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Abstract: A series of Fe(II) complexes, fac-[Fe(4-ima-Bp)3](Y)2·sol (Y = ClO4; sol = 3EtOH 1, 3MeOH
2; Y= BF4; sol = EtOH·4H2O 3, 4H2O 4 and 3.5MeCN 5) have been prepared and structurally and
magnetically characterized. The low temperature structures of 1, 2 and 5 have been determined
by X-ray crystallography with LS Fe(II) centres found in all cases. Extensive C–H···π interactions
between the cations form 2D layers, which are linked to one another through N-H···O and O-H···O
hydrogen bonds, resulting in high cooperativity. Despite 5 containing MeCN, N-H···O/F hydrogen
bonds, and C–H···π and π-π interactions combine to give similar 2D layers. Magnetic measurements
reveal moderately abrupt spin crossover for 1-4; becoming more gradual and only 50% complete in 1
due to solvent loss. The MeCN solvate shows more gradual SCO and reinforces how subtle changes
in packing can significantly influence SCO behaviour.

Keywords: spin crossover; iron(II) complexes; C–H···π interactions; magnetic properties;
thermochromism

1. Introduction

Spin crossover (SCO) describes the interconversion between a high spin (HS) and low spin
(LS) state induced by a range of external perturbations often temperature or light irradiation [1,2].
SCO in Fe(II) complexes with an octahedral geometry is dominant as it transforms a diamagnetic LS
state (S = 0) to a paramagnetic HS state (S = 2) with a clear change in colour and lengthening of the
Fe(II)-ligands bond distances [3–7]. Materials displaying SCO behaviour continue to be intensively
studied due to their potential use as active components in memory, display and sensing devices [8–10]
particularly photo-induced SCO complexes, or light-induced spin state trapping (LIESST) [11,12]
which has been reported in many Fe(II) SCO systems.

Of the many iron(II) systems investigated those incorporating imidazole Schiff-base ligands
have amongst the most varied SCO behaviours as exemplified in recent reviews by Kruger and
Matsumoto [13,14]. In terms of mononuclear systems there are two basic designs one of which
uses hexadentate ligands [15,16] and the other exploiting chelating imine ligands derived from an
imidazolecarboxaldehyde. The ligand structures and abbreviations used in this article are shown in
Chart 1. Amongst the first reports concerned [Fe{H3(2-Me-im)3-tren}]Cl·X (X = PF6, AsF6, SbF6 and
OTf) where the anion causes a change in magnetic behaviour from 50% SCO to abrupt and complete
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SCO [17]. A feature of all the compounds are N-H···Cl hydrogen bonds that link the Fe(II) centres—this
acts to enhance the communication pathways between SCO sites in the solid-state. Some years later,
Seredyuk and co-workers studied [Fe{N-nBu-2-im)3-tren}](PF6)2, which exhibits SCO behaviour with
thermal hysteresis sensitive to scan rate (i.e., 14 K at 4 K min−1 and 41 K at 0.1 K min−1) [18,19].
This measurement scan rate dependency is due to the kinetically-driven formation of two distinct LS
phases which differ in butyl group conformation.
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SCO systems with chelating imidazole ligands are also well described with [Fe(2-Me-4-ima-
CH2CH2py)3](X)2 (X = PF6, ClO4, BF4) all showing abrupt SCO due to N-H···N hydrogen bonds
involving the imidazole and pyridine [20]. Surprisingly, despite their different shapes and sizes
the anion has little effect on the spin transition temperature. In 2011, Matsumoto et al. examined
fac-[Fe(2-Me-4-ima-R)3]Cl·PF6 {R= (Me), ethyl (Et), n-propyl (n-Pr), n-butyl (n-Bu), and n-pentyl
(n-Pen)} [21]. Once again N-H···Cl hydrogen bonds link the spin centres but this time the different
alkyl groups result in a variety of supramolecular motifs giving both gradual and abrupt SCO
accompanied by hysteresis. Interestingly, fac-[Fe(2-Me-4-ima-nPr)3]Cl·PF6 shows scan rate dependence
of the hysteresis but unlike [Fe{N-nBu-im)3-tren}](PF6)2 there are no phase changes [22]. Kruger
and co-workers reported [Fe(2-ima-p-C6H4OMe)3](ClO4)2, a rare example of a mer-isomer [23].
In this case, π-π and C–H···π interactions and hydrogen bonds to the perchlorate anions link the
Fe centres. However, the most interesting aspect of this complex is that it undergoes full switching
under light irradiation [23]. Gu et al. have also investigated the impact of chirality on SCO
in a series of complexes exemplified by fac-Λ-[Fe(R-N-Me-2-ima-CH(Me)Ph)3](BF4)2·MeCN and
fac-∆-[Fe(S-N-Me-2-ima-CH(Me)Ph)3](BF4)2·MeCN [24]. Racemisation of the stereogenic Fe(II) centre
in the complexes is prevented by intramolecular π-π contacts between the imidazole and phenyl
groups. In accordance with the identical packing arrangements both compounds exhibit moderately
abrupt SCO. While the above shows there has been considerable research into imidazole based SCO
systems aromatic groups remain poorly explored and in this work we report [Fe(4-ima-Bp)3](Y)2·Sol
(Y = ClO4; sol = EtOH 1, MeOH 2; Y= BF4; sol = EtOH 3, MeOH 4 and MeCN 5) and investigate solvent
and anion effects.

