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Abstract: In this work, a modified version of the cut and projection approach is proposed to describe
the structure of graphene bilayers with twist angles. With this method, the rotation between two
graphene layers is viewed as a rotation of the projection space and the resulting projected structure is
interpreted as the set of points of best fit between the two rotated structures. Additionally, focus is
given to the pertinence of the many algebraic and geometric tools used in grain boundaries and in
quasicrystals to graphene bilayer system (or any other bilayer system, for that matter) case.

Keywords: graphene bilayers; twist grain boundaries; coincidence site lattices; quasicrystals; cut and
projection method

1. Introduction

During the last years, the possibility of tailoring heterostructures by piling up several
two-dimensional materials has become a reality [1,2]. Such structures are not only important for
technological applications [1] but also serve as a playground to observe new and exotic phases of
matter [3,4]. Among such phases, we can cite the observation of the Hofstadter butterfly fractal
spectrum and its associated topological states. Such experiment was made by using a moiré pattern of
graphene over graphene [5]. More recently, a phase-diagram akin to those seen in complex high-Tc

superconductor materials has been observed in graphene over twisted graphene at certain magical
rotation angles [6]. Moreover, recent advances in controlling the rotation angle of graphene over
graphene [7] allows using it as an effective knob for tuning their electronic properties [8]. Although
these results are not fully understood at the moment, recent theoretical advances are based either on
Hubbard Hamiltonians [9] or Dirac Hamiltonians with an emergent effective potential for electrons [10].
In any case, there are many open questions concerning the electronic and optical properties of 2D
heterostructures which require adequate tools to describe their structure [3,11].

A typical example of the involved complexity is the actual determination of the lattice parameter
of the moiré superlattice. For example, in graphene on Ir(1 1 1), obtained via a pyrolytic cleavage of
ethylene [12,13], there is a slight lattice mismatch between the graphene and Ir(1 1 1) lattices, resulting
in a moiré pattern with a repeat distance of 2.53 nm [12]. However, refinements indicated that this was
just an excellent approximation, since the actual structure comprises three beatings instead of two [14].

Moreover, until recently most work has dealt with the commensurate case, that is, when two
layers form a supercell, what in materials science is known as a coincidence site lattice. Consider that
one of the layers L1 is hexagonal and spanned by {a1, a2} and the other L2 by {a3, a4} and L2 can be
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obtained from L1 by means of a rotation through an angle θ. Then, a discrete coincidence site lattice,
L1 ∩ L2, exists only when θ satisfies,

cos θ =
n2 + 4mn + m2

2(n2 + mn + m2)
(1)

for integers m and n. In the materials science and crystallographic literature, an equivalent condition,

tan(θ/2) =
| m− n |√
3(m + n)

=

√
3 | m− n |
3(m + n)

=
√

3
p
q

,

is used, where p and q are integers [15]. Both can be derived using the methods described first by
Ranganathan [16], however the latter form involving half angles is in better agreement with the
spinorial (Rodrigues vector, quaternions, and Cayley–Klein parameters) character of the rotation
involved [15,17].

Researchers in the 2D matter community field frequently refer to moiré patterns, but no one
has recalled that moiré patterns in (periodic or not) structures are related to Bollmann’s O-lattice
concept [18]. Here, we describe this tool. In fact, the need for such tools is becoming evident as, for
example, very recently it has been claimed that there is an incommensurate heterostructure analog to
a quasicrystal [11], obtained by growing a quasicrystalline 30◦ twisted bilayer graphene (30◦-tBLG),
stabilized by a Pt(111) substrate [11]. Beside this experiment, the 30◦ quasicrystalline twisted bilayer
graphene was simultaneously discovered by Ahn, Sung Joon, et al. [19]. There are now available
some theoretical works to model such system [20,21]. The observed quasiperiodic order is predicted to
exhibit quantum oscillations associated to exotic spiral Fermi surfaces [22].

The aim of this paper is twofold: first, to clarify and present the tools necessary to describe
such kind of heterostructures and, second, to develop a cut and projection approach to obtain the
best fit lattice between two rotated graphene structures. One can claim that no such concepts are
needed as a moiré pattern seems to be just a superposition of two lattices. However, the superposition
of the lattices results in a modulation of the graphene sheet as strain needs to be minimized [3,10].
Thus, there is a deformation strain field which modulates the equilibrium position of atoms on each
graphene layer [3]. This follows the spirit of one of the oldest known quasiperiodic Hamiltonians:
the Frenkel–Kontorova model [23]. Moreover, all particles and quasiparticles, such as electrons or
holes, feel an effective potential which is the sum of both deformed and modulated lattices [10].
Such deformation field has a paramount importance to the observed superconductivity at magic
angles [8]. Thus, our approach here is in the spirit of the Frenkel–Kontorova scenario: an effective
two-dimensional model.

