY-9	EP-9			
9.048,	10.545,	14.827	17.452,	21.197,	34.494			
Unit 2								
Structure	e [ML9]	MFF-9	HH-9	JTDIC-9	TCTPR-9	JTCTPR-9	CSAPR-9	JCSAPR-9
		1.387,	8.884,	13.105,	1.959,	4.798,	1.564,	3.005,
CCU-9	JCCU-9	JTC-9	HBPY-9	OPY-9	EP-9			
9.146	10.706,	15.472,	18.570,	20.177,	33.896			

Figure S4. Coordination polyhedra for the Gd^{III} centre present in unit 2 of **Zn₂Gd** (left) and the Ho^{III} corresponding to **Zn₂Ho** (right).

Table S5. H bonds found for Zn₂Gd

D-H…A	d(D-	H) d(H…A)) d(D…A)	<(DHA)	D-H…A	d(D-H)	d(H…A)	d(D…A)	D-H…A
O(1H)-H(1H)···O(50)	1.00	2.16	3.138(14)	166.1	O(2H)-H(2H)···O(1W)	1.00	1.89	2.828(12)	154.9
O(10W)-H(1W1)…O20W#1	0.89	1.81	2.650(14)	156.6	O(20W)-H(2W1)…O(2H)	0.88	2.60	3.031(11)	111.2
O(10W)-H(1W2)…O(52)	0.90	1.97	2.872(15)	173.8	O(20W)-H(2W1)…O(1W)	0.88	1.94	2.766(13)	157.0
O(11W)-H(1W3)…O(103)	0.99	2.28	2.976(14)	126.1	O(20W)-H(2W2)…O30#8	0.96	1.73	2.691(18)	176.6
O(11W)-H(1W3)…O(106)	0.99	1.97	2.915(12)	157.6	O(21W)-H(2W3)…O(203)	0.85	2.63	3.123(12)	118.2
O(11W)-H(1W4)…O(60)	0.90	1.91	2.787(13)	164.1	O(21W)-H(2W3)…O(206)	0.85	2.17	3.022(12)	174.4
O(12W)-H(1W5)…O(14W)	0.98	2.26	2.850(15)	117.4	O(21W)-H(2W4)…O(62)	0.91	1.93	2.821(13)	169.8
O(12W)-H(1W5)…O51#2	0.98	1.97	2.782(13)	139.2	O(22W)-H(2W5)…O(11)	0.94	1.87	2.768(13)	159.1
O(12W)-H(1W6)…O(41)	0.89	1.92	2.752(14)	155.1	O(22W)-H(2W6)…O(2W)	0.85	1.91	2.706(13)	154.3
O(13W)-H(1W7)…O(40)	0.98	1.82	2.769(14)	162.6	O(23W)-H(2W7)····O30#8	1.01	2.56	3.465(15)	148.7
O(13W)-H(1W8)…O(30)	1.03	1.69	2.686(16)	162.6	O(23W)-H(2W7)…O31#8	1.01	1.95	2.569(16)	116.4
O(14W)-H(1W9)…O50#2	0.87	1.98	2.817(13)	161.1	O(23W)-H(2W8)…O(24W)	0.99	2.45	2.970(12)	112.2
O(14W)-H(1W9)…O50#2	0.87	1.98	2.817(13)	161.1	O(23W)-H(2W8)…O22#9	0.99	1.87	2.788(12)	152.0
O(14W)-H(1WA)…O(50)	1.03	2.42	3.356(14)	150.0	O(24W)-H(2W9)…O20#9	1.05	2.52	3.302(13)	130.2
C(104)-H(104)····O22#3	0.95	2.63	3.185(17)	117.6	O(24W)-H(2W9)…O21#9	1.05	2.33	3.382(12)	176.6
C(109)-H(10E)…BR21#4	0.99	3.10	4.001(16)	152.1	O(24W)-H(2WA)…O(10)	1.03	1.89	2.751(13)	139.1
C(109)-H(10F)…O(10W)	0.99	2.53	3.19(2)	124.4	C(207)-H(20A)····BR23#10	0.99	3.02	3.506(12)	111.2
C(109)-H(10F)…O(52)	0.99	2.42	3.386(19)	164.2	C(207)-H(20B)····O52#8	0.99	2.59	3.275(15	126.4
C(110)-H(11A)····O42#2	0.99	2.28	3.170(19)	149.1	C(208)-H(20C)···O10W#8	0.99	2.64	3.587(16)	159.6
C(111)-H(11D)····O51#5	0.99	2.60	3.56(2)	162.6	C(208)-H(20C)···O10W#8	0.99	2.64	3.587(16)	159.6
C(112)-H(11E)…BR23	0.99	2.88	3.713(17)	142.2	C(209)-H(20E)…BR21#11	0.99	2.92	3.890(14)	167.5
C(112)-H(11F)…BR21#6	0.99	3.01	3.629(15)	121.5	C(209)-H(20F)…O(20W)	0.99	2.63	3.352(16)	129.9
C(112)-H(11F)…BR21#6	0.99	3.01	3.629(15)	121.5	C(209)-H(20F)…O(1W)	0.99	2.66	3.570(17)	153.0
C(127)-H(12B)…O(12W)	0.98	2.55	3.09(2)	114.9	C(210)-H(21A)····O21\$#11	0.99	2.52	3.425(16)	151.4
C(127)-H(12C)···O(3Wa)	0.98	2.55	3.48(4)	159.0	C(212)-H(21E)····O20#11	0.99	2.47	3.384(16)	153.4
C(128)-H(12E)…BR13#7	0.98	3.11	3.861(16)	134.2	C(212)-H(21F)…BR13	0.99	2.97	3.574(13)	120.3
C(129)-H(12G)…O(21W)	0.98	2.64	3.455(16)	140.8	C(212)-H(21F)…O61#11	0.99	2.53	3.453(17)	154.8
C(2S)-H(2S2)····O(60)	0.98	2.48	3.309(18)	142.2	C(213)-H(213)…BR11#12	0.95	2.98	3.661(12)	129.6
C(2S)-H(2S2)···O(62)	0.98	2.60	3.55(2)	164.5	C(220)-H(220)…N1S#11	1.00	2.55	3.536(19)	167.1
C(4S)-H(4S1)…O61#3	0.98	2.57	3.51(4)	161.0	C(227)-H(22B)…O(22W)	0.98	2.45	3.071(15)	121.2