2. Materials and Methods

Perchlorate complexes are potentially explosive and should only be prepared in small quantities.
4-aminobiphenyl is a category 1 suspected carcinogen and facemasks and gloves must be used.

2.1. General Remarks

All manipulations were performed in air with reagent grade solvents. All chemicals were
purchased from Aldrich Chemical Company (Singapore) or TCI Chemical Company (Tokyo, Japan)
and used as received. Infrared spectra (as KBr discs) were recorded on a Perkin-Elmer Spectrum One
infrared spectrophotometer in the range 400–4000 cm−1. Electronic spectra were recorded in MeOH
or MeCN at room temperature on a Shimadzu UV-1700 UV–VIS spectrophotometer (Kyoto, Japan).
1H NMR spectra were recorded on a Bruker 300 MHz FT-NMR spectrometer (Karlsruhe, Germany) at
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25 ◦C in CDCl3 with SiMe4 added as an internal standard. Elemental analyses were carried out on a
Eurovector EA3000 analyser (Pavia, Italy). ESI-MS were carried out on a Bruker Daltonics 7.0T Apex 4
FTICR mass spectrometer (Karlsruhe, Germany).

2.1.1. Synthesis of 4-ima-Bp

4-ima-Bp was prepared by mixing 4-imidazolecarboxaldehyde (0.480 g, 5.0 mmol) and
4-aminobiphenyl (0.846 g, 5.0 mmol) in methanol (15 cm3). The mixture was warmed at ~50 ◦C
under stirring for 1 h and then cooled to room temperature to give a pale yellow precipitate which
was filtered. The pale yellow powder was dried in air, yield 1.194 g (97%). νmax (KBr)/cm−1 3123 w,
3054 w, 2948 w, 2787 m, 1621 s, 1585 s, 1485 m, 1456 m, 1329 m, 1119 s (Figure S1). λmax/nm (DMF,
ε/M−1cm−1) 340 (970). 1H NMR (CDCl3, 295 K, 300 MHz) δ = 8.46 (s, 1Hf), 7.63 (s, 1Hh), 7.65-7.60 (m,
4H2d, 2e), 7.48-7.31 (t, 2H2c), 7.38-7.26 (m, 1Ha, 2b, g; Figure S2 Anal. Calc. for C17H14N2O2: C, 73.37; H,
5.07; N, 10.06. Found: C, 73.40; H, 5.12; N, 9.93%.

2.1.2. Synthesis of fac-[Fe(4-ima-Bp)3](ClO4)2·3EtOH 1

The 4-ima-Bp ligand (0.148 g, 0.6 mmol) was dissolved in hot ethanol (3 cm3) and a EtOH
solution (2 cm3) of Fe(ClO4)2·6H2O (0.051 g, 0.2 mmol) was added dropwise with stirring to give a
red solution. The mixture was stirred for 3 h and then cooled to room temperature to give dark red
microcrystals of the product, which were dried in air, yield 0.106 g (53%). Red crystals suitable for
single crystal X-ray diffraction were grow by slow evaporation of ethanol. m/z (ESI) 248.2 [4-ima-Bp]+,
795.9 [Fe(4-ima-Bp)3]+, 895.5 [Fe(4-ima-Bp)3][ClO4]+, 99 [ClO4]–. The microcrystals analyse for 2
equivalents of EtOH and 1 equivalent of water. Anal. Calc. for C52H53N9O11Cl2Fe: C, 56.41; H, 4.83;
N, 11.39. Found: C, 56.06; H, 4.54; N, 11.60%.

