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Abstract: Quantum discord and entanglement are both criteria for distinguishing quantum
correlations in a quantum system. We studied the effect of the transverse magnetic field on the
quantum discord of the one-dimensional spin-1/2 XX model. This study focused on the pair of
spins at different distances. We show that quantum discord is finite for all studied spin pairs in the
Luttinger liquid phase. In addition, relying on our calculations, we show that the derivatives of
quantum discord can be used to identify the border between entangled and separable regions in the
Luttinger liquid phase.
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1. Introduction

There is currently no doubt about the existence of quantum correlations in nature. In particular,
entanglement is a quantum phenomenon in which the quantum states of two or more objects have
to be described with reference to each other, even though the individual objects may be spatially
separated [1–3]. Since entanglement cannot describe all quantum correlations among different
constituents of a quantum system, another quantity named quantum discord (QD) was introduced in
2001 [4,5]. QD can measure the quantum nature of correlations including entanglement. It is defined
as the difference between equivalent classical expressions of conditional entropy in the quantum
realm. However, after the appearance of QD, entanglement was not put aside. On the one hand,
some entangled states that violate a Bell inequality are still necessary for some quantum computing
processes [6]. On the other hand, QD is a resource for preparing a quantum remote state [7]. Therefore,
the study of the nature of both these quantum correlations has attracted a lot of interest in condensed
matter physics. One of the crucial questions raised in this field is: How can the persistence of
quantum correlations between particles increase in a many-body system? It is known that, in such
a system, quantum correlations depend on the interactions between particles and on the effect of
the environment [8–10]. Applying a magnetic field as an external parameter to a quantum system
usually has a destructive effect on the quantum correlations but there are some systems for which
quantum correlations between their constituents can be strengthened by increasing a magnetic field.
Moreover, thermal quantum correlations can be inferred from the macroscopic variables detected
experimentally [11–13]. Hence, many attempts have been dedicated to studying the effect of both
magnetic field and temperature parameters on quantum correlations.

In the study of the quantum correlations, nearest neighbour spins are often considered. Recently,
the observation of entanglement between different individual spin pairs in a one-dimensional

Crystals 2019, 9, 105; doi:10.3390/cryst9020105 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0003-2585-9439
http://www.mdpi.com/2073-4352/9/2/105?type=check_update&version=1
http://dx.doi.org/10.3390/cryst9020105
http://www.mdpi.com/journal/crystals


Crystals 2019, 9, 105 2 of 11

many-body quantum system of trapped ions has been reported [14]. This work shows that
the experimental measurement of quantum correlations between different neighbouring spins in
many-body quantum systems is possible. It has also been recently demonstrated that an entangled
pair of spins separated by several lattice spacings within a spin chain can be a suitable candidate
for application in quantum information processing [15]. Furthermore, in Ref. [16,17], it has been
shown that Heisenberg chains can be employed for solid state quantum computers [16] and, in
Ref. [18], XXZ chains have been used to describe quantum computers based on nuclear magnetic
resonance (NMR).

The objective of this paper is to extend the studies on quantum correlations of a one-dimensional
XX model in the presence of a transverse magnetic field. First, it is instructive to review the main
features of the spin-1/2 XX chain in the presence of a transverse magnetic field. Its Hamiltonian is
given by

H = J
L

∑
j=1

(Sx
j Sx

j+1 + Sy
j Sy

j+1)− h
L

∑
j=1

Sz
j , (1)

