

Article New Sellmeier and Thermo-Optic Dispersion Formulas for AgGaS₂

Kiyoshi Kato^{1,2}, Takayuki Okamoto², Sergey Grechin³ and Nobuhiro Umemura^{1,*}

- ¹ Chitose Institute of Science and Technology, Faculty of Science and Technology, 758-65 Bibi, Chitose, Hokkaido 066-8655, Japan; umemura@photon.chitose.ac.jp
- ² Okamoto Optics Works Inc., 8-34 Hara-machi, Isogo-ku, Yokohama 253-0008, Japan; mikami@okamoto-optics.co.jp
- ³ Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street 38, 119991 Moscow, Russia; gera@bmstu.ru
- * Correspondence: umemura@photon.chitose.ac.jp

Received: 22 January 2019; Accepted: 22 February 2019; Published: 4 March 2019

Abstract: This paper reports on the new Sellmeier and thermo-optic dispersion formulas that provide a good reproduction of the temperature-dependent phase-matching conditions for second-harmonic generation (SHG) and sum-frequency generation (SFG) of a CO₂ laser and a Nd:YAG laser-pumped KTiOPO₄ (KTP) optical parametric oscillator (OPO) in the 0.8859–10.5910 μ m range as well as those for difference-frequency generation (DFG) between the two diode lasers in the 4.9–6.5 μ m range and DFG between the two periodically poled LiNbO₃ (PPLN) OPOs in the 5–12 μ m range thus far reported in the literature.

Keywords: AgGaS₂; phase-matching; Sellmeier equations; thermo-optic dispersion formula; frequency conversion; mid-IR generation

1. Introduction

In previous papers [1,2] we have reported the Sellmeier equations for AgGaS₂ that reproduce well the phase-matching angles of a Nd:YAG laser-pumped optical parametric oscillator (OPO) in the 2.6–5.3 μ m range [3] and those of difference-frequency generation (DFG) between the signal and idler outputs of a Nd:YAG laser-pumped LiNbO₃ OPO in the 5–12 μ m range [4] at room temperature. In addition, our Sellmeier and thermo-optic dispersion formulas [1,2] have also provided a good reproduction of the temperature-tuned phase-matching conditions for DFG between the two laser diodes in the 4.9–6.5 μ m range [5] and those for DFG between two Nd:YAG laser-pumped PPLN OPOs in the 5–12 μ m range [6] at elevated temperatures. However, this thermo-optic dispersion formula [2] constructed from the original work of Bhar et al. [7] has given dn_o/dT and dn_e/dT three times larger than the experimental values of Aggarwal and Fan [8] at 308 K (35 °C).

In order to clarify this large discrepancy, we measured dn_o/dT and dn_e/dT at 0.6328, 1.0642, 1.1523, 2.052, and 3.3913 µm by using a prism method and found that our experimental values of $dn_o/dT = 6.048 \times 10^{-5} \,^{\circ}C^{-1}$ and $dn_e/dT = 6.549 \times 10^{-5} \,^{\circ}C^{-1}$ at 1.0642 µm agree well with $dn_o/dT \simeq 5.5 \times 10^{-5} \,^{\circ}C^{-1}$ and $dn_e/dT \simeq 6.0 \times 10^{-5} \,^{\circ}C^{-1}$ at 1.06 µm measured by Aggarwal and Fan (Figure 1 of [8]). Thus, we have used our measured dn_o/dT and dn_e/dT and have constructed the new thermo-optic dispersion formula that provides a good reproduction of the abovementioned experimental results when coupled with our new Sellmeier equations that reproduce correctly the 90° phase-matched second-harmonic generation (SHG) wavelength of $\lambda_1 = 1.7718$ µm at 20 °C.

2. Experiments and Discussion

We used three different samples in the present experiments. One sample was cut at $\theta = 90^{\circ}$ and $\phi = 45^{\circ}$. The other two samples were cut at $\theta_1 = 37.2^{\circ}$ ($\theta_2 = 52.8^{\circ}$) and $\phi = 45^{\circ}$, and $\theta_1 = 39.7^{\circ}$ ($\theta_2 = 50.3^{\circ}$) and $\phi = 0^{\circ}$. They were shaped as parallelepipeds with four polished surfaces corresponding to the two directions defined by the two values of the polar angle given. The dimensions of these samples are $\sim 10 \times 10 \times 10 \text{ mm}^3$.

