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Abstract: We investigated the mechanical properties of <100>-oriented square cross-sectional silicon
nanowires under tension and compression, with a focus on the effect of side surface orientation.
Two types of silicon nanowires (i.e., nanowires with four {100} side surfaces and those with four
{110} side surfaces) were simulated by molecular dynamics simulations at a temperature of 300 K.
The deformation mechanism exhibited no dependence on the side surface orientation, while the
tensile strength and compressive strength did. Brittle cleavage was observed under tension, whereas
dislocation nucleation was witnessed under compression. Silicon nanowires with {100} side surfaces
had a lower tensile strength but higher compressive strength. The effect of side surface orientation
became stronger as the nanowire width decreased. The obtained results may provide some insight
into the design of silicon-based nano-devices.

Keywords: molecular dynamics simulation; silicon nanowires; side surface orientation effect; tensile
strength; compressive strength

1. Introduction

Silicon nanowires have attracted tremendous interest from worldwide scientific communities
and various industries, because of their extraordinary optical [1], electrical [2], thermoelectric [3],
piezoelectric [4], and mechanical [5] properties. As an essential building block in nanotechnology,
silicon nanowires have been widely applied in nanoelectromechanical systems, such as field effect
transistors, nanoresonators, nanosensors, light-emitting diodes, logic gates, and battery anodes.
In these devices, silicon nanowires are often under extreme loading conditions. For example, in the
fabrication process of a lithium battery, the volume of silicon nanowires can change about 400%
because of the Li insertion [6]; in the silicon-based field effect transistors, silicon nanowires can be
strained more than 12% [7]. Once the applied strain exceeds a critical value, dislocations or cracks
may initiate in silicon nanowires, which can degrade the function of these silicon-based devices.
Therefore, to maintain the reliability of these devices, it is essential to gain a thorough knowledge of
the mechanical properties of silicon nanowires.

When the sizes of materials reduce to the nanoscale, their mechanical properties may become
sensitive to many factors, such as size, shape, surface roughness, native oxide layer, and loading
strain rate. The influence of these factors on the mechanical properties of silicon nanowires has been
intensively studied through experiments and atomistic simulations, and some interesting phenomena
have been observed. For example, the manner in which silicon nanowire fractures may change
from brittle to ductile once its diameter is less than a critical value [5,8,9]; silicon nanowires with a
circular cross-section are stronger than those with a square cross-section under tension, but the reverse
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happens under compression [10]; the native oxide layer can reduce the Young’s modulus of silicon
nanowires [11,12]; the yield strength of silicon nanowires decreases with increasing strain rate and
temperature [13]; the yield mechanism of silicon nanowires under torsional loading changes from
dislocation activities to crystal-to-amorphous transition when the diameter decreases to a critical
value [14].

Many growth methods, including chemical vapor deposition [15], laser ablation [16], and thermal
evaporation [17], have been developed to synthesize nanowires. Using different methods, silicon
nanowires with different growth directions can be synthesized and silicon nanowires with the same
growth direction can have different side surfaces [18]. The side surface orientation plays a dominant
role in determining the operant mode of inelastic deformation in both <100> and <110> face-centered
cubic nanowires [19]. However, its effect on the mechanical properties of silicon nanowires is still
not clear.

In this work, we aim to investigate the influence of side surface orientation on the mechanical
properties of silicon nanowires. To this end, molecular dynamics (MD) simulations of the deformation
behavior of silicon nanowires under tensile and compressive loading were conducted. MD simulations
can provide insight into detailed atomic deformation mechanisms [20], which are not available
from experiments.

2. Simulation Method

Two types of silicon nanowires were simulated in this work, as schematically illustrated in
Figure 1. Nanowires with a <100> longitudinal axis and four {100} side surfaces were called <100>/{100}
nanowire. Similarly, those with a <100> longitudinal axis and four {110} side surfaces were named
<100>/{110} nanowire. The aspect ratio (length/width) of all nanowires was fixed to be three. A similar
aspect ratio has been widely used in previous work [10,21,22]. In order to investigate the size effect,
five widths (w = 2.7, 3.5, 4.6, 5.7, 7.7 nm) were considered.
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Figure 1. Geometry of the atomic model for silicon nanowires. The shaded areas represent the frozen
atoms, and the transparent areas denote the active atoms.