2.1.3. Synthesis of fac-[Fe(4-ima-Bp)3](ClO4)2·3MeOH 2

The compound was made in a similar way to 1 using MeOH instead of EtOH giving
dark red microcrystals, yield 0.217 g (67%). m/z (ESI) 248.2 [4-ima-Bp]+, 557.2 [Fe(4-ima-Bp)2]+,
795.9 [Fe(4-ima-Bp)3]+, 99 [ClO4]–. Anal. Calc. for C51H51N9O11Cl2Fe: C, 56.04; H, 4.71; N, 11.54.
Found: C, 56.55; H, 4.65; N, 11.71%.

2.1.4. Synthesis of fac-[Fe(4-ima-Bp)3](BF4)2·EtOH·4H2O 3

The compound was made in a similar way to 1 using Fe(BF4)2·6H2O instead of Fe(ClO4)2·6H2O
giving dark red microcrystals, yield 0.150 g (77%). m/z (ESI) 248.2 [4-ima-Bp]+, 557.2 [Fe(4-ima-Bp)2]+,
795.9 [Fe(4-ima-Bp)3]+, 87 [BF4]–. Anal. Calc. for C52H47N9B2F8O5Fe: C, 56.36; H, 4.28; N, 11.38.
Found: C, 56.11; H, 4.60; N, 11.56%.

2.1.5. Synthesis of fac-[Fe(4-ima-Bip)3](BF4)2·4H2O 4

The compound was made in a similar way to 3 using MeOH instead of EtOH giving
red microcrystals yield 0.113 g (57%). m/z (ESI) 248.2 [4-ima-Bp]+, 557.2 [Fe(4-ima-Bp)2]+,
795.9 [Fe(4-ima-Bp)3]+, 87 [BF4]–. Anal. Calc. for C48H47N9F8B2O4Fe: C, 55.21; H, 4.54; N, 12.08.
Found: C, 54.93; H, 4.45; N, 11.90%.

2.1.6. Synthesis of fac-[Fe(4-ima-Bip)3](BF4)2·3.5MeCN 5

Red crystals of the compound were made by dissolving 0.05 mmol of 3 in acetonitrile (5 cm3) and
allowing slow diffusion of Et2O into the solution yielding red single crystals, 0.043 g (83%). m/z (ESI)
248.2 [4-ima-Bp]+, 557.2 [Fe(4-ima-Bp)2]+, 87 [BF4]–. The compound analyses for 3 equivalents of
MeCN. Anal. Calc. for C54H48N12B2F8Fe: C, 59.22; H, 4.42; N, 15.56. Found: C, 59.11; H, 4.37; N,
15.40%.
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2.2. VSM and SQUID Magnetometry Studies

Magnetic susceptibility data on 1-4 were collected on a Quantum Design Versalab Measurement
System with a vibrating sample magnetometer (VSM) attachment within a small-bore hole cavity.
Samples were contained within a polypropylene holder and held within a brass half-tube designed
for VSM measurements. Measurements were taken continuously under an applied field of 0.3 T
over the temperature range 300–50–300 K, at a ramp rate of 1 K min−1 with no overshoot. Magnetic
susceptibility data on 5 was collected on either a Quantum Design MPMS 5 or a MPMS XL-7 SQUID
magnetometer (San Diego, USA) at a scan rate of 10 K·min−1 being careful to allow long equilibrium
times at each data point. All samples were taken freshly from the mother liquor in which the crystals
were grown to limit any potential solvent loss. The raw data was corrected for the sample holder and
diamagnetic contributions.