These samples were mounted on a temperature-controlled copper oven, which was set on a Nikon stepmotor-driven rotation stage having an accuracy of $\pm 0.02^{\circ}$ to vary only the polar angle θ . The temperature stability of the oven was $\pm 0.1 \,^{\circ}$ C. By using a Nd:YAG laser-pumped KTiOPO₄ (KTP) OPO as a pump source, we first measured the 90° phase-matching wavelengths for type-1 SHG by heating a $\theta = 90^{\circ}$ and $\phi = 45^{\circ}$ cut crystal from 20 °C to 120 °C at 20 °C intervals. The resulting tuning points (open circles) are shown in Figure 1. As can be seen from this figure, these results give $d\lambda_1/dT = +0.16 \text{ nm}/^{\circ}\text{C}$ and $\lambda_1 = 1.7718 \text{ µm}$ at 20 °C. Since $d\lambda_1/dT$ is defined as

$$\frac{d\lambda_1}{dT} = \left(\frac{\partial n_2^e}{\partial T} - \frac{\partial n_1^o}{\partial T}\right) / \left(\frac{\partial n_1^o}{\partial \lambda_1} - \frac{1}{2}\frac{\partial n_2^e}{\partial \lambda_2}\right),\tag{1}$$

we obtain $\partial n_2^e / \partial T - \partial n_1^o / \partial T = +1.0777 \times 10^{-5} \circ C^{-1}$ when using our Sellmeier equations presented in [1]. This is 27% lower than $\partial n_2^e / \partial T - \partial n_1^o / \partial T = +1.4692 \times 10^{-5} \circ C^{-1}$ given by our thermo-optic dispersion formula (T/K) presented in [2].

Figure 1. Temperature tuning curve for type-1 90° phase-matched second-harmonic generation (SHG) in AgGaS₂. The solid line is the theoretical curve calculated with the Sellmeier and thermo-optic dispersion formulas presented in this text. Open circles are our experimental points. The 90° phase-matching wavelength at 20 °C is $\lambda_1 = 1.7718 \ \mu m$ with $\Delta T \cdot l = 7.3 \ ^{\circ}C$ cm.

We next measured the temperature variation of the phase-matching angles for SHG and sum-frequency generation (SFG) of a CO_2 laser (Coherent DEOS, Model EOM-10) and its SHG and third-harmonic generation as a pump source under the same experimental conditions as described in [9]. For reliable determination of a zero-angle of incidence, a reference He-Ne laser beam reflected from the entrance face of the crystal was aligned on a 0.2 mm slit located 2 m from the crystal.

The observed phase-matching angles and the temperature phase-matching bandwidths ($\Delta T \cdot l$) at full width at half-maximum (FWHM) that were determined from the temperature variation of the phase-matching angles ($\Delta \theta_{ext}/\Delta T$) and the angular acceptance angles ($\Delta \theta_{ext} \cdot l$) calculated with the following new Sellmeier equations, are tabulated in Table 1.

$$n_o^2 = 5.79495 + \frac{0.22799}{\lambda^2 - 0.07963} - 2.4534 \times 10^{-3}\lambda^2 + 3.1814 \times 10^{-7}\lambda^4 - 9.7051 \times 10^{-9}\lambda^6,$$

$$n_e^2 = 5.54077 + \frac{0.22223}{\lambda^2 - 0.09670} - 2.5240 \times 10^{-3}\lambda^2 + 2.0930 \times 10^{-6}\lambda^4 - 2.2984 \times 10^{-8}\lambda^6,$$
 (2)

$$(0.661 < \lambda < 10.5910),$$

where λ is in micrometers. The phase-matching angles tabulated in Table 1 agree well with the values presented in [1,2]. We did not measure the temperature phase-matching bandwidth for type-1 THG of a CO₂ laser because the polarization directions of λ_1 and λ_2 were mutually orthogonal in the experimental setup, in which the 5.2955 µm input (λ_2) was generated by a type-1 SHG process. This index formula was obtained by adjusting the Sellmeier constants of Equations (1) and (2) presented in [1] to give the best fit to the type-1 90° phase-matched SHG wavelength of $\lambda_1 = 1.7718$ µm at 20 °C and the type-1 90° phase-matched DFG wavelength of $\lambda_i = 5.333$ µm generated by mixing $\lambda_p = 661.183$ nm and $\lambda_s = 754.752$ nm at 20 °C [10]. It reproduces correctly the phase-matching angles of a Nd:YAG laser-pumped OPO in the 2.6–5.3 µm range [3] and those of DFG between the signal and idler outputs of a Nd:YAG laser-pumped LiNbO₃ OPO in the 5–12 µm range [4] described above.

Table 1. Temperature phase-matching properties of $AgGaS_2$ for harmonic generation of a CO_2 laser at 10.5910 μ m.