The structure of this paper is as follows. In Section 2, we provide some general remarks concerning
the crystallography of graphene, including coincidence lattices and Bollmann’s O-lattice and point out
its presence in the bilayers. The cut and projection method is applied to the generation of bilayers in
Section 3. A discussion and our conclusions are presented in Section 4.

2. General Considerations

In this section, some general tools to describe bilayers are presented, in particular those that have
not yet been used in this field and can be useful. Here, we consider two graphene sheets, one on top of
the other, having the origin in common and rotated through an angle θ. The underlying lattice L1 for
a graphene layer is hexagonal. We take as lattice vectors,

a1 = a

(√
3

2
,−1

2

)
and a2 = a

(√
3

2
,

1
2

)
, (2)
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with respect to an orthonormal basis of R2. Here, a is the lattice parameter for graphene. Other choices
of primitive vectors are possible and have been used in the literature [15]. Notice that here we work
already with only one layer, as our aim is to define an effective 2D lattice, yet the results are easily
extended to bilayers by adding a new coordinate.

The rotated lattice (L2) can be obtained by rotating L1 through an angle θ . The rotation matrix is
given by

Rθ =

[
cos θ − sin θ

sin θ cos θ

]
.

Frequently, we work in terms of the so-called structure matrices, that is, matrices having as columns
the Cartesian components of the primitive lattice vectors. For L1, the structure matrix is

S1 =
a
2

[ √
3
√

3
−1 1

]
,

whereas the structure matrix for L2 is

S2 =
a
2

(
sin θ +

√
3 cos θ

√
3 cos θ − sin θ√

3 sin θ − cos θ cos θ +
√

3 sin θ

)
.

The structure matrix for the reciprocal lattice ( L∗1) is

S∗1 =
1
a

[
1√
3

1√
3

−1 1

]
,

whereas that for L∗2 is

S∗2 =
1
a

( 1√
3

cos θ + sin θ 1√
3

sin θ − cos θ
1√
3

cos θ − sin θ 1√
3

sin θ − cos θ

)
.

2.1. O Points

When two 2D lattices are superimposed, the emergence of the moiré structure can be described
by means of the O-lattice concept developed by Bollmann [18]. The O points are all those points such
that L2 can be obtained from L1 by the same rotation through θ.

The rotation Rθ through an angle θ can be represented as multiplication by the complex number
(of course a full equivalent matrix treatment can be given) Rθ = eiθ , thus Bollmann’s equation for
O-lattice points (O) reads

(
I − R−1

θ

)
O = l1, where l1 ∈ L1. Therefore,

O =
l1(

1− e−iθ
) =

l1

2

[
(1− cos θ − i sin θ)

1− cos θ

]
.

Using some standard trigonometric identities, we get

O =
l1

2

[
1− i

tan(θ/2)

]
,

which, of course, could be re-cast in matrix notation using the fact that multiplication by i is a rotation
by π/2, to obtain

O =

[
I − 1

tan(θ/2)
Rπ/2

]
l1

2
,

where I is the 2× 2 identity matrix.
In Figure 1, we show two graphene layers rotated θ = 13.17◦, a commensurate case where there is

a superlattice. Figure 1 also shows two layer rotated by θ = 30◦, producing a dodecagonal structure.
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In both cases, one can visually detect the O-points as “rosettes”. The O-points form a lattice even in
non-commensurate cases.

θ = 30
o

θ = 13.17
o

Figure 1. Two graphene layers rotated by θ = 13.17◦ and θ = 30◦. O-points are seen as “rosettes”.

2.2. Reciprocity and DSC Lattice

If L1 and L2 are two lattices, in general, L1 ∩ L2 will not be a discrete lattice. If L1 is spanned by
the vectors {a1, a2} and L2 is spanned by {b1, b2}, there will be a discrete lattice if and only if

ai =
2

∑
j=1

Mjibj,

for an invertible rational matrix M (transition matrix). The expressions given in Equation (1), in terms
of m and n, are special cases to be used when the transition matrix is a rotation.

The lattice
L1 + L2 = {a + b | a ∈ L1, b ∈ L2}

is called DSC lattice, or sum lattice, and it is a discrete lattice if and only if L1 ∩ L2 is discrete.
In the latter case, the following duality relationships hold

(L1 ∩ L2)
∗ = L∗1 + L∗2

(L1 + L2)
∗ = L∗1 ∩ L∗2 .