2.3. X-ray Crystallography

Crystal data and data processing parameters for the structures of 1, 2 and 5 are given in Table 1.
X-ray quality crystals of 1 and 2 were grown by slow evapouration of the solvent. Crystals were
mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 100 K in a stream
of cold nitrogen. The diffraction data of 1 and 2 were collected at 143 and 153 K on a Rigaku
Spider diffractometer equipped with a MicroMax MM007 rotating anode generator, Cuα radiation
(λ = 1.54178 Å), high-flux Osmic multilayer mirror optics, and a curved image-plate detector. The data
were integrated, scaled and averaged with FS Process [25]. Diffraction data for 5 were collected at 123 K
on a Bruker APEXII area detector with graphite monochromated MoKα (λ = 0.71073 Å) [26]. After data
collection, in each case an empirical absorption correction was applied [27]. The structures were
then solved by direct methods and refined on all F2 data using the SHELX suite of programs [28,29].
In all cases non-hydrogen atoms were refined with anisotropic thermal parameters; hydrogen atoms
were included in calculated positions and refined with isotropic thermal parameters which were ca.
1.2 x (aromatic CH) or 1.5 x (CH2, Me) the equivalent isotropic thermal parameters of their parent
carbon atoms. All pictures were generated using Olex2 [30]. The CCDC numbers for the X-ray
crystallographic data presented in this paper are 18925687-1892569 and can be obtained free of charge
from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystallographic data and structure refinement for 1, 2 and 5.

Compound 1 2 5

Formula C54H57Cl2FeN9O11 C51H51Cl2FeN9O11 C55.5H49.5B2FeN12.5F8
Molecular weight/gmol−1 1134.83 1092.76 1080.04

Crystal system Trigonal Trigonal Triclinic
Space group R3 R3 P1

a/Å 13.1242(9) 12.9080(15) 13.0204(7)
b/Å 13.1242(9) 12.9080(15) 13.1932(8)
c/Å 53.258(4) 52.5240(4) 18.4021(11)
α/◦ 90 90 73.540(4)
β/◦ 90 90 86.375(4)
γ/◦ 120 120 61.569(3)
T/K 143(2) 153(2) 123(2)

Cell volume/Å3 7944.4(12) 7578.9(18) 2656.3(3)
Z 6 6 4

Absorption coefficient/mm−1 3.797 3.958 0.363
Reflections collected 23981 19730 39419

Independent reflections, Rint 3413, 0.094 2875, 0.092 9354, 0.0825
Max. and min. transmission 0.561, 1.000 1.000 and 0.772 -

Restraints/parameters 2/206 0/224 0/878
Final R indices [I>2σ(I)]: R1, wR2 0.1383, 0.3738 0.122, 0.392 0.1142, 0.2301

CCDC no. 1892568 1892567 1892569

www.ccdc.cam.ac.uk/data_request/cif
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3. Results

3.1. Synthesis and Characterization of fac-[Fe(4-ima-Bp)3](Y)2·sol Complexes

The synthesis of a family of fac-[Fe(4-ima-Bp)3](Y)2·sol complexes was achieved by a reaction
between the 4-ima-Bp ligand in MeOH or EtOH and Fe(ClO4)2·XH2O or Fe(BF4)2·6H2O which affords
dark red powders of the octahedral complexes fac-[Fe(4-ima-Bp)3](Y)2·sol (Y = ClO4; sol = 3EtOH 1,
3MeOH 2; Y= BF4; sol = EtOH·4H2O 3, 4H2O 4 and 3.5MeCN 5), Scheme 1. The acetonitrile solvate,
5 was prepared by recrystallization of 3 from MeCN/Et2O.
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3.2. IR and UV–VIS Spectroscopy

IR spectroscopy of 1–5 shows an imine stretch at 1620 cm−1 and at lower wavenumbers than the
free ligand consistent with coordination to the metal (Table 2) [16,24,31]. Bands for the anions are also
clearly visible in their expected positions (1083 and 1087 cm−1). The presence of a further set of bands
between 3362–3377 cm−1 are consistent with O–H stretches suggesting that EtOH, MeOH or H2O is
present in the structures of these compounds.

Table 2. Physical and IR spectroscopic data for fac-[Fe(4-ima-Bp)3](Y)2·sol.