Wavelength (μ m) ¹			Phase-Matching	Angular Acceptance	$\Delta T \cdot l$ (°C·cm)	
λ_1	λ_2	λ ₃	Angle at 20 °C θ_{pm} (deg)	$\Delta \theta_{\rm ext} \cdot l$ (deg·cm)	Measured	Calculated
10.5910 ^o	10.5910 ^o	5.2955 ^e	68.5	1.77	35.8	35.5
5.2955°	5.2955°	2.6478 ^e	32.6	0.66 (0.656)	20.6	20.8
5.2955 ^e	5.2955°	2.6478 ^e	50.1	1.23	21.2	21.4
3.5303°	3.5303°	1.7652 ^e	33.4	0.44 (0.438)	15.2	15.2
3.5303 ^e	3.5303°	1.7652 ^e	51.5	0.83	15.8	15.7
10.5910 ^o	5.2955°	3.5303 ^e	43.3	0.80		28.5
10.5910 ^e	5.2955°	3.5303 ^e	58.5	1.38	29.0	29.4

 1 1/ λ_{1} + 1/ λ_{2} = 1/ λ_{3} . ² The superscripts of the interacting wavelengths denote the polarization directions.

Although our Sellmeier and thermo-optic dispersion formulas presented in [2] reproduce well the temperature-dependent phase-matching conditions for the 90° phase-matched DFG between the two laser diodes in the 4.9–5.0 µm range [5] and those for the critically phase-matched DFG between the two PPLN OPOs pumped by a Nd:YAG laser in the 5–12 µm range [6], we found large differences between the temperature phase-matching bandwidths ($\Delta T \cdot l$) for SHG of a CO₂ laser and its harmonics that are tabulated in Table 1 and those listed in Table 1 of [2]. For instance, $\Delta T \cdot l = 35.8$ °C cm observed in the present experiment at $\lambda_2 = 5.2955$ µm is a factor of ~4 smaller than the $\Delta T \cdot l = 139$ °C cm value observed in previous experiments [2]. This may account for the systematic error in previous measurements of $\Delta \theta_{\text{ext}}/\Delta T$.

Aggarwal and Fan [8] have reported that dn_o/dT and dn_e/dT at 308 K (35 °C) measured by using the temperature-induced shift in the frequency of the interference fringes in the Fourier transform infrared spectroscopy (FTIR) transmittance spectrum of AgGaS₂ etalon are ~1/3 of our calculated values and those of Bhar et al. [7] and Zondy and Touahri [11]. Hence, we attempted to measure dn_o/dT and dn_e/dT at 0.6328, 1.0642, 1.1523, 2.052, and 3.3913 µm by using a minimum deviation method with a prism cut at an apex angle of 20°48′.

Using the raw data obtained by heating the prism from 20 °C to 140 °C at 20 °C intervals, we constructed a tentative thermo-optic dispersion formula to extrapolate dn_o/dT and dn_e/dT at 5.2955 and 10.5910 µm. The interpolated and extrapolated values were then iteratively adjusted to give the best fit to the measured temperature phase-matching bandwidths ($\Delta T \cdot l$) tabulated in Table 1. The newly constructed thermo-optic dispersion formula is expressed as

$$\frac{dn_o}{dT} = \left(\frac{5.4715}{\lambda^3} - \frac{13.1712}{\lambda^2} + \frac{11.1658}{\lambda} + 2.6459\right) \times 10^{-5} (^{\circ} \text{C}^{-1}),
\frac{dn_e}{dT} = \left(\frac{4.8348}{\lambda^3} - \frac{11.6335}{\lambda^2} + \frac{9.8950}{\lambda} + 3.5135\right) \times 10^{-5},
(0.6328 \le \lambda \le 10.5910),$$
(3)

where λ is in micrometers. Note that Equation (3) gives $\partial B/\partial T = \partial n_e/\partial T - \partial n_o/\partial T = 6.4991 \times 10^{-5} - 5.9924 \times 10^{-5} = 5.067 \times 10^{-6} \circ C^{-1}$ at 1.1523 µm, which is a factor of 1.7 larger than the value $\partial B/\partial T \simeq 3 \times 10^{-6} \circ C^{-1}$ which was reported by Suslikov et al. [12].

For reference, we have plotted dn_o/dT and dn_e/dT given by Equation (3) in Figure 2 together with the values at 20 °C (closed circles) estimated from the data points of Aggarwal and Fan at 308 K (35 °C) and 97 K (-176 °C) [8], and our experimental points (open circles). As can be seen from this figure, our calculated at 10.5910 µm are about 20% lower than the experimental values of Aggarwal and Fan [8].