In bilayers, these relations can clarify the relationships between various quantities. The reciprocal
lattice of the superlattice (CSL) consists of sums (and differences) of reciprocal vectors of the two
underlying lattices. Thus far, these concepts have not been used in the literature on graphite bilayers,
even though they appear in most of the literature on grain boundaries. The purpose of this summary
is to turn the attention to these concepts and results that can be of help in the exciting field of graphene
bilayers. It should also be mentioned that a theory of interfaces that uses a modified version of the
projection methods has been developed [24].

In the next section, we adapt the cut and projection method, extensively used in the field of
quasicrystals, to obtain the best fit structure, or an effective structure, produced when two graphene
layers are rotated by a certain angle. In Ref. [17], the problem of two rotated squared lattices was
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worked out by projecting from a four-dimensional lattice. In this work, a further modification of
the method is required since first a honeycomb structure (instead of the hexagonal lattice) must be
obtained by the projection method.

3. Cut and Projection Approach

A powerful tool to describe modulated crystals and quasicrystals is the cut and projection method.
In this section, we adapt this method to describe rotated layers. For the sake of completeness, let us
briefly review such method restricted to quasiperiodic tilings of the plane. Under certain conditions
(see below), a quasiperiodic tiling of the plane generated by linear integer combinations of the vectors
{a1, a2, . . . , aN}, N > 2, can be obtained by projecting points from a N-dimensional hypercubic lattice
ZN ⊂ RN in the following way. Let L = ZN be the hypercubic lattice generated by the standard basis
{e1, e2, . . . , eN} and let ΓN be the unitary hypercube. Let E‖ be a two-dimensional subspace of RN that
does not contain any point of the lattice except the origin. An open strip S = E‖ + ΓN is defined and
the projection onto E‖ of all the points inside S gives a quasiperiodic tiling of the plane.

This projection formalism works provided that there exists a projector P‖ : RN → E‖ such that

P‖(ei) = ai, i = 1, . . . , N. (3)

The existence of P‖ is guaranteed if the set {a1, a2, ..., aN} forms a eutactic star [25,26].
The orthogonal projection of a set of orthogonal vectors in RN onto a two-dimensional space is called
a eutactic star; if the vectors in RN are orthonormal, the projection is called a normalized eutactic star.
In other words, if the set {a1, a2, ..., aN} forms a normalized eutactic star, then there exists a projector
P‖ such that Equation (3) is fulfilled and actually:

P‖i,j = ai · aj. (4)

A necessary and sufficient condition for a star to be eutactic is due to H. Hadwiger [27]: a star
{a1, a2, . . . aN} in Rn is a normalized eutactic if and only if

N

∑
i=1

(x · ai) ai = x,

is fulfilled for all x ∈ Rn.
A more practical form of the eutacticity criterion is obtained if the structure matrix S is introduced.

In this case, S is the matrix whose columns are the components of the vectors {a1, a2, . . . , aN}, with
respect to a given fixed orthonormal basis of Rn. The matrix form of Hadwiger’s theorem sates that
the star represented by S is normalized eutactic if and only if

SST = I, (5)

where I is the n× n unit matrix.
To summarize, a quasiperiodic tiling of the plane generated by linear integer combinations of

the vectors {a1, a2, ..., aN}, N > 2, can be obtained by cut and projection from ZN ⊂ RN if the set of
vectors form a normalized eutactic star.
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To adapt the cut and projection method to the case of graphene bilayers, consider first the case of
two lattices in the plane, L1 and L2, rotated in between by a given angle θ. Let L1 and L2 be generated
by {a1, a3, a5} and {a2, a4, a6}, respectively, and given by:

a1 = {c,−s},
a2 = {c, s},

a3 =

{√
3

2
s− 1

2
c,

√
3

2
c +

1
2

s

}
,

a4 =

{
−1

2
c−
√

3
2

s,

√
3

2
c− 1

2
s

}
, (6)

a5 =

{
−1

2
c−
√

3
2

s,
1
2

s−
√

3
2

c

}
,

a6 =

{√
3

2
s− 1

2
c,−
√

3
2

c− 1
2

s

}
,

where c = cos(φ)/
√

3 and s = sin(φ)/
√

3.
As shown in Figure 2, if φ = 0, both vector sets collapse and three vectors pointing to the vertices

of a triangle are obtained. If φ = 15◦, six vectors pointing to six vectors of a dodecagon are obtained
instead. Consequently, with linear integer combinations of the vectors in Equation (6), two hexagonal
lattices rotated by θ = 2φ can be generated.

a
2

a
1

a
3

a
4

a
5

a
6

φ

Figure 2. Plot of the star vectors in Equation (6).

With the vectors in Equation (6), the structure matrix is built as:

S = [a1|a2| · · · |a6],

and it turns out that SST = I, that is, the star {a1, a2, . . . , a6} is eutactic for every value of θ.
Notice that the vectors in Equation (6) depend on φ hence, according to Equation (4), the projector

P‖ also depends on φ. As the column space of P‖ is E‖, then varying φ is the same as projecting onto
a rotating E‖ space and this, in turn, can be interpreted as the rotation of the two lattices L1 and L2

in between by θ = 2φ. The cut and projection method under this situation can be interpreted as
discussed in what follows.