where Sj is the spin-1/2 operator at jth site, J > 0 denotes the antiferromagnetic exchange coupling
and h is the external magnetic field. The ground state phase diagram of the system shows a gapless
Luttinger liquid (LL) phase in the region h < hc = J. At the critical transverse magnetic field hc,
a second order quantum phase transition occurs and the system goes into a saturated ferromagnetic
phase. From the experimental point of view, many compounds with the common Heisenberg structure
are well described by the spin-1/2 XX model [19–23]. In addition, a system of spin-1/2 with XX
interaction can also be used as two coupled quantum dots [16,24,25]. Hence, it can be theoretically
applicable to quantum computing. Therefore, many efforts have been devoted to the exploration of
important features of the XX model [16,24–27]. Since the Hamiltonian of this model is exactly solvable,
its theoretical study has crucial importance. Regarding the LL region in the phase diagram of the
spin-1/2 XX chain, it can be split into two parts according to the study of quantum correlations [28].
The nearest neighbour spins are entangled in the LL phase [3]. Increasing the magnetic field reduces
the entanglement between the nearest neighbour pair of spins until the spins become completely
disentangled for magnetic fields larger than the quantum critical field, hc. In addition to the nearest
neighbour spin pairs [29], the zero-temperature entanglement between two spins at arbitrary distances
in the spin-1/2 XX chains has been studied analytically and numerically [28,30–33]. In the absence of
magnetic field, non-nearest neighbour pairs are not entangled. They remain unentangled until the
magnetic field reaches a critical value called “entanglement field” (shown by hE

c ), which depends on
the distance between the given pair of spins [28]. The entanglement of formation (EF) between spin
pairs at arbitrary distance acquires a finite value around hc, even if such distance reaches the system
size [31]. The scaling behaviour of the quantum correlations between a pair of spins at farther distances
in the XX chain has also been investigated [30,33]. In a very recent paper [34], QD between non-nearest
spin pairs up to the fourth neighbour has also been investigated as well as entanglement. Contrary to
entanglement, QD is non-zero in all parts of LL region for further spin pairs as well as for the nearest
neighbour pairs. It has been found that the QD between the spin pairs positioned at distances further
than two lattice spacing reveals a quantum phase transition [33,34]. Additionally, the quantum discord
may increase as a function of both temperature and magnetic field in certain regions of the parameter
space of the problem [35]. The idea behind this study of QD in spin-1/2 XX chain is to investigate if
it can distinguish the quantum correlations with separable states from the entangled ones in the LL
phase. In other words, we answer the question if QD can help us identify the entanglement field.

In this paper, we reproduce analytic expressions for EF and QD among the nearest, second,
third and fourth neighbour pair of spins, which hereafter we refer to as NN, 2N, 3N, and 4N,
respectively (and so on), at zero temperature using an analytical Fermionisation technique. It is
shown that both EF and QD have a finite value in the vicinity of the critical field, even if the distance
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between spin pairs reaches the system size. Our results on QD and EF are in agreement with what
is reported in Ref. [34]. Nevertheless, the focus of our results is on the different behaviour of QD
derivatives at entanglement field. It is shown that, in addition to EF, the derivatives of QD have a
unique behaviour at hE

c .
This paper is organised as follows. Diagonalisation of spin-1/2 XX chain and calculation of the

reduced density matrix for a pair of arbitrary spins in the chain are topics addressed in the next section.
In Section 3, the details of the calculation of QD are presented. In Section 4, the results obtained are
discussed. Finally, the concluding remarks are presented in Section 5.

2. Pairwise Reduced Density Matrix

The Hamiltonian of one-dimensional spin-1/2 XX model (Equation (1)) can be exactly diagonalised
through the Jordan–Wigner transformation [36]. Applying this transformation

S+
j = a†

j (e
iπ ∑l<j a†

l al ),

S−j = (e−iπ ∑l<j a†
l al )aj,

Sz
j = a†

j aj −
1
2

, (2)

the XX chain Hamiltonian is mapped onto a one-dimensional free Fermion system

Hf =
Lh
2

+
J
2 ∑

j
(a†

j aj+1 + aja†
j+1)− h ∑

j
a†

j aj, (3)

where a† and a represent creation and annihilation Fermionic operators, respectively. Using a Fourier
transformation, aj =

1√
L ∑k e−ikjak, the Hamiltonian can be diagonalised in momentum space as

Hf = ∑
k

ε(k)a†
k ak, (4)

where the dispersion relation, ε(k), is given by

ε(k) = J cos k− h. (5)

The Fermi points are given by ±kF = ± arccos (h/J) and the ground state corresponds to the
configuration where all the states with −π < ε(k) < −kF and kF < ε(k) < π are filled and others
are empty.