Figure 2. Thermo-optic dispersion curves of AgGaS₂. Closed circles are the values at 20°C estimated from the data points of Aggarwal and Fan at 308K (35 °C) and 97 K (-176 °C) [8]. Open circles are our experimental points.

In order to check the utility of Equations (2) and (3), we calculated the 90° phase-matching temperatures for type-1 DFG between the two diode lasers ($\lambda_s = 0.791116 \ \mu m$, $\lambda_p = 0.68162$ –0.68290 μm). The resulting tuning curve (K) is shown in Figure 3 together with the experimental points (closed circles) of Willer et al. [5] and the tuning curves (Z/T), (H/K), and (R) that were calculated with the Sellmeier equations of Zondy and Touahri [11], Harasaki and Kato [1], and Roberts [13] coupled with our new thermo-optic dispersion formula (Equation (3)). Our tuning curve (K) reproduces the experimental points of Weller et al. [5] within an accuracy of $\pm 5 \ ^\circ$ C except near 30 $^\circ$ C.

We next calculated the phase-matching temperatures at $\theta_{pm} = 34.30^{\circ}$ for type-1 DFG between two Nd:YAG laser-pumped PPLN OPOs operating at $\lambda_p = 1.60 \ \mu\text{m}$ and $\lambda_s = 1.846-2.353 \ \mu\text{m}$ [6]. Since we found that our calculated values at $\theta_{pm} = 34.20^{\circ}$ reproduce well the experimental points of Haidar et al. [6], we inserted our tuning curve (K) at $\theta_{pm} = 34.20^{\circ}$ into Figure 4. It should be noted that our calculated values at $\theta_{pm} = 34.30^{\circ}$ are ~12 °C larger than those of the tuning curve (K) because the phase-matching temperatures around the retracing point are strongly dependent on the phase-matching angle θ_{pm} . Also note that the dashed line (T/K) was formerly presented in Figure 3 of [6] by Haidar et al. and it agrees with fairly well with our tuning curve (K) at $\theta_{pm} = 34.20^{\circ}$. On the other hand, the Sellmeier equations of Roberts [13] give no retracing point for this process (Figure 1 of [6]). They give the phase-matching angles of $\theta_{pm} = 28.90^{\circ}$, 30.38°, and 33.24° to generate $\lambda_i = 5.0, 8.5, and 12.0 \ \mu\text{m}$ at 20 °C, respectively. Hence, we did not use his index formulas for the present calculations.

Figure 3. Temperature-tuning curves for type-1 difference-frequency generation (DFG) between the two laser diodes in AgGaS₂. The signal wavelength is 0.791116 μ m. The solid line (K) is the theoretical curve calculated with the Sellmeier and thermo-optic dispersion formulas presented in this text. The dashed lines (Z/T), (H/K), and (R) are the theoretical curve calculated with the Sellmeier equations of Zondy and Touahri [11], Harasaki and Kato [1], and Roberts [13] coupled with our thermo-optic dispersion formula presented in this text. Closed circles are the data points taken from [5].

Figure 4. Temperature-tuning curves for type-1 DFG between two PPLN optical parametric oscillators (OPOs) pumped by a Nd:YAG laser in AgGaS₂. The solid line (K) is the theoretical curve at $\theta_{pm} = 34.20^{\circ}$ calculated with the Sellmeier and thermo-optic dispersion formulas presented in this text. The dashed line (T/K) is the theoretical curve at $\theta_{pm} = 34.30^{\circ}$ calculated with the Sellmeier and thermo-optic dispersion formulas presented in the thermo-optic dispersion formulas presented in [2]. Closed circles are the data points taken from [6].

In order to check further the utility of our Sellmeier and thermo-optic dispersion formulas, we measured the phase-matching angles for type-2 DFG at $\lambda_i = 7.5190 \ \mu\text{m}$ between the signal ($\lambda_p = 1.8645 \ \mu\text{m}$) and the idler ($\lambda_i = 2.4793 \ \mu\text{m}$) of a Nd:YAG laser-pumped CsTiOAsO₄ OPO [9,14] in a $\theta_1 = 39.7^{\circ}$ ($\theta_2 = 50.3^{\circ}$) and $\phi = 0^{\circ}$ cut crystal. The measured phase-matching angles of $\theta_{pm} = 38.2 \pm 0.2^{\circ}$ at 20 °C and $\theta_{pm} = 39.3 \pm 0.2^{\circ}$ at 100 °C agree well the calculated values of $\theta_{pm} = 38.24^{\circ}$ and 39.21°, respectively. Thus, we demonstrated the utility of Equations (2) and (3) in this wavelength range.