Compound %yield Colour
IR (cm−1)

νC=N νC=C νOH νArH νanion

1 (ClO4·3EtOH) 53 Dark red 1620 1484 3362 3128 1087
2 (ClO4·3EtOH) 67 Dark red 1621 1484 3380 3135 1089

3 (BF4·EtOH·4H2O) 77 Dark red 1620 1484 3377 3137 1083
4 (BF4·4H2O) 57 Dark red 1620 1484 3377 3137 1083

5 (BF4·3.5MeCN) 63 Red Orange 1620 1484 - 3144 1051

In the visible region a DMF solution of 4-ima-Bp reveals an absorbance maximum at 340 nm
(ε = 24000 M−1cm−1) which arises from an intraligand π→π* transition (Table 3) [32]. At room
temperature, methanol solutions of 1-4 are orange and exhibit π→π* transitions at approximately
330 and 280 nm (Figure 1). UV–VIS spectra of 1 and 3 in MeCN (in which 1-4 are more soluble),
as representative examples of the compounds, reveal a possible band at ca. 840 nm consistent with the
compounds being HS in solution (Figure S3).

Table 3. Wavelength maxima and extinction coefficients of fac-[Fe(4-ima-Bp)3](Y)2 in MeOH.

Compound λmax/nm (εmax/M−1cm−1)

1 328 (65,000), 283 (72,000)
2 326 (57,000), 283 (50,000)
3 327 (66,200), 283 (61,000)
4 328 (56,000), 283 (51,000)
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Figure 1. UV–VIS spectra of fac-[Fe(4-ima-Bp)2](Y)2·sol 1–5 in MeOH.

3.3. Structural Studies of fac-[Fe(4-ima-Bp)3](Y)2·sol Complexes

The structure of fac-[Fe(4-ima-Bp)3](ClO4)2·3EtOH 1 determined by single-crystal X-ray diffraction
at 143 K shows the compound reveals a trigonal symmetry (space group R3, Figure 2). The methanol
solvate 2, is isostructural to 1 (collected at 153 K). The asymmetric units contain the Fe centre,
a single 4-ima-Bp ligand, parts of two perchlorate anions and an EtOH (partially disordered in
1) or MeOH molecule. The ligands coordinate with a facial (fac) disposition around the metal
centre. In contrast, fac-[Fe(4-ima-Bp)3](BF4)2·3.5MeCN 5 crystallizes in the triclinic P1 space group.
Despite the change in symmetry and the different anion the general features of 5 are remarkably
similar to those of 1 and 2. The Fe-ligand bond lengths and octahedral distortion parameters
for 1, 2 and 5 are given in Table 4. Comparison with [Fe(2-Me-4-ima-nPr)3]Cl·Y [22,31] and
[Fe(N-Me-2-ima-CH(Me)Ph)3](BF4)2·MeCN [24] indicates that the Fe(II) centres are LS at the low
temperature used for X-ray data collection. Interestingly, in 1 and 2 the bond lengths are shorter by
ca. 0.03 Å than the LS centre in [Fe(2-ima-p-C6H4OMe)3](ClO4)2—the only other previously reported
mononuclear system where the aromatic group is directly connected to the imine nitrogen [23].
The octahedral distortion parameters are also consistent with LS centres.

Table 4. Selected bond lengths, octahedral distortion parameters and hydrogen bonding distances (Å,◦)
for 1, 2 and 5.

Bond lengths 1-143 K 2-153 K 5-123 K

Fe1–N1 1.962(6) 1.964(8) Fe1–N1 1.971(4)
- - Fe1–N3 1.995(4)
- - Fe1–N4 1.962(4)

Fe1–N3 2.005(5) 1.983(8) Fe1–N6 1.992(4)
- - Fe1–N7 1.963(4)
- - Fe1–N9 2.001(4)

Σ [33] 68.7 55.7 57.9
Θ [34] 196.4 127.3 125.0

N2-H2···O5 1.829(9) 1.832(11) N8-H8···F3 2.109(4)
O5-H5···O4 - 2.09(2) N8-H8···F2 2.426(4)

N5-H5···F1 1.939(4)
N2-H2···N10 2.041(5)
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Figure 2. View of the molecular unit of (a) 1 and (b) 2. Only selected hydrogen atoms and labels are
shown in the interests of clarity. Ellipsoids are drawn at 50% probability.