The quantum correlations between two spins at sites i and j can be calculated through the
corresponding reduced density matrix of a pair of spins placed on arbitrary i and j sites

ρij =


〈P↑i P↑j 〉 〈P↑i S−j 〉 〈S−i P↑j 〉 〈S

−
i S−j 〉

〈P↑i S+
j 〉 〈P↑i P↓j 〉 〈S−i S+

j 〉 〈S
−
i P↓j 〉

〈S+
i P↑j 〉 〈S

+
i S−j 〉 〈P↓i P↑j 〉 〈P↓i S−j 〉

〈S+
i S+

j 〉 〈S
+
i P↓j 〉 〈P↓i S+

j 〉 〈P↓i P↓j 〉

 , (6)
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where P↑ = 1
2 + Sz, P↓ = 1

2 − Sz are projectors in states with Sz = ± 1
2 and S± = Sx ± iSy. The brackets

symbolise the expectation value on the ground state. By applying the Jordan–Wigner transformation,
the reduced density matrix can be shown to have the form [28]

ρij =


X+

ij 0 0 0
0 Y+

ij Z∗ij 0
0 Zij Y−ij 0
0 0 0 X−ij

 , (7)

where in terms of the Fermion operators the elements of the above matrix for j = i + m are given
by [28]

X+
i,i+m = 〈nini+m〉,

Y+
i,i+m = 〈ni(1− ni+m)〉,

Y−i,i+m = 〈ni+m(1− ni)〉,

Zi,i+m = 〈a†
i (1− 2a†

i ai)(1− 2a†
i+1ai+1)

· · · (1− 2a†
i+m−1ai+m−1)ai+m〉,

X−i,i+m = 〈1− ni − ni+m + nini+m〉, (8)

with ni = a†
i ai. These matrix elements may be computed in the ground state or in a thermal state using

Wick’s theorem. Here, we study the QD and EF among NN, 2N, 3N, and 4N pair of spins. For these
cases, the expectation values of Zi,i+m and X+

i,i+m are given as follows

Zi,i+1 = f1,

Zi,i+2 = f2 − 2 f0 f2 + 2 f 2
1 ,

Zi,i+3 = 4( f 3
1 − 2 f0 f1 f2 + f 2

2 f1 + f 2
0 f3

− f 2
1 f3 + f1 f2 − f0 f3) + f3,

Zi,i+4 = 8( f 4
1 − 3 f0 f 2

1 f2 + 2 f 2
1 f 2

2 + 2 f 2
0 f1 f3

+ f 2
0 f 2

2 − f 4
2 − 2 f0 f1 f2 f3 + 2 f1 f 2

2 f3 − 2 f 3
1 f3

+ f 2
1 f 2

3 − f0 f2 f 2
3 − f 3

0 f4 + 2 f0 f 2
1 f4 − 2 f 2

1 f2 f4

+ f0 f 2
2 f4) + 4(3 f 2

1 f2 − 2 f0 f 2
2 − 4 f0 f1 f3

+ 2 f1 f2 f3 + 3 f 2
0 f4 − 2 f 2

1 f4 + f2 f 2
3 − f 2

2 f4)

+ 2(2 f1 f3 − 3 f0 f4 + f 2
2 ) + f4, (9)

X+
i,i+1 = f 2

0 − f 2
1 ,

X+
i,i+2 = f 2

0 − f 2
2 ,

X+
i,i+3 = f 2

0 − f 2
3 ,

X+
i,i+4 = f 2

0 − f 2
4 , (10)

where fq are given in the ground state for a positive integer number q 6= 0 and q = 0 as

fq =
1

qπ
sin(qkF),

f0 = 〈ni〉 = 1− 1
π

kF, (11)
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respectively.