3. Conclusions

In this study, we have reported the new Sellmeier and thermo-optic dispersion formulas for AgGaS₂ that reproduce well the present experimental results as well as the temperature-dependent

phase-matching conditions for type-1 DFG between the two laser diodes in the 4.9–6.5 μ m range [5] and between two Nd:YAG laser-pumped PPLN OPOs in the 5–12 μ m range [6]. We believe that these two formulas are highly useful for investigating the temperature-dependent phase-matching conditions for down conversion (OPO, OPA (optical parametric amplifier), and DFG) of near-IR solid state laser systems in different temporal regimes (pulse duration and pulse repetition rate) to the mid-IR spectral range.

Author Contributions: K.K. contributed to methodology, formal analysis, and writing—original draft preparation. Other authors contributed equally to this work.

Funding: This research received no external funding.

Acknowledgments: We are grateful to Emeritus Professor Hiromasa Ito of Tohoku University for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Harasaki, A.; Kato, K. New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS₂. *Jpn. J. Appl. Phys.* **1997**, *26*, 700–703. [CrossRef]
- 2. Takaoka, E.; Kato, K. Thermo-optic dispersion formula for AgGaS₂. *Appl. Opt.* **1999**, *38*, 4577–4580. [CrossRef] [PubMed]
- 3. Wang, T.J.; Kang, Z.H.; Zhang, H.Z.; He, Q.Y.; Qu, Y.; Feng, Z.S.; Jiang, Y.; Gao, J.Y.; Andreev, Y.M.; Lanskii, Z.S. Wide-tunable, high-energy AgGaS₂ optical parametric oscillator. *Opt. Express* **2006**, *14*, 13001–13006. [CrossRef] [PubMed]
- Haidar, S.; Nakamura, K.; Niwa, E.; Masumoto, K.; Ito, H. Mid-infrared (5–12-μm) and limited (5.5–8.5-μm) single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS₂. *Appl. Opt.* **1999**, *38*, 1798–1801. [CrossRef] [PubMed]
- 5. Willer, U.; Blanke, T.; Schade, W. Difference frequency generation in AgGaS₂: Sellmeier and temperature-dispersion equations. *Appl. Opt.* **2001**, *40*, 5439–5445. [CrossRef] [PubMed]
- 6. Haidar, S.; Niwa, E.; Masumoto, K.; Ito, H. Temperature tuning of 5–12 μm by difference frequency mixing of OPO outputs in a AgGaS₂ crystal. *J. Phys. D Appl. Phys.* **2003**, *36*, 1071–1074. [CrossRef]
- Bhar, G.C.; Ghosh, D.K.; Ghosh, P.S.; Schmitt, D. Temperature effects in AgGaS₂ nonlinear devices. *Appl. Opt.* 1983, 22, 2492–2494. [CrossRef] [PubMed]
- 8. Aggarwal, R.L.; Fan, T.F. Measurement of thermooptic coefficients dn_e/dT and dn_o/dT of AgGaS₂ at 308 and 97 K. *IEEE J. Quantum Electron.* **2005**, *41*, 1319–1322. [CrossRef]
- Kato, K.; Miyata, K.; Badikov, V.V.; Petrov, V. Thermo-optic dispersion formula for BaGa₄Se₇. *Appl. Opt.* 2018, 57, 2935–2938. [CrossRef] [PubMed]
- Chen, W.; Burie, J.; Boucher, D. Midinfrared cw difference-frequency generation using a synchronous scanning technique for continuous tuning of the full spectral region from 4.7 to 6.5 μm. *Rev. Sci. Instrum.* **1996**, *67*, 3411–3415. [CrossRef]
- 11. Zondy, J.-J.; Touahri, D. Updated thermo-optic coefficients of AgGaS₂ from temperature-tuned noncritical $3\omega \omega \rightarrow 2\omega$ infrared parametric amplification. *J. Opt. Soc. Am. B* **1997**, *14*, 1331–1338. [CrossRef]
- 12. Suslikov, L.M.; Khazitarkhanov, Y.A.; Gadmashi, Z.P. Effect of temperature on birefringence of silver thiogallate single crystals. *Opt. Spectrosc.* **1993**, *74*, 336–340.
- 13. Boberts, D.A. Dispersion equations for nonlinear optical crystals: KDP, AgGaSe₂, and AgGaS₂. *Appl. Opt.* **1996**, *35*, 4677–4688. [CrossRef] [PubMed]
- 14. Mikami, T.; Okamoto, T.; Kato, K. Sellmeier and thermo-optic dispersion formulas for CsTiOAsO₄. *J. Appl. Phys.* **2011**, *109*, 023108. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).