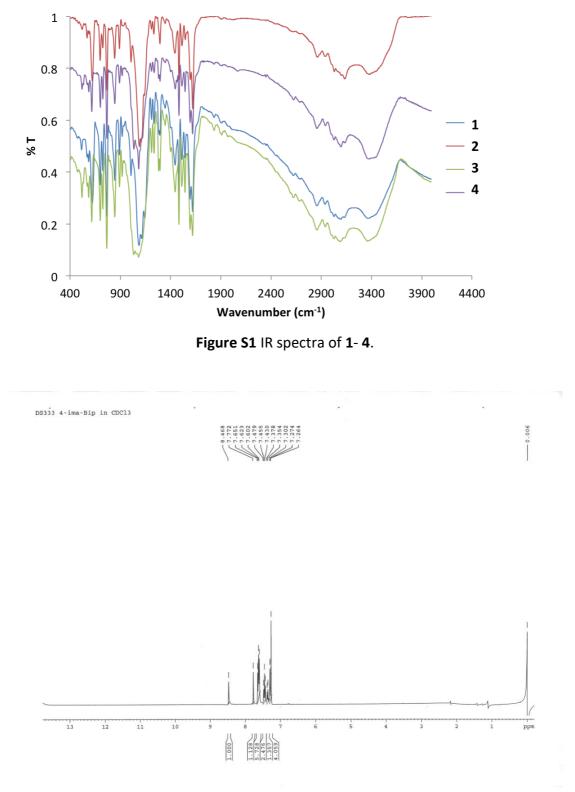
Supporting Information

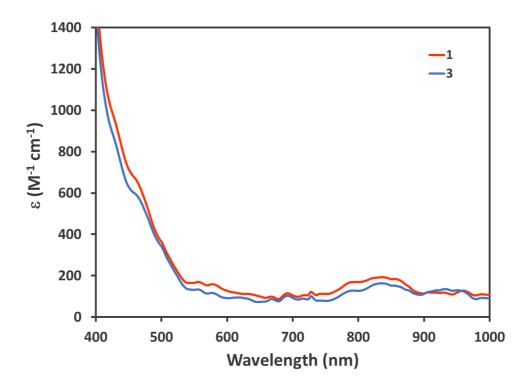
Solvent effects on the spin crossover properties of iron(II) imidazolylimine complexes

Darunee Sertphon¹, Phimphaka Harding¹, Keith S. Murray², Boujemaa Moubaraki², Suzanne M. Neville³, Lujia Liu,⁴ Shane G. Telfer⁴ and David J. Harding^{1*}

¹ Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand


² School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia

³ School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia


⁴ MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of

Fundamental Sciences, Massey University, Palmerston North, New Zealand

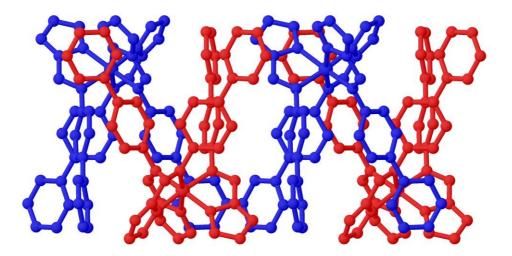
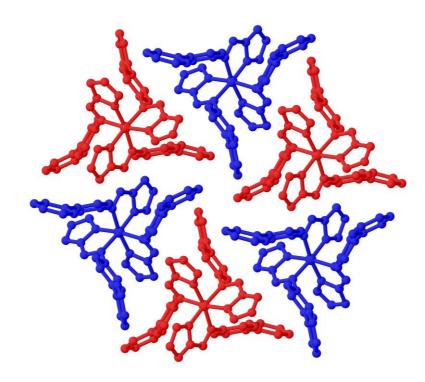
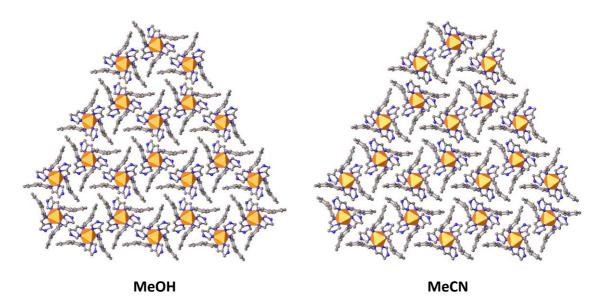

E-mail: hdavid@mail.wu.ac.th

Figure S3 UV-Vis of $[Fe(4-ima-Bp)_3](ClO_4)_2$ **1** and $[Fe(4-ima-Bp)_3](BF_4)_2$ **3** in MeCN in a 0.1 M solution.

Figure S4 Side-on view of the packing in *fac*-[Fe(4-ima-Bp)₃](ClO₄)₂·3MeOH **2**.

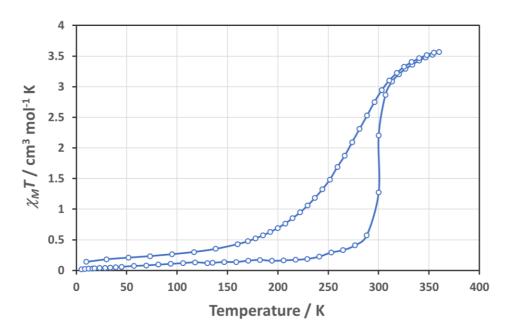

Figure S5 View of the *pseudo*-hexagonal packing motif in fac-[Fe(4-ima-Bp)₃](BF₄)₂·3.5MeCN 5.

Figure S6 Comparative view of the hexagonal and *pseudo*-hexagonal packing motifs found in **2** and **5**.

Complex		Туре	Distance
1	С10-Н10…π (С5-С10)	Intramolecular	2.681 Å
	С7-Н7…π (С5-С10)	Intermolecular	2.689 Å
	С13-Н13…π (С11-С16)	Intermolecular	2.905 Å
2	С10-Н10…π (С5-С10)	Intramolecular	2.635 Å
	С7-Н7…π (С5-С10)	Intermolecular	2.630 Å
	С13-Н13…π (С11-С16)	Intermolecular	2.808 Å
5	C42-H42…π (C5-C10)	Intramolecular	2.654 Å
	С10-Н10…π (С21-С26)	Intramolecular	2.561 Å
	С22-Н22…π (С37-С42)	Intramolecular	2.657 Å
	C25-H25…π (C5-C10)	Intermolecular	2.716 Å
	С39-Н39…π (С21-26)	Intermolecular	2.776 Å
	C45-H45…π (C11-C16)	Intermolecular	3.055 Å
	π-π	-	3.690 Å

Table S1 Geometric parameters of C-H··· π and π - π interactions in **1-2** and **5**.

Figure S7 SQUID profile of *fac*-[Fe(4-ima-Bp)₃](ClO₄)₂·3EtOH **1**.

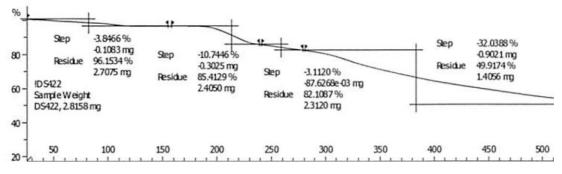


Figure S8 TGA of fac-[Fe(4-ima-Bp)₃](ClO₄)₂·3EtOH 1.

The first mass loss of 3.85% occurs at *ca*. 80 °C and is consistent with one equivalent of EtOH (calculated 4.06%). The second mass loss of 10.74% occurs at ca. 210 °C and is broadly suggestive of loss of the two remaining EtOH molecules (calculated 8.12%).