As described in Ref. [17], for the case of square lattices, two rotated lattices can be viewed as
a twin grain boundary and the GCSN (generalized coincidences sites networks) or good fit lattice can
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be obtained by means of the cut and projection method, using a tube instead of the standard strip.
In the case of two hexagonal lattices , we should project from a six-dimensional hypercubic lattice
equipped with the standard basis {e1, e2, e3, e4, e5, e6}. The projection matrix P‖ has the property in
Equation (3) and its entries are given by Equation (4), where the vectors of the star are Equation (6).

The main idea behind the approach in Ref. [17] is that, given two lattices rotated in between,
a coincidence site lattice can be generated or not, depending on the rotation angle. Then, a generalization
of the coincide lattice is proposed that consists in a geometrical array of points of good fit, defined
through the concept of neighbors. We say that two lattice points l1 ∈ L1 and l2 ∈ L2 are neighbors if and
only if

l1, l2 ∈ Λ1(l1) ∩Λ2(l2), (7)

where Λi(li) is the Voronoi polygon of the point li (i = 1, 2). The generalized model postulates that the
best fit structure is a set G of points given by [17]:{

l1 + l2

2
| l1, l2 ∈ Λ1(l1) ∩Λ2(l2)

}
. (8)

That is, if two points l1 ∈ L1 and l2 ∈ L2 are neighbors, a point of good fit is located at the middle
between l1 and l1.

It should be stressed that, in our case, the hexagonal lattice and the honeycomb are dual to
each other, that is the Voronoi tesselation of the honeycomb is the hexagonal lattice and vice versa.
In Figure 3, two honeycomb structures rotated 7.47◦ in between are shown with black and green points,
respectively; the Voronoi tessellation associated to each lattice is also displayed in green and black lines.
According to the procedure described above, we should look for neighbouring points, that is, where
two points (one black and the other green) are both contained in the intersection of their respective
Voronoi polyhedra. Neighbors points are then replaced by a point of good fit located at the middle.

In Ref. [17], it was shown that, given two lattices L1 and L2 rotated in between, the good fit lattice
can be obtained by means of the cut and projection method, using a tube instead of the standard strip.
Here, we adopt this approach but the way to determine the radius of the tube should be modified since
the standard procedure will produce the best fit lattice associated to two rotated hexagonal lattices
instead of two rotated honeycombs. As we shown below, the radius of the tube can be determined in
order to obtain a honeycomb when φ = 0, instead of the hexagonal lattice.

Consider the case of φ = 0 in Equation (6), that is, the hexagonal lattice. In this case, a1 = a2,
a3 = a4 and a5 = a6. The hexagonal lattice can be generated (in a redundant way) using, for instance,
{a1, a3, a5} or {a2, a4, a6}:

r = ∑
n1,n3,n5

n1a1 + n3a3 + n5a5. (9)

By considering the vectors δ1 = (a1 − a5) /3, δ2 = (a3 − a1) /3 and δ3 = (a5 − a3) /3,
the honeycomb is generated as:

r =
1

∑
l=0

∑
n1,n3,n5

n1a1 + n3a3 + n5a5 + lδj, (10)

where j = 1, 2 or 3. That is, the honeycomb is formed by an hexagonal lattice and a shifted copy
of itself.
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Figure 3. Two honeycomb structures rotated 7.47◦ in between are shown with black and green points,
respectively; the Voronoi tessellation associated to each lattice is also displayed in green and black lines.

The space E|| is the row space of P||, for φ = 0, which turns out to be:

E|| = Span {(1, 1, 0, 0,−1,−1), (0, 0, 1, 1,−1,−1)} , (11)

and the distance d of any lattice point N = (n1, . . . , n6) to E|| is given by:

9d2 = 2(n2
1 − n1n2 + n2

2) + 2(n2
3 − n3n4 + n2

4) + 2(n2
5 − n5n6 + n2

6) +

n1(n3 + n4 + n5 + n6) + n2(n3 + n4 + n5 + n6) +

n3(n5 + n6) + n4(n5 + n6). (12)

From this equation, we can verify that the vectors (1, 1,−1,−1, 0, 0), (−1,−1, 0, 0, 1, 1),
(−1,−1, 1, 1, 0, 0), and (0, 0,−1−, 1, 1, 1) belong to E|| (thus d = 0), which together with the vectors
in Equation (11) form a central hexagon (large disks in Figure 4). The distance from the vertices
to the incenter of this hexagon is 2, which is 2