A reliable potential model is a key to maintaining the accuracy of simulation results [23].
Although the ab initio simulations are the most reliable computational techniques, they are not
suitable for modeling large systems due to the heavy calculation burden. Many empirical interatomic
potentials have been developed to describe the Si–Si interaction, including the Tersoff potential [24],
the Stillinger–Weber (SW) potential [25], the environment-dependent interatomic potential (EDIP) [26],
and the modified embedded atom method (MEAM) potential [27]. Among these empirical potentials,
the MEAM potential is most reliable [8,28]. Therefore, the MEAM potential was utilized and the pair
cutoff was set to be 0.6 nm, consistent with previous work [8,23].
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MD simulations were conducted using the open source molecular dynamics program, Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [29], and the atomic configurations were
visualized by the visualization software AtomEye [30]. In all simulations, periodic boundary conditions
were not used and the time step was set to be 1 fs. The simulation system was divided into three
regions: Top region, the active region, and bottom region. The top and bottom regions, which both
contain six atomic layers, are shaded in gray in Figure 1. The whole simulation model was first relaxed
to the minimum energy state using the conjugate gradient method. After relaxation, the top and
bottom regions were frozen and the active region was equilibrated for 50 ps in the NVT ensemble at
300 K. Subsequently, to apply a tensile/compressive strain, the bottom region remained fixed and the
top region was moved along the longitudinal axis with a constant velocity, corresponding to a strain
rate of 109 s−1. This strain rate was chosen since the deformation behavior of nanowires is independent
on the strain rate once it is smaller than about 1010 s−1 [31,32].

The stress tensor of silicon nanowires was calculated using the virial stress [33]. The atomic-level
virial stress has been demonstrated to be equivalent to the continuum-level Cauchy stress [34].
The strain was calculated according to the definition of engineering strain.

3. Results and Discussions

3.1. Stress–Strain Curves

In order to monitor the response of silicon nanowires to the applied tensile and compressive
loading, the stress–strain curves were plotted. The stress–strain curves of silicon nanowires showed
similar trends regardless of the nanowire width. Therefore, for clarity, only those for the nanowire
with a width of 7.7 nm were shown in Figure 2. Here, the stress was the absolute value of the average
atomic stress (σ33) over the entire volume of the active region of the simulation model and the strain
was the absolute value of the applied strain. Initially, both types of silicon nanowires responded
linearly to the applied strain and the Young’s modulus was calculated from this stage. The obtained
values fell into the range of 120–130 GPa, in close agreement with previous simulation results [35]
and experimental data [36]. No obvious size or surface orientation effects on the Young’s modulus
were observed, in consistency with a previous simulation result that the Young’s modulus of silicon
nanowires exhibited negligible size-dependence when their diameter was larger than about 3 nm [32].
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With the applied strain increasing to a large value, the stress–strain curves became somewhat
nonlinear and this nonlinear trend became more and more obvious with the increase of strain.
Moreover, tensile deformations exhibited stronger nonlinearity than compressive deformations.
A similar nonlinear response has been reported in previous studies on silicon nanofilms [23] and
nanowires [8,10,28], and it was attributed to their nanoscale size [23]. After reaching its peak value,
the stress experienced a sharp decline, which may have been associated with crack or dislocation
nucleation. To find the exact reason, detailed deformation mechanism of silicon nanowires should
be analyzed.

3.2. Tensile Deformation Mechanism

Snapshots depicting the evolution of the atomic configuration of silicon nanowires were
captured to demonstrate their deformation mechanism under tension. The nanowire width and
side surface orientation did not affect the tensile deformation mechanism of silicon nanowires. Hence,
only snapshots for the <100>/{110} silicon nanowire with a width of 7.7 nm are shown in Figure 3.
Silicon nanowires deform elastically and a crack nucleates on their side surface when the critical
tensile strain is reached. Crack nucleation led to a sharp decline in tensile stress, observed in Figure 2.
On further strain, the nucleated crack propagated along the (001) plane, as demonstrated in Figure 3c.
When the tensile strain reached a critical value, brittle cleavage occurred to silicon nanowires, as shown
in Figure 3d.
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Figure 3. Atomistic configurations of the <100>/{110} silicon nanowire with width of 7.7 nm at different
tensile strain levels. Atoms are colored according to their potential energy, with blue indicating low
value and red representing high value. (a) ε = 0, (b) ε = 0.189, (c) ε = 0.191 and (d) ε = 0.196.

The brittle fracture of silicon nanowires observed in this work is consistent with some previous
simulation results [21,22] and experimental observations [37]. However, in some other simulation
work [10,38,39] and experimental studies [40], ductile fracture and brittle-to-ductile transition were
observed. The difference in the potential model may induce the difference in the deformation
mechanism observed in atomistic simulations. Some empirical potential models, such as SW potential
and Tersoff potential, can result in a non-physical plastic mechanism [21,22,28]. Due to the imperfection
of the fabrication process, the silicon nanowires used in experiments are often covered with an
amorphous layer [37]. In addition, many other imperfections, such as vacancies and dislocations,
may exist in silicon nanowires. These imperfections may make it easier for a dislocation to nucleate and
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move in silicon nanowires, resulting in the ductile behavior. Once the amorphous layer is crystallized,
silicon nanowires would behave in a brittle manner [37].