A particular feature of the structures is that one of the anions sits in a pocket of biphenyl groups
and is held in place by three C–H···O interactions (see Figure 2). The pocket is reinforced by three
intramolecular C–H···π contacts, Figure 3. The imidazole hydrogens are involved in H-bonding to the
solvent and not the anion as is seen in systems like [Fe(2-Me-4-ima-nPr)3]Cl·Y. The second perchlorate
anion instead forms H-bonds to the solvent molecules and weaker C–H···O interactions involving
either ethanol or imidazole C–H groups. This change in packing at the second anion results in an
inversion of the perchlorate in 1 compared with 2 (Figure 2).
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Figure 3. View of (a) the intramolecular C–H···π contacts in 1 and (b) spacefill diagram showing the
perchlorate anion in the biphenyl pocket.

The overall packing for both compounds involves multiple C–H···π interactions of the propeller
like biphenyl arms forming a triangular motif (Figure 4; Table S1). Within each ‘triangle’ of
fac-[Fe(4-ima-Bp)3]2+ cations the Fe centres are chiral but as the intercalated triangle is of the opposite
hand the overall structure is achiral, as expected. There are also C–H···π interactions between the Λ
and ∆ fac-[Fe(4-ima-Bp)3]2+ cations giving rise to a hexagonal motif (Figure 4b). As this is present in
all the compounds in this series it is clearly very robust.
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Figure 4. View of the (a) intermolecular C–H···π interactions that link the (b) Λ (blue) and ∆ (red)
fac-[Fe(4-ima-Bp)3]2+ cations that form the hexagonal motif in 1.

The hexagonal planes are approximately 12.5 Å thick and are separated from each other by an
extensive network of perchlorate anions and the MeOH or EtOH solvent molecules held together
by N-H···O and O-H···O hydrogen bonds (Figure 5; Figure S4). Similar 2D layers are present in the
imidazolyl-imine dimers, [Fe(2-Me-ima-N-N-ima-2-Me)3](ClO4)4 [32].

Crystals 2019, 9, x FOR PEER  8 of 13 

 

 
Figure 4. View of the (a) intermolecular C–H⋅⋅⋅π interactions that link the Λ (blue) and Δ (red) fac-
[Fe(4-ima-Bp)3]2+ cations that form the hexagonal motif in 1. 

The hexagonal planes are approximately 12.5 Å thick and are separated from each other by an 
extensive network of perchlorate anions and the MeOH or EtOH solvent molecules held together by 
N-H⋅⋅⋅O and O-H⋅⋅⋅O hydrogen bonds (Figure 5; Figure S4). Similar 2D layers are present in the 
imidazolyl-imine dimers, [Fe(2-Me-ima-N-N-ima-2-Me)3](ClO4)4 [32]. 

 

 
Figure 5. Side-on view of the 2D hexagonal planes and the ClO4-MeOH layer in 2 that links the 
planes. 

As noted above, the structure of the MeCN solvate 5 is very similar to 1 and 2. A particular 
difference is that the BF4– anion directly links the 2D layers of the fac-[Fe(4-ima-Bp)3]2+ cations through 
N-H⋅⋅⋅F hydrogen bonds. The remaining imidazole N-H group is hydrogen bonded to one of the 
acetonitrile molecules. A combination of C–H⋅⋅⋅N/F interactions hold the remaining MeCN molecules 
in the anion-solvent layer. The other subtle difference is that the 2D layers are no longer hexagonal, 
but are instead slightly distorted (Figures S5 and S6). This has a number of consequences including 
the loss of some C–H⋅⋅⋅π interactions and the concomitant formation of slightly angular π-π 
interactions (Figure 6). We also observe a reduction in the gap between the layers from ca. 13 Å in 1 
and 2 to 10.8 Å in 5. 

Figure 5. Side-on view of the 2D hexagonal planes and the ClO4-MeOH layer in 2 that links the planes.