√
3 larger than the hexagon generated by the

standard basis vectors of R6 that are project onto Equation (6) and shown with small disks in
Figure 4. Therefore, linear integer combinations of the vectors (1, 1,−1,−1, 0, 0), (−1,−1, 0, 0, 1, 1),
(−1,−1, 1, 1, 0, 0), (0, 0,−1,−1, 1, 1), (1, 1, 0, 0,−1,−1), and (0, 0, 1, 1,−1,−1) generate the first
hexagonal lattice, say A, which lie in E||, that is, the distance d of all its points is 0. Now, we now
should obtain a second hexagonal lattice B, displaced by a vector ∆ (dashed arrow in Figure 4). As in
the case of δj in Equation (10), the magnitude of ∆ is obtained as

‖∆‖ =
∥∥∥P‖ ((1, 1, 0, 0,−1,−1)− (0, 0,−1,−1, 1, 1))

∥∥∥ /3 = 2/
√

3,
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and it can be verified that ∆ is obtained by the projection of (0, 0, 0,−1,−1) onto E||; actually, two other
displacement vectors can be obtained by the projection of either (−1,−1, 0, 0, 0, 0) or (0, 0,−1,−1, 0, 0).
Any of these vectors are at a distance

√
2/3 ≈ 0.816 from E‖, thus it seems that accepting points

N such that ‖N‖ ≤
√

2/3 will produce the required A and B lattices. This is not the case, however;
since the size of the vectors ‖ai‖ in Equation (6) is 1/

√
3 ≈ 0.57, the projection method will include

the basis vectors of Rn, which project onto an small hexagonal lattice, as shown with small disks
in Figure 4. These points can be excluded by a translation of E‖ along the (−1,−1,−1,−1,−1,−1)
direction. Thus, for instance with a translation by (−ε,−ε,−ε,−ε,−ε,−ε), the basis vectors have
distances to E|| given by d1 =

√
2/3 + 2ε + 6ε2 while vectors such as (−1,−1, 0, 0, 0, 0) have distances

to E|| given by d2 =
√

2/3− 4ε + 6ε2. Consequently, by translating E|| by (−ε,−ε,−ε,−ε,−ε,−ε) and
accepting points such that ‖N‖ ≤

√
2/3− 4ε + 6ε2 will produce the required bipartite lattice.

(0,0,1,1,-1,-1)

(1,1,0,0,-1,-1)

(1,1,-1,-1,0,0)

(0,0,-1,-1,1,1)

(-1,-1,0,0,1,1)

(-1,-1,1,1,0,0)

δ1

Δ

(0,0,0,0,-1,-1)

Figure 4. Description of the procedure to obtain a honeycomb by projection (details in the main text).
The six vertices of the small hexagon, with small disks, are the projection of the standard basis of Rn.

The utility of this approach is that, once the honeycomb lattices are obtained by projection,
the space E|| can be rotated and the projected structure is transformed from periodic (honeycomb) to
quasiperiodic with dodecagonal symmetry.

Some projection structures obtained when E|| is rotated are now shown. Consider a translation
of E|| by ε = 0.5; in this case, we get d1 = 1.779 and d2 = 0.4082. In Figures 5 and 6, we show
projected structures obtained using a tube with radius 0.55 (< d1). The honeycomb for the case θ = 0
and a dodecagonal quasiperiodic structure when θ = 30◦ (φ = 15◦) are shown in Figure 5, and
two structures corresponding to θ = 1.08◦ (the golden angle) and θ = 13.17◦ are shown in Figure 6
(compare with Figure 1).
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θ = 0 θ = 30
o

Figure 5. Projected structures (good fit lattices) obtained for θ = 0 and for two honeycombs rotated
θ = 30◦ in between.

θ =13. 17
o

θ = 1.08
o

Figure 6. Projected structures obtained for θ = 1.08◦ (golden angle) and for θ = 13.17◦.

4. Discussion and Conclusions

As shown in Figures 5 and 6, many types of lattices can be obtained and described by this
approach. These coincidence patterns have paramount importance for the electronic properties. It has
been experimentally observed that maximal coincidence regions represent maximal electron density
probability regions [8,28]. Coincidence regions are where the flat bands, responsible for the strong
electron–electron interaction, predominately localize[8]. As anticipated in the Introduction, strain
and disorder play important roles in observing correlated states [8]. Despite this, our approach
allows identifying coincidence points in a general scheme and therefore is very well suited to describe
and produce effective renormalized Hamiltonians [10,29]. Moreover, the Fourier transform of
structures obtained from the cut and projection method are given by the convolution of the window
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function with the higher-dimensional space reciprocal lattice. Thus, our method suggests a way
to describe wavefunctions, Van Hove singularities, and band conductances, as has been made for
topological phases in the Quantum Hall effect [30,31]. In particular, it is tempting to work on the
known relationship between electron wavefunctions in twisted graphene bilayers and the Quantum
Hall effect [10], as, for this effect, it has been proved that topological phases are naturally described by
the cut and projection method applied to the magnetic superlattice [31]. The effects of phason disorder
are also open questions [32], as well as the relationship with flat bands in the Penrose lattice [33],
random binary alloys [34] and impurity doped graphene [35].