O(1W)-H(1WC)…O10#13	0.96	1.86	2.734(14)	151.0	C(227)-H(22C)···O11#9	0.98	2.48	3.384(18)	153.6
O(2W)-H(2WF)…BR11#8	0.99	3.08	3.648(9)	117.6	C(228)-H(22D)…O(11)	0.98	2.66	3.401(17)	132.7
O(3W)-H(3W1)…O(32)	0.98	1.76	2.73(4)	173.8	C(229)-H(22H)···O(60)	0.98	2.38	3.362(18)	177.0
O(3W)-H(3W2)…N(2S)	0.88	2.49	3.30(4)	153.5	C(229)-H(22I)…BR12#6	0.98	3.07	3.854(13)	137.7

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z ; #2 -x+1,- y+1, -z+1; #3 x+1, y+1, z; #4 -x+2, -y+1, -z; #5 -x+1, -y, -z #6 x-1, y, z; #7 x, y-1, z; #8 -x+1, -y, -z+1; #9 -x+2, -y, -z; #10 x+1, y, z; #11 -x+2, -y+1, -z+1; #12 -x+2, -y, -z+1; #13 -x+2, -y, -z+1

Figure S5. Sticks view of the asymmetric unit of Zn₂Gd showing the multiple H-bonds between cations, anions and occluded solvent molecules.

Figure S6. Space-filled views of a portion of one of the 2D-H-bonded layers formed by ${\sf Zn}_2Gd$