3. Quantum Discord

According to classical information theory, the classical correlations between two subsystems can
be quantified by the classical mutual information. The corresponding notion of quantum mutual
information was introduced by Groisman et al., for a bipartite quantum system [37]. Such concept
contains the total amount of information, both classical and quantum. The classical information of
a quantum system can be obtained through local measurement without perturbing the state of the
system. On the other hand, the quantum part refers to that information cannot be extracted by the
measuring of the state of the system. Hence, quantum information known as QD is a convenient
indicator of quantum character of the correlations [4]

D(ρi,i+m) = I(ρi,i+m)− C(ρi,i+m), (12)

where I(ρi,i+m) and C(ρi,i+m) denote the quantum mutual information and classical information of
the given spin pairs, respectively. The quantum mutual information is given by the expression [38]:

I(ρi,i+m) = S(ρi) + S(ρi+m) +
3

∑
α=0

λα log λα, (13)

with

S(ρi) = S(ρi+m) = (14)

−
[
(

1 + c3

2
) log(

1 + c3

2
) + (

1− c3

2
) log(

1− c3

2
)
]
,

being the von Neumann entropy of each considered spin at sites i and i + m where the new variables
are related to the elements of the density matrix by

c1 = 2Zi,i+m,

c2 = X+
i,i+m + X−i,i+m −Y+

i,i+m −Y−i,i+m,

c3 = X+
i,i+m − X−i,i+m. (15)

λαs are the eigenvalues of ρi,i+m in Equation (13)

λ1 =
1
4
(1 + c3),

λ2 =
1
4
(1 + c3),

λ3 =
1
4
(1 + c1 + c2 − c3),

λ4 =
1
4
(1− c1 − c2 − c3). (16)

The value of the classical information between a pair of spins located at sites i and i + m is defined as

C(ρi,i+m) = max
{Bk}
{S(ρi)−∑

k′
pk′S(ρi,i+m|k′)}, (17)
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where one introduces a set of projectors for the local measurement on spin i + m given by Πk′ = VBk′V†

with probability pk′ . {Bk′ = |k′〉〈k′| : k′ = 0, 1} represents the set of projectors on the computational basis
|0〉 ≡ | ↑〉 and |1〉 ≡ | ↓〉 for each of the sites i and i + m. In addition, V ∈ SU(2) is parameterised as

V =

(
cos θ

2 sin θ
2 e−iφ

sin θ
2 eiφ − cos θ

2

)
, (18)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π, which can be interpreted as the azimuthal and polar angles of a
qubit over the Bloch sphere, respectively. After the measurement Πk′ , the physical state of the spin
pairs will change to one of the following states [38]

ρi,i+m|0 =

 I
2
+

3

∑
j′=1

q0j′Sj′

⊗ (VB0V†), (19)

ρi,i+m|1 =

 I
2
+

3

∑
j′=1

q1j′Sj′

⊗ (VB1V†), (20)

where

qk′1 = (−1)k′c1

[
sin θ cos φ

1 + (−1)k′c3 cos θ

]
,

qk′2 = tan φqk′1,

qk′3 = (−1)k′
[

c2 cos θ + (−1)k′c3

1 + (−1)k′c3 cos θ

]
. (21)

Evaluating the von Neumann entropy from Equations (19) and (20) and using S(VBk′V†) = 0,
we obtain

S(ρi,i+m|k′ ) = −
(

1 + Θk′

2

)
log
(

1 + Θk′

2

)
−
(

1−Θk′

2

)
log
(

1−Θk′

2

)
, (22)

with

Θk′ =

√√√√ 3

∑
j′=1

q2
k′ j′ . (23)

Finally, the classical correlations for the spin pair located at distance m from each other will be
given by

C(ρi,i+m) = max
{θ,φ}

(
S(ρi)−

S(ρi,i+m|0) + S(ρi,i+m|1)

2
− c3 cos θ

S(ρi,i+m|0)− S(ρi,i+m|1)

2

)
. (24)

One should note that at the critical magnetic field h = hc the function fq will be zero for q 6= 0 .
Hence, the QD between all spin pairs vanishes and remains zero in the saturated ferromagnetic phase.