To produce effective Hamiltonians, care must be taken as hybridization alters the electronic band
structure, especially when twisted by a small angle. As the p-orbital of the graphene is not spherical
but very anisotropic, the hopping is not a simple function of the distance between the two atoms.
However, early models relied in a tight-binding Hamiltonian approach with a hopping parameter t(R)
between layers which depends upon the distance

√
R2 + h2, where R is the carbon–carbon distance

in the horizontal direction of the layers and z is the distance between layers [36]. As z is a constant
and R < z, the hopping is determined by the ratio z/R. For graphene over graphene, the order of
magnitude is such that z/R < 1/2. Some models are available in the literature where effective 2D
potentials are identified with with some kinds of coincidences defining an effective superlattice [9].

In conclusion, we provide an approach to describe graphene bilayers using a method originally
designed to treat quasicrystals: cut and projection. To achieve this goal, we first observed that twisted
heterostructures can be viewed as twin grain boundaries. Then, the cut and projection method is used
to generate the coincidence lattice or a best fit lattice. We show that the resulting window function is
a tube. Our approach may be useful to describe the electronic properties of twisted graphene over
graphene, in which it is known that site coincidences play a fundamental role in the complex quantum
phase diagram [10].

Author Contributions: Conceptualization, J.L.A., G.G.N. and A.G.-R.; Formal analysis, J.L.A., G.G.N. and A.G.-R.;
Funding acquisition, J.L.A. and G.G.N.; Investigation, J.L.A., G.G.N. and A.G.-R.; Writing—original draft, J.L.A.,
G.G.N. and A.G.-R.; and Writing—review and editing, J.L.A., G.G.N. and A.G.-R.

Funding: This research was funded by CONACYT grant number A1-S-8317 and DGAPA-UNAM grant number
IN-102717.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Charalampos, A.; Kaihao, Z.; Matthew, R.; Sameh, T. Tailoring the mechanical properties of 2D materials
and heterostructures. 2D Mater. 2018, 5, 032005. doi:10.1088/2053-1583/aac764. [CrossRef]

2. Qiao, J.B.; Yin, L.J.; He, L. Twisted graphene bilayer around the first magic angle engineered by heterostrain.
Phys. Rev. B 2018, 98, 235402. doi:10.1103/PhysRevB.98.235402. [CrossRef]

3. Naumis, G.G.; Barraza-López, S.; Oliva-Leyva, M.; Terrones, H. Electronic and optical properties of
strained graphene and other strained 2D materials: A review. Rep. Prog. Phys. 2017, 80, 096501.
doi:10.1088/1361-6633/aa74ef. [CrossRef] [PubMed]

4. Lee, G.H.; Lee, H.J. Proximity coupling in superconductor-graphene heterostructures. Rep. Prog. Phys. 2018,
81, 056502. doi:10.1088/1361-6633/aaafe1. [CrossRef] [PubMed]

5. Dean, C.R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.;
Koshino, M.; et al. Hofstadter s butterfly and the fractal quantum Hall effect in moire superlattices. Nature
2013, 497, 598. doi:10.1038/nature12186. [CrossRef]

6. Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional
superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43. doi:10.1038/nature26160.
[CrossRef] [PubMed]

http://dx.doi.org/10.1088/2053-1583/aac764
http://dx.doi.org/10.1103/PhysRevB.98.235402
http://dx.doi.org/10.1088/1361-6633/aa74ef
http://www.ncbi.nlm.nih.gov/pubmed/28540862
http://dx.doi.org/10.1088/1361-6633/aaafe1
http://www.ncbi.nlm.nih.gov/pubmed/29451135
http://dx.doi.org/10.1038/nature12186
http://dx.doi.org/10.1038/nature26160
http://www.ncbi.nlm.nih.gov/pubmed/29512651


Crystals 2019, 9, 519 12 of 13

7. Kim, K.; DaSilva, A.; Huang, S.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B.J.;
MacDonald, A.H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer
graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369. doi:10.1073/pnas.1620140114. [CrossRef]
[PubMed]

8. Choi, Y.; Kemmer, J.; Peng, Y.; Thomson, A.; Arora, H.; Polski, R.; Zhang, Y.; Ren, H.; Alicea, J.;
Refael, G.; et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys.
2019. doi:10.1038/s41567-019-0606-5. [CrossRef]