3.3. Compressive Deformation Mechanism

The deformation mechanism of silicon nanowires under compression is not influenced by
nanowire width or side surface orientation. The structural evolution of the <100>/{100} silicon
nanowire under compression is exhibited in Figure 4. In this figure, all atoms are colored according to
the local von Mises shear strain invariant [41], with blue indicating a low value and red representing
a high value. For clarity, only atoms with a local von Mises shear strain invariant larger than 0.2 are
shown. Initially, silicon nanowires responded elastically to the applied compressive strain. Once the
compressive strain reached a critical value, the dislocations nucleated from the intersection of two
side surfaces, as shown in Figure 4b,f. The nucleated dislocations had a Burger vector of 1/2<011>.
The dislocation nucleation resulted in a sharp drop in compressive stress, shown in Figure 2. With the
increase of compressive strain, the nucleated dislocations propagated along the {011} plane (Figure 4c,g)
and a step were created on one side surface eventually (Figure 4d,h).
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Figure 4. Atomistic configurations of the <100>/{100} silicon nanowire with width of 7.7 nm at different
compressive strain levels. Atoms are colored according to the local von Mises shear strain invariant [41],
with blue indicating low value and red representing high value. (a) ε = 0, (b) ε = 0.111, (c) ε = 0.113,
(d) ε = 0.116, (e) ε = 0, (f) ε = 0.111, (g) ε = 0.113 and (h) ε = 0.116. For clarity, only atoms with local von
Mises shear strain invariant larger than 0.2 are shown.

The plastic deformation of silicon nanowires observed in this study correlated well with a previous
experimental observation that the uniaxial compressive deformation of silicon nanowires changes from
brittle to ductile once their diameters are below a critical value (310–400 nm) [9]. However, the slip
planes observed in our simulations were {011} planes, different from the {111} planes reported from
experiments. The activation of the unexpected {011} slip planes has been observed in previous MD
simulations [10,21,22], and their occurrence was demonstrated to be an indirect consequence of the
small dimensions of silicon nanowires [21].
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3.4. Tensile/Compressive Strength

The tensile strength and compressive strength of both types of silicon nanowires were extracted
from the stress–strain curves, as shown in Figure 5, as a function of nanowire width. The tensile strength
was in the range of 13.5 to 16.2 GPa, while the compressive strength ranged from 10.2 to 12.6 GPa.
Similar results have been reported in previous work [8,28]. Regardless of the type of silicon nanowires,
the tensile/compressive strength showed similar trends with the variation of nanowire width.
Specifically, both the tensile strength and compressive strength increased with increasing nanowire
width, which was in close agreement with previous simulation results [8,13,38,39]. The surface atoms
of silicon nanowires are under-coordinated and they have higher potential energy than atoms inside
nanowires, which makes the surfaces the weak sites for dislocations or cracks to nucleate. As the
nanowire width decreased, the surface-to-volume ratio increased and thus the tensile/compressive
strength reduced. However, the tensile/compressive strength was observed to increase with reducing
nanowire size in experiments [42]. The contradiction between simulation results and experimental
observations could be explained by the imperfection of the silicon nanowires used in the experiments.
Defects are inevitably introduced into silicon nanowires during the fabrication process, and these
defects are the potential nucleation sites for cracks and dislocations. With the decrease of nanowire
width, the defect population reduces, inducing an increase in the tensile/compressive strength.
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Side surface orientation exerts a strong influence on the tensile strength and compressive strength
of silicon nanowires. Similar side surface orientation effect was observed in the tungsten nanowires [43].
Under tensile loading, the <100>/{110} nanowires were stronger than the <100>/{100} nanowires;
whereas under compressive loading the reverse is true. The under-coordination of surface atoms
can result in surface stress in materials. In bulk materials, the role of surface stress is insignificant
due to the small surface-to-volume ratio. However, in nanowires which are characterized by a
large surface-to-volume ratio, surface stress becomes important. Surface stress can give rise to
many interesting phenomena, such as the tensile-compressive yield strength asymmetry in metal
nanowires [44] and the phase transformation in gold nanowires [45]. It is conjectured that the effect
of side surface orientation may originate from surface stress. The effect of side surface orientation
was affected to some extent by the nanowire width, as shown in Figure 5. With the increase of the
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nanowire width, the side surface orientation effect seemed to become weak. When the nanowire width
scaled down, the surface-to-volume ratio increased, and the role that surfaces play in the mechanical
properties of nanowires became more important. Hence, the side surface orientation effect was stronger
in smaller nanowires.

4. Conclusions

The deformation behaviors of square cross-sectional <100>-oriented silicon nanowires with {100}
and {110} sides surfaces were simulated by using MD simulations. The side surface orientation did
not affect the deformation mechanism, but the loading direction did. Under tensile strain, cracks
nucleated on the side surfaces, which induced the brittle cleavage; while under compressive strain,
dislocations nucleated on the side surfaces, which resulted in the slip along the {011} plane. Both the
tensile strength and compressive strength were strongly influenced by the side surface orientation.
Silicon nanowires with {110} side surfaces were stronger than those with {100} side surfaces under
tension, but the reverse was true under compression. The effect of side surface orientation was stronger
in smaller nanowires, since the side surfaces played an increasingly important role in the mechanical
properties of silicon nanowires with the increase of the surface-to-volume ratio.
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