4. Results

In this section, we focus on the QD relying on its difference with entanglement in the spin-1/2 XX
chain. In this respect, we use the EF concept between a pair of spins placed at distance m and defined
as the binary entropy

E(ρi,i+m) = −x log2 x− (1− x) log2(1− x). (25)
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where x = 1
2 (1 +

√
1− C2) is a function of concurrence, C = max{0, 2 | Zi,i+m | −

√
X+

i,i+mX−i,i+m} [29]

where Zi,i+m, X+
i,i+m, and X−i,i+m are the reduced density matrix elements introduced in Equation (7).

When entanglement is vanishing, QD may still be non-zero. Achieving a higher fidelity of
separable states in the remote state preparation in comparison to entangled states might make
the using of the separable states with non-zero quantum correlation as an applicable approach for
quantum-enhanced applications [7].

Here, we report our numerical results, based on the analytical approach, of the QD and EF
between spin pairs located at distances obtained by m = 1, 2, 3, 4 at absolute zero temperature. It is
assumed without any loss of generality J = 1 in the XX chain Hamiltonian (Equation (1)).

First, we have calculated the QD and EF as a function of the magnetic field at zero temperature
between nearest neighbouring pair of spins. Both quantities are depicted in Figure 1a. As shown in
Figure 1a, both QD and EF are finite in the absence of magnetic field, monotonically decrease in the LL
phase and, finally, vanish at the critical field, hc = J, simultaneously.

h
0.25 0.5 0.75 1

0

0.1

0.2

0.3

QD

EF

(a)

h

d
2
Q

D
/d

h
2

0.04 0.02 0 0.02 0.04

0.002

0.001

(b)

h
E

c

Figure 1. (a) Magnetic field dependence of QD and EF; and (b) second derivative of the QD in the
vicinity of hE

c for the NN pair of spins at zero temperature.

In Ref. [28], we introduced the notion of the entanglement field, namely the value of the magnetic
field above which a given pair of spins is entangled. In fact, the entanglement field divides the LL
region into two separable and entangled parts. It can be conjectured from our numerical analysis that

the general formula of hE
c for two spins at distance of m sites apart is: hE

c = (m−1)2

(m−1)2+1 hc. This formula

can reproduce with a good precision our exact numerical results of hE
c = 0, 0.5, 0.83, 0.9 for NN, 2N,

3N, and 4N, respectively. A question that one may ask is: Does QD show a change of behaviour at
such point as well? In this respect, we study the derivatives of QD in the vicinity of hE

c .
For the nearest neighbour pairs, the entanglement field is hE

c = 0. Although there is no notable
trend in the first derivative of QD around the entanglement field, the second derivative of QD shows
different behaviour in the entanglement field neighbourhood. Figure 1b shows the second derivative
of QD in the vicinity of the entanglement field. Interestingly, it has a maximum value at hE

c .
Secondly, we have calculated the QD and EF of the 2N pair of spins as a function of the magnetic

field at zero temperature. In Figure 2a, one can easily see that the ground state is in the correlated
separable state up to the hE

c . By further increasing the magnetic field, the entanglement of a spin with
its second neighbour increases to a maximum value before decreasing to zero at hc. Concerning QD,
it is smoothly increasing around entanglement field in the first half part of LL phase. For values of
h > hE

c , QD’s rate of growth increases so that it also reaches its maximum value in the vicinity of the
critical field and settles to zero at hc, similar to EF.