9. Yuan, N.F.Q.; Fu, L. Model for the metal-insulator transition in graphene superlattices and beyond. Phys.
Rev. B 2018, 98, 045103. doi:10.1103/PhysRevB.98.045103. [CrossRef]

10. Tarnopolsky, G.; Kruchkov, A.J.; Vishwanath, A. Origin of Magic Angles in Twisted Bilayer Graphene. Phys.
Rev. Lett. 2019, 122, 106405. doi:10.1103/PhysRevLett.122.106405. [CrossRef]

11. Yao, W.; Wang, E.; Bao, C.; Zhang, Y.; Zhang, K.; Bao, K.; Chan, C.K.; Chen, C.; Avila, J.; Asensio, M.C.; et al.
Quasicrystalline 30◦ twisted bilayer graphene as an incommensurate superlattice with strong interlayer
coupling. Proc. Natl. Acad. Sci. USA 2018, 115, 6928–6933. doi:10.1073/pnas.1720865115. [CrossRef]
[PubMed]

12. Coraux, J.; N’Diaye, A.T.; Busse, C.; Michely, T. Structural Coherency of Graphene on Ir(111). Nano Lett.
2008, 8, 565–570. PMID: 18189442, doi:10.1021/nl0728874. [CrossRef] [PubMed]

13. Hattab, H.; N’Diaye, A.T.; Wall, D.; Klein, C.; Jnawali, G.; Coraux, J.; Busse, C.; van Gastel, R.; Poelsema, B.;
Michely, T.; et al. Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium. Nano Lett.
2012, 12, 678–682. doi:10.1021/nl203530t. [CrossRef] [PubMed]

14. Magaud, L.; Le Quang, T.; Guisset, V.; David, P.; Chapelier, C.; Coraux, J. Universal classification of twisted,
strained and sheared graphene moire superlattices. Sci. Rep. 2008, 6, 565–570. doi:10.1038/srep25670.
[CrossRef]

15. Rodríguez-Andrade, M.A.; Aragón-González, G.; Aragón, J.L.; Gómez-Rodríguez, A.; Romeu, D. The
Coincidence Site Lattices in 2D Hexagonal Lattices Using Clifford Algebra. Adv. Appl. Clifford Algebr. 2015,
25, 425–440. [CrossRef]

16. Ranganathan, S. On the geometry of coincidence-site lattices. Acta Crystallogr. 1966, 21, 197–199.
doi:10.1107/S0365110X66002615. [CrossRef]

17. Aragon, J.L.; Romeu, D.; Beltran, L.; Gomez, A. Grain Boundaries as Projections from Higher-Dimensional
Lattices. Acta Crystallogr. Sect. 1997, 53, 772. doi:10.1107/S010876739700737X. [CrossRef]

18. Bollmann, W. Crystal Defects and Crystalline Interfaces; Springer: Berlin/Heidelberg, Germany, 1970.
19. Ahn, S.J.; Moon, P.; Kim, T.H.; Kim, H.W.; Shin, H.C.; Kim, E.H.; Cha, H.W.; Kahng, S.J.; Kim, P.;

Koshino, M.; et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 2018, 361, 782–786.
doi:10.1126/science.aar8412. [CrossRef]

20. Moon, P.; Koshino, M.; Son, Y.W. Quasicrystalline electronic states in 30◦ rotated twisted bilayer graphene.
Phys. Rev. B 2019, 99, 165430. doi:10.1103/PhysRevB.99.165430. [CrossRef]

21. Park, M.J.; Kim, H.S.; Lee, S. Emergent localization in dodecagonal bilayer quasicrystals. Phys. Rev. B 2019,
99, 245401. doi:10.1103/PhysRevB.99.245401. [CrossRef]

22. Spurrier, S.; Cooper, N.R. Theory of quantum oscillations in quasicrystals: Quantizing spiral Fermi surfaces.
Phys. Rev. B 2019, 100, 081405. doi:10.1103/PhysRevB.100.081405. [CrossRef]

23. Braun, O.; Kivshar, Y. The Frenkel-Kontorova Model: Concepts, Methods, and Applications; Theoretical and
Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2013.

24. Romeu, D. Interfaces and quasicrystals as competing crystal lattices: Towards a crystallographic theory of
interfaces. Phys. Rev. B 2003, 67, 024202. doi:10.1103/PhysRevB.67.024202. [CrossRef]

25. Coxeter, H.S.M. Regular Polytopes; Dover: New York, NY, USA, 1973.
26. Gómez, A.; Aragón, J.L.; Dávila, F. Quasicrystals that project from non-isometric lattices: A generalization of

a theorem by Hadwiger. J. Phys. Math. Gen. 1991, 24, 493–500. [CrossRef]
27. Hadwiger, H. Hüber ausgezeichnete vektorsterne und reguläre polytope. Coment. Math. Helv. 1940,

13, 90–108. [CrossRef]
28. Tomarken, S.L.; Cao, Y.; Demir, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Ashoori, R.C.

