
Hierarchical Core/Shell Structured Ag@Ni(OH)₂ Nanospheres as Binder-Free Electrodes for High Performance Supercapacitors

Sa Lv*, Xuefeng Chu, Fan Yang, Huan Wang, Jia Yang, Yaodan Chi and Xiaotian Yang*

Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, School of Electrical Engineering and Computer, Jilin Jianzhu University, Changchun 130118, China; stone2009@126.com; ctpnxn@163.com; whuan@ciac.ac.cn; yangjia@jlju.edu.cn; chiyaodan@jlju.edu.cn

Correspondence: lvsa82@163.com (S.L.); hanyxt@163.com (X.Y.); Tel.: +86-0431-8456-6181 (S.L.)

Figure S1. Ag@Ni(OH)² electrode corresponding to different Ni(OH)² deposition time: (**a**) CV curves; (**b**) GCD curves.

The specific capacitance of Ag@Ni(OH)₂ electrode can be obtained by the following equation:

$$C_{s} = \frac{\int I(V)dV}{2vS\Delta V}$$

where Cs (F cm⁻²) is the specific capacitance, I(V) (A) is the response current, V (V) is the potential vs. Hg/HgO, v (V s⁻¹) is the scan rate, S (cm²) is the effective area of the electrode and ΔV (V) is the working potential. So the specific capacitance decreases with the increase of scan rate.

The specific capacitance of Ag@Ni(OH)₂ electrode can be obtained by the following equation:

$$C_s = \frac{I \times \Delta t}{S \Delta V}$$

where Cs (F cm⁻²) is the specific capacitance, *I* (A) is the charge–discharge current, Δt (s) is the discharging time, *S* (cm²) is the effective area of the electrode and ΔV (V) represents the potential drop during discharge.

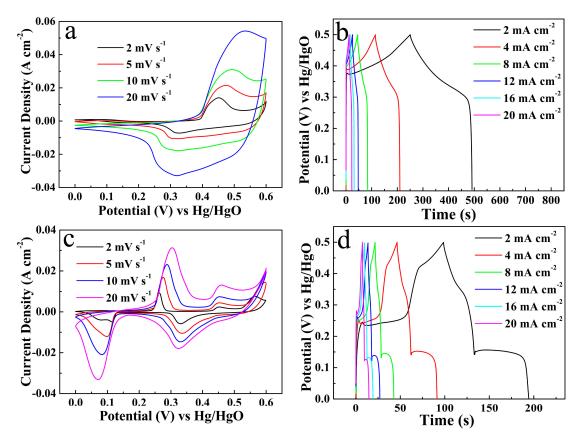


Figure S2. (a,c) The CV curves and (b,d) GCD curves of Ni(OH)² and the Ag electrode, respectively.

Electrode C _s (F cm ⁻²)	2 mA	4 mA	8 mA	12 mA	16 mA	20 mA
Ag@Ni(OH)2	1.864	1.395	1.098	0.946	0.838	0.760
Ni(OH)2	0.962	0.766	0.619	0.540	0.480	0.436
Ag	0.388	0.359	0.336	0.319	0.310	0.296

Table S1. The specific capacitance versus current density of the three electrodes.

The average equivalent series resistance (*R*ESR) are derived from the equation:

$$R_{ESR} = \frac{V_{\rm drop}}{2I}$$

where, V_{drop} (V) is the abrupt voltage drop at the beginning of the discharging curve and I (A) is the corresponding current.

Table S2. The RESR and voltage drop versus current density of the Ag@Ni(OH)2 electrode.

<i>I</i> (mA)	2 mA	4 mA	8 mA	12 mA	16 mA	20 mA	
Vdrop (V)	0.0043	0.0081	0.0156	0.0230	0.0305	0.0380	
$R_{\rm ESR}$ (Ω cm ⁻²)	1.075	1.015	0.975	0.958	0.953	0.950	
Average Resr (Ω cm ⁻²)			0.988				

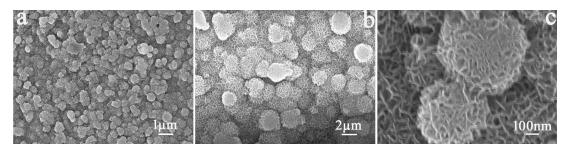


Figure S3. FE-SEM images of the Ag@Ni(OH)2 composite at different magnifications after 3000 cycles.