As shown in Figure 2b, the second derivative of QD has a peak at hE
c = 0.5hc for the 2N pair of

spins, as already observed in the case of NN spin pairs.
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Concerning 3N and 4N pairs of spins, as shown in Figures 3a and 4a, respectively, the QD
increases with an almost insignificant trend versus magnetic field for h ≤ hE

c . This non-entangled state
remains up to hE

c = 0.83hc and hE
c = 0.9hc for 3N and 4N, respectively. A negligible EF between the 3N

and 4N pairs appears in the region hE
c ≤ h ≤ hc. Both QD and EF grow and reach maximum values at

different values of the field near the critical field and finally go to zero at hc. According to Figures 3b
and 4b, the first derivative of QD has the maximum value in the neighbourhood of the entanglement
field for 3N and 4N pair of spins, whereas there is no sign of a prominent trend in the second or higher
order of QD derivatives with respect to the magnetic field.

h0.25 0.5 0.75 1
0

0.1

0.2

QD

EF

(a)

h

d
2
Q

D
/d

h
2

0.49 0.5 0.51

0.228

0.2284

(b)

h
E

c

Figure 2. (a) Ground state of QD and EF; and (b) second derivative of the QD in the vicinity of hE
c ,

versus magnetic field for the 2N pair of spins.

h0.25 0.5 0.75 1
0

0.05

0.1

QD

EF

(a)

h

d
Q

D
/d

h

0.82 0.83 0.84

0.101

0.102

(b)

h
E

c

Figure 3. (a) QD and EF; and (b) first derivative of the QD in the vicinity of hE
c as a function of magnetic

field for the 3N pairs at zero temperature.

h0.25 0.5 0.75 1
0

0.05

0.1

QD

EF

(a)

h

d
Q

D
/d

h

0.88 0.89 0.9 0.91

0.128

0.132

(b)

h
E

c

Figure 4. (a) Magnetic field dependence of QD and EF; and (b) first derivative of the QD in the vicinity
of hE

c for the 4N spin pairs at zero temperature.
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Generally, in addition to the NN pair of spins, the non-nearest neighbour pairs are correlated
(but unentangled) in the absence of the transverse magnetic field. By comparing the values of both QD
and EF for each amount of applied magnetic field in Figures 1–4, it is clear that, when the distance
between two considered spins increases, the amount of quantum correlations decreases. On the other
hand, although QD itself does not show any indication of the unentangled–entangled border in the
LL region, its first and second derivatives with respect to the magnetic field in distances m = 1, 2 and
m = 3, 4, respectively, may contain data that correctly show the exact point of the entanglement field.

The scaling behaviour of the QD and EF in the neighbourhood of hc can be studied by analysing
our exact results. Relying on the results, when the value of the magnetic field approaches the critical
point, the considered quantities show power-law behaviours (hc − h)µ where µ stands for the relevant
critical exponent in each distance. The values of µ for QD and EF for distinct neighbouring are shown
in Table 1 with a ±0.01 error-bar. The value of µ is distinct for different neighbours in the case of
EF, whereas it is the same for all pairs of spins considered in the case of QD up to one decimal digit.
The fact that the value of the µ seems to be very similar for all pairs of spins studied in the case of
QD may be an indication of universal behaviour of such a quantity in the vicinity of the quantum
phase transition.

Table 1. Critical exponents of QD and EF for the NN, 2N, 3N and 4N pairs of spins.

NN 2N 3N 4N

QD 0.47 0.45 0.43 0.40
EF 0.82 0.75 0.67 0.57

5. Conclusions

In this work, we present analytical results for QD and EF between pairs of spins placed at distances
m = 1, 2, 3, 4 from each other. In the spin-1/2 XX chain at zero temperature, QD results show that
all parts of LL region are correlated for all considered pair of spins, whereas EF analysis indicates
that LL region can be split into unentangled and entangled parts. Our results show that, when the
magnetic field is absent, only the NN spin pairs are entangled, while the QD exists among the 2N,
3N and 4N neighbour spin pairs in addition to the NN neighbour spin pairs. EF has the zero value
up to hE

c for all non-nearest pairs studied. The comparison of scaling behaviour of the QD and EF in
the neighbourhood of the critical field indicated that QD may show the same universal behaviour for
all pairs of spins in the vicinity of the phase transition. Finally, we stress that the maximum of the
derivatives of QD can be used to clearly recognise the value of entanglement field for the specific spin
pair in question.
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QD Quantum Discord
EF Entanglement of Formation
LL Luttinger Liquid
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