Electronic Compressibility of Magic-Angle Graphene Superlattices. Phys. Rev. Lett. 2019, 123, 046601.
doi:10.1103/PhysRevLett.123.046601. [CrossRef]

http://dx.doi.org/10.1073/pnas.1620140114
http://www.ncbi.nlm.nih.gov/pubmed/28292902
http://dx.doi.org/10.1038/s41567-019-0606-5
http://dx.doi.org/10.1103/PhysRevB.98.045103
http://dx.doi.org/10.1103/PhysRevLett.122.106405
http://dx.doi.org/10.1073/pnas.1720865115
http://www.ncbi.nlm.nih.gov/pubmed/29915054
http://dx.doi.org/10.1021/nl0728874
http://www.ncbi.nlm.nih.gov/pubmed/18189442
http://dx.doi.org/10.1021/nl203530t
http://www.ncbi.nlm.nih.gov/pubmed/22175792
http://dx.doi.org/10.1038/srep25670
http://dx.doi.org/10.1007/s00006-014-0508-7
http://dx.doi.org/10.1107/S0365110X66002615
http://dx.doi.org/10.1107/S010876739700737X
http://dx.doi.org/10.1126/science.aar8412
http://dx.doi.org/10.1103/PhysRevB.99.165430
http://dx.doi.org/10.1103/PhysRevB.99.245401
http://dx.doi.org/10.1103/PhysRevB.100.081405
http://dx.doi.org/10.1103/PhysRevB.67.024202
http://dx.doi.org/10.1088/0305-4470/24/2/021
http://dx.doi.org/10.1007/BF01378055
http://dx.doi.org/10.1103/PhysRevLett.123.046601


Crystals 2019, 9, 519 13 of 13

29. Carr, S.; Fang, S.; Zhu, Z.; Kaxiras, E. Exact continuum model for low-energy electronic states of twisted
bilayer graphene. Phys. Rev. Res. 2019, 1, 013001. doi:10.1103/PhysRevResearch.1.013001. [CrossRef]

30. Naumis, G.G. Use of the trace map for evaluating localization properties. Phys. Rev. B 1999, 59, 11315–11321.
doi:10.1103/PhysRevB.59.11315. [CrossRef]

31. Naumis, G.G. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove
singularities. Phys. Lett. A 2016, 380, 1772–1780. doi:10.1016/j.physleta.2016.03.022. [CrossRef]

32. Naumis, G.G.; Wang, C.; Thorpe, M.F.; Barrio, R.A. Coherency of phason dynamics in Fibonacci chains.
Phys. Rev. B 1999, 59, 14302–14312. doi:10.1103/PhysRevB.59.14302. [CrossRef]

33. Naumis, G.G.; Barrio, R.A.; Wang, C. Effects of frustration and localization of states in the Penrose lattice.
Phys. Rev. B 1994, 50, 9834–9842. doi:10.1103/PhysRevB.50.9834. [CrossRef]

34. Naumis, G.G.; Wang, C.; Barrio, R.A. Frustration effects on the electronic density of states of a random
binary alloy. Phys. Rev. B 2002, 65, 134203. doi:10.1103/PhysRevB.65.134203. [CrossRef]

35. Barrios-Vargas, J.E.; Naumis, G.G. Doped graphene: The interplay between localization and
frustration due to the underlying triangular symmetry. J. Phys. Condens. Matter 2011, 23, 375501.
doi:10.1088/0953-8984/23/37/375501. [CrossRef] [PubMed]

36. Bistritzer, R.; MacDonald, A.H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA
2011, 108, 12233–12237. doi:10.1073/pnas.1108174108. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevResearch.1.013001
http://dx.doi.org/10.1103/PhysRevB.59.11315
http://dx.doi.org/10.1016/j.physleta.2016.03.022
http://dx.doi.org/10.1103/PhysRevB.59.14302
http://dx.doi.org/10.1103/PhysRevB.50.9834
http://dx.doi.org/10.1103/PhysRevB.65.134203
http://dx.doi.org/10.1088/0953-8984/23/37/375501
http://www.ncbi.nlm.nih.gov/pubmed/21878711
http://dx.doi.org/10.1073/pnas.1108174108
http://www.ncbi.nlm.nih.gov/pubmed/21730173
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	General Considerations
	O Points
	Reciprocity and DSC Lattice

	Cut and Projection Approach
	Discussion and Conclusions
	References