As noted above, the structure of the MeCN solvate 5 is very similar to 1 and 2. A particular
difference is that the BF4

– anion directly links the 2D layers of the fac-[Fe(4-ima-Bp)3]2+ cations through
N-H···F hydrogen bonds. The remaining imidazole N-H group is hydrogen bonded to one of the
acetonitrile molecules. A combination of C–H···N/F interactions hold the remaining MeCN molecules
in the anion-solvent layer. The other subtle difference is that the 2D layers are no longer hexagonal,
but are instead slightly distorted (Figures S5 and S6). This has a number of consequences including the
loss of some C–H···π interactions and the concomitant formation of slightly angular π-π interactions
(Figure 6). We also observe a reduction in the gap between the layers from ca. 13 Å in 1 and 2 to 10.8 Å
in 5.
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3.4. Magnetic studies of [Fe(4-ima-Bp)3](Y)2·sol Complexes

The magnetic properties of 1–5 have been studied by magnetic susceptibility (see χMT versus
T plots, Figures 7 and 8). All the compounds except 1 show a complete HS to LS transition around
room temperature. The exception is 1 which shows a SCO profile that is more abrupt than 2 in the
first warming (Figure S7) but thereafter exhibits a more gradual crossover with χMT going from
1.7 cm3·mol−1·K to 3.3 cm3·mol−1·K between 150 K and 350 K; indicating a 50% transition from the
HS to LS state. Notably, the first measurement in 1 shows hysteresis, but this is only apparent, with the
SCO profile changing upon subsequent cycles to finally give the profile shown in Figure 7. The change
in SCO behaviour in 1 has been shown by TGA studies to be due to loss of one equivalent of EtOH
(Figure S8). Similar solvent loss has been observed in fac-[Fe(N-Me-2-ima-CH(Me)Ph)3](BF4)2·MeCN
and also lowers the transition temperature [24]. Interestingly, despite the different solvents and
anions 2-4 show very similar SCO profiles with T1/2 varying slightly between 305 and 320 K. It is
important to state that we cannot absolutely rule out solvent loss in the case of 2–5, but the fact that
we measured several thermal cycles with no change in the SCO profile seems to suggest that this is
unlikely. We also note that the initial SCO profile in 5 is more gradual in the first 200 K, the exact
reason for this behaviour is unclear but it is repeatable. Although we have been unable to obtain the
structures of 3 and 4, these results suggest that the hexagonal motif noted in Figure 4 is also present
in 3 and 4 hence the almost identical SCO profiles observed. This is supported by the fact that in 5
the packing becomes pseudo-hexagonal and the SCO is now less abrupt and occurs at a slightly lower
temperature. A comparison with [Fe(2-ima-p-C6H4OMe)3](ClO4)2 which exhibits a complete spin
crossover at 158 K [23] suggests that the biphenyl group, despite its size, stabilizes the LS state more
than in [Fe(2-ima-p-C6H4OMe)3](ClO4)2.
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3.5. Thermochromism

The complexes 1–4 all undergo a clear and reversible colour change from dark red to orange in the
solid state with heating (Figure 9) associated with a LS to HS transition. Reports on thermochromism
in Fe(II) imidazolyl complexes are rare and this colour change is different from the fac-[Fe(2-Me-
4-ima-R)3]Cl·PF6 series where a change from yellow to orange/red is observed [35]. It follows that the
R group on the imine nitrogen can be used to tune the thermochromic behaviour of such SCO systems.
In addition, we have soaked filter paper in a solution of 2 and find that it reversibly changes colour
from red to yellow between 30 and 60 ◦C (see supplementary video).
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4. Conclusions

In conclusion, we have prepared five Fe(II) complexes of the new 4-ima-Bp ligand and a variety
of anions and solvent molecules. Structural studies show that all compounds crystallize as the fac
isomer probably due to intramolecular C–H···π contacts involving the biphenyl groups and trapping of
one of the anions. 2D hexagonal or pseudo-hexagonal layers of the fac-[Fe(4-ima-Bp)3]2+ cations form
principally through C–H···π interactions. Strong hydrogen bonding between the layers is facilitated
by the anions and solvent molecules giving rise to a high transition temperature, but moderately
gradual SCO transitions. Notably, the solvent is found to influence SCO behaviour more than the
anion. Moreover, the biphenyl group allows tuning of the spin transition temperature and represents a
promising strategy in the design of more abrupt SCO systems that will operate at room temperature.
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TGA of fac-[Fe(4-ima-Bp)3](ClO4)2·3EtOH 1. Table S1. Geometric parameters of C–H···π and π–π interactions in
1-2 and 5. A supplementary video showing the thermochromism in